Fluidodinamica Comprimibile

Scopo del libro

Queste note contengono gli appunti delle lezioni del corso di **Fluidodinamica Comprimibile** offerto tipicamente agli allievi del Corso di Laurea in Ingegneria Aerospaziale della Seconda Università degli Studi di Napoli.

Questo corso, nel nuovo ordinamento degli studi, è tenuto nel primo semestre del terzo anno di studio e vale **6 crediti** (CFU).

Prerequisiti culturali al corso sono gli insegnamenti di Fluidodinamica e di Aerodinamica 1.

Scopo del corso, secondo i mandati del nuovo ordinamento, è di fornire una preparazione di primo livello capace di far affrontare e far risolvere concretamente problemi di fluidodinamica in regime di moto comprimibile, di fenomenologie prevalentemente interne. È per questi motivi che il corso è stato denominato **Fluidodinamica Comprimibile** invece della tradizionale Gasdinamica.

La differenza rispetto alla fluidodinamica incomprimibile sta nelle presenza di variazioni della densità che si possono ritrovare in tutto il campo di moto; per cui nel mentre in Fluidodinamica e nell'Aerodinamica incomprimibile (iposonica) era pressoché non rilevante il modello del fluido, nella **Fluidodinamica Comprimibile** sarà fondamentale la **descrizione termodinamica** del fluido e la sua interazione con il campo di moto.

In questo ambito considereremo solo fenomenologie in cui è accettabile una descrizione continua e per cui è applicabile il principio di equilibrio termodinamico per una particella fluida, considerata come la materia contenuta nel più piccolo volume per il quale sono significative le definizioni di variabili termodinamiche quali densità, pressione, temperatura, energia ecc..; la velocità della particella fluida sarà la velocità media della materia in essa contenuta.

Le dimensioni della particella sono finitesime al punto di poter considerare l'applicabilità del calcolo differenziale.

Considereremo quasi esclusivamente **moti quasi-unidimensionali** cioè problemi con volumi di controllo (tubi di flusso o tratti di condotto) per i quali si verifichi che la sezione trasversale, A(x), vari di poco rispetto all'ascissa curvilinea (x). In questi casi sarà lecito assumere, ad ogni stazione, valori medi di tutte le proprietà termo-fluido-dinamiche, ed esprimere gli integrali superficiali presenti nelle equazioni di bilancio globale con il teorema della media, cioè come il prodotto della sezione per il valor medio dell'integrando.

I limiti di applicabilità di questa trattazione sono noti [bene se i profili di velocità sono piatti (o.k. per i regimi turbolenti, male per i regimi laminari), incapacità di trattare flussi separati o moti secondari in condotti, ecc..] ma tale limitazione è contrapposta alla semplicità di ottenimento di risultati di primo livello.

Enfasi sarà posta sul saper fare, il che richiederà l'uso di codici di calcolo volutamente semplificati. Tali fasi verranno svolte ed agevolate da intense attività

di tutoraggio, che dovranno essere seguite con costanza e solerzia in quanto costituiscono parte integrante e fondamentale del processo di formazione.

Queste note sono state estratte da appunti delle lezioni di **Gasdinamica** fornite a studenti degli anni precedenti. Questi allievi sono stati usati come cavie pazienti per l'adattamento graduale del testo alla didattica fattibile nei 6 CFU, per la individuazione dei punti oscuri e per la correzione degli inevitabili errori. A tutti il ringraziamento dell'autore.

Ma gli errori e le imperfezioni sono indici dell'umanità, cui apparteniamo; sicché essi continueranno immancabilmente a permanere in queste note. Futuri allievi saranno grati a quanti di voi, attenti lettori, vorranno segnalarli agli autori.

Con (*) sono indicati i paragrafi di approfondimento.

C.Golia – A.Viviani

Indice del Libro

Capitolo 1 : INTRODUZIONE

<u>Parag</u>	<u>grafo/sot</u>	ttoparagrafo	pag.
1.1	Comp	ressibilità/Comprimibilità	2
1.2	Veloci	ità delle piccole perturbazioni	<mark>4</mark>)
1.3	Propag	gazione dei disturbi di pressione	4)
1.4	Effetti	i sui campi di moto	
1.5	Criteri	i di comprimibilità (*)	(7) 8
1.6	Le equ	uazioni della gasdinamica	10
	1.6.1	Equazioni di stato	10
	1.6.2	Definizione del numero di Mach	11
	1.6.3	Pressione dinamica	11
	1.6.4	Funzione Impulso totale	11
	1.6.5	Equazioni di bilancio	12
		1.6.5.1 Continuità:	12
		1.6.5.2 Quantità di Moto	13
	1.6.5.3	3 Energia	13
		1.6.5.4 Entropia	14
1.7	Stati d	li riferimento	14
1.8	Stati I	sentropici (Flussi adiabatici/isentropici)	16
	1.8.1	Relazioni tra variazioni Area/Velocità	<mark>19</mark>
	1.8.2	Correzioni di compressibilità	21
1.9	Ausili	per Calcoli (tabelle virtuali)	22
1.10	Check	24	

Capitolo 2: DISCONTINUITÀ/ONDE IN GASDINAMICA

Paragrafo/sottoparagrafo				
2.1	ONDE	D'URTO NORMALI (adiabatiche - stazionarie)	2	
	2.1.1	Soluzione algebrica dell'Onda d'Urto Normale – Relazione di Prandtl	3	
	2.1.2	Relazione di Rankine-Hugoniot	7	
	2.1.3	Impossibilità di una discontinuità di espansione (adiabatica- stazionaria)	9	

	2.1.4	Intensità di un' Onda d'Urto Normale	12			
	2.1.5	Tubo di Pitot in supersonica	13			
	2.1.6					
2.2	ONDE	D'URTO OBLIQUE	16			
	2.2.1	Proprietà delle Onde d'Urto Oblique	16			
	2.2.2	Ausili per calcoli di OUO	21			
	2.2.3	Relazione di Rankine-Hugoniot	23			
	2.2.4	Relazione di Prandtl	24			
	2.2.5	Polare d'Urto – Strofoide	24			
2.3	FLUS	SI CONICI SUPERSONICI	29			
	2.3.1	Formulazione di Taylor-Maccol	30			
	2.3.2	Procedura di calcolo	32			
	2.3.3	Ausili per calcoli di Onde d'Urto Coniche	33			
2.4	FLUS:	SI ALLA PRANDTL-MEYER	35			
	2.4.1	Teoria dell'onda semplice (di Mach, OdM)	35)			
	2.4.2	Applicazione della teoria di espansioni alla Prandtl-Meyer	38			
	2.4.3	Ausili per calcoli di ventagli di Espansione alla P-M	39			
	2.4.4	Polare delle Onde Semplici –Epicicloide	40			
	2.4.5	Onde di Mach discrete	43			
	.2.4.6	Linee di corrente per flussi ad onde semplici (P-M-)	43			
2.5	INTER	RAZIONI TRA DISCONTINUITA'	44)			
	2.5.1	Riflessione su superfici solide	45			
	2.5.2	Riflessione su superfici fluide	46			
	2.5.3	Interazione di Onde di opposte famiglie	47			
	2.5.4	Interazione di Onde della stessa famiglia	48			
	2.6 TEOR	IA URTI-ESPANSIONI	49			
	2.6.1	Ausili di calcolo	50			
2.7	CHEC	K-OUT	52			

Capitolo 3: Moti Interni

P <u>ara</u>	grafo/sottoparagra	afo		pag.
.3.1	GENERALITÀ			
.3.2	MOTI SEMPLICI	QUASI UNI	<mark>DIMENSIONALI</mark>	2
	.3.2.1 Variazione	di Area		3
	.3.2.1.1	Il fenomeno	dello strozzamento	3
	.3.2.1.2	Diagrammi (5
	.3.2.1.3	Le relazioni	per il moto semplice con variazione di sezione	5
	.3.2.1.4	Condotto co		7
			Applicazioni	8
	.3.2.1.5		nvergente- divergente : Ugello di "de Laval"	11
			Posizione e Stabilità di OUN negli ugelli	12
			Applicazioni	16
	.3.2.1.6	Diffusori – p		20
			Prese d'aria subsoniche	21
			Prese d'aria supersoniche – solo divergente	22
		.3.2.1.6.1	Prese d'aria supersoniche – convergente divergente	22
	.3.2.1.7	Tunnel supe		30
			Tunnel supersonici a geometria fissa	32
			Tunnel supersonici a geometria variabile	33
			Applicazioni	33
	.3.2.2 Moti unidin	nensionali cor	n scambio di calore - Curva di Rayleigh	38
	.3.2.2.1	Applicazion		45
			<mark>attrito - Curva di Fanno</mark>	48
	3 2 3 1	Applicazion		54

	.3.2.4 Soluzione OUN come intersezione delle curve di Rayleigh e di Fanno		58
	.3.2.5 Moti unidimensionali con scambio di massa		59
	.3.2.5.1 Applicazioni		63
	.3.2.6 Moti unidimensionali isotermi con attrito		65
	.3.2.6.1 Applicazioni		68
.3.3	MOTI GENERALIZZATI		70
.3.4	CHECK-OUT		76
	Capitolo 4: Moti Esterni Linearizzati		
Para	grafo/sottoparagrafo	pag.	
.4.1	Equazione del potenziale		2
.4.2	Linearizzazione dell'equazione		2 4 8
.4.3	Linearizzazione del coefficiente di pressione		8
.4.4	Flussi subsonici linearizzati		9
.4.5	Similitudini Subsoniche		12
	.4.5.1 Regola di Similitudine di Gothert		14
	.4.5.2 Regola di Similitudine di Prandtl-Glauert		15
	.4.5.3 II.a Regola di Similitudine di Prandtl-Glauert		16
.4.6	Correzioni di Compressibilità di Laitone e di Karman-Tsien		18
.4.7	Mach critico (inferiore) di un profilo		20
.4.8	Similitudine per campi tridimensionali compressibili subsonici(*)		22
.4.9	Effetti della compressibilità sulle Ali a Freccia (*)		23 27
.4.10		12 OFG 012	
.4.11	.4.10.1 Soluzione Generale dell'equazione del potenziale di velocità del disturbo in su Profili supersonici (piccoli disturbi)	personi	33
.7.11	.4.11 La teoria di Busemann		37
.4.12	Check-Out		39
. 1.12	Check Out		37
	Capitolo 5: ELEMENTI DI STRATO LIMITE COMPRIMIBILE		
P <u>ara</u>	grafo/sottoparagrafo	pag.	
.5.1	Le equazioni dello Strato Limite Compressibile Laminare		3
.5.2	le soluzioni di Crocco-Busemann		7
.5.3	Soluzioni simili (*)		11
	5.3.1 Lastra piana		15
	5.3.2 Intorno del punto di ristagno		17
.5.4	Il metodo della temperatura di riferimento		19
.5.5	Relazioni Integrali per strati limite compressibili		20
	5.5.1 Il Metodo di Thwaites compressibile		21
.5.6	5.5.2 La transizione laminare/turbolento nel compressibile Riscaldamento aerodinamico		21
	Interazione Onde d'Urto Strato Limite		24
.5.7	.5.71 Riflessione di una OUO dallo Strato Limite su di una lastra piana		27 27
	.5.72 Generazione di Urti su di una superficie concava		29
	5.7.3 Generazione di Urti sul bordo di attacco di una lastra piana e di un diedro		30
	5.7.4 Interazioni transoniche		30
.5.8	Onde d'Urto Normali in condotti		32
.5.9	Check-Out		34
			٠.

Capitolo 6: ELEMENTI DI GASDINAMICA DELLE MISCELE REAGENTI

P <u>ara</u>	ngrafo/sottoparagrafo	pag.
.6.1	Introduzione	2
.6.2.	Definizioni di concentrazioni, velocità e flussi di massa	2
.6.3	Bilanci e conservazione delle masse	4
.6.4	Equazione del bilancio della quantità di moto	5
.6.5	Equazione di conservazione dell'energia	5
.6.6	Equazione di bilancio dell'entropia	6
.6.7	Relazioni di stato	7
	.6.7.1 Equazione di stato	7
	.6.7.2 Equazione calorica di stato	8
.6.8	Calore di reazione	9
.6.9	Relazioni costitutive per una miscela binaria	10
	Produzione di massa e reazioni chimiche	11
.6.11	Gas biatomico ideale dissociante. Modello di Lightill	13
	.6.11.1 Modello termodinamico	13
	.6.11.2Modello cinetico-chimico	14
.6.12	2 Flusso con dissociazione	15
	.6.12.1 Flusso in equilibrio a valle di onda d'urto normale	15
	.6.12.2 Flusso in non-equilibrio a valle di onda d'urto normale	17
	.6.12.3 Flusso in condotto a sezione variabile	18
.6.13	3 Check-Out	20
Appe	endice A: Richiami di termodinamica	
A.1	Relazioni Energetiche	
A.2	Modello di gas piùccheperfetto	
A.3	Relazioni Entropiche	
A.4	Relazioni isentropiche	
A.5	Piani termodinamici	
Appe	endice B Perdite di carico in condotti	
B.1	Lunghezza d'ingresso	
B2	Perdite di carico per attrito	
	B.2.1 Flussi in tubi circolari	
	B.2.2 Equazioni del moto	
	B.2.2.1 Soluzione laminare	
	B.2.2.2 Soluzione turbolenta	
	B.2.2.3 Effetto delle rugosità superficiale	
	B.2.3 Il concetto di Diametro Idraulico	
	B.2.4 Altre sezioni non circolari	
	B.2.5 Calcolo del fattore di attrito (Fanning) per codici gasdinamici	
B.3	Perdite di carico minori	
2.0	B.3.1 Perdite di ingresso/uscita	
	B.3.2 Subitanei cambiamenti di sezione	
	B.3.3 Raccordi a T, gomiti e valvole	
	B.3.4 Raccordi Curvi	
	B.3.5 Variazioni di sezione	

Bibliografia

- B.K.HODGE K.KOENIG: "Compressible Fluid Dynamics", Prentice Hall 1995
- A.H.SHAPIRO: "The Dynamics and Thermodynamics of Compressible Fluid Flow", Ronald Press
- M.J.ZUCROW J.D.HOFFMAN: "Gasdynamics" vol.1 e 2, (reprint) Krieger Publ.

Check In

Dopo averVi dato il benvenuto a bordo è necessario verificare se le nozioni di base necessarie, per un adeguato apprendimento degli argomenti che saranno trattati in questo corso, sono state da Voi debitamente assimilate.

A tal fine seguirà una lista di argomenti (e sotto argomenti) che siete invitati ad analizzare attentamente.

Tutti questi argomenti dovrebbero essere stati trattati nel corso di base di <u>Fluidodinamica</u>, di Aerodinamica1.

AccertateVi di conoscerne l'origine, il significato e l'operatività ed, in specialmodo, di averne a <u>disposizione</u> riferimenti e fonti.

Se qualche argomento non vi è chiaro, segnalatelo al vostro istruttore che ne curerà una rivisitazione e/o un approfondimento idoneo durante le ore di tutorato.

1. Proprietà termodinamiche dei fluidi:

- 1.1. pressione,
- 1.2. densità,
- 1.3. temperatura,
- 1.4. energia interna,
- 1.5. entalpia,
- 1.6. entropia,
- 1.7. viscosità (dinamica e cinematica),
- 1.8. coefficiente di compressibilità,
- 1.9. velocità del suono,
- 1.10. calori specifici,
- 1.11. equazioni dei gas,

2. Equazioni globali del moto di un fluido:

- 2.1. continuità,
- 2.2. quantità di moto,
- 2.3. energia totale, ed equazioni da questa derivate,

3. Adimensionalizzazione:

- 3.1. numeri adimensionali, loro ricerca,
- 3.2. rappresentazione di dipendenze tra grandezze fisiche per mezzo di numeri adimensionali,
- 3.3. adimensionalizzazione delle equazioni e loro semplificazioni,
- 3.4. teoria dei modelli,
- 3.5. numeri adimensionali di interesse in fluidodinamica e loro significati (Reynolds, Mach, Strouhal, Froude, Gashoff),

4. Teoremi di Bernoulli e di Crocco.Buseman:

- 4.1. derivazioni e ambiti di applicabilità,
- 4.2. forme incomprimibili (instazionaria stazionaria),
- 4.3. teorema di Crocco-Busemann (equivalenze),

5. Uso del PC per l'informatica di base:

- 5.1. possedere un PC, e le periferiche di base.
- 5.2. conoscere l'uso del PC e dei programmi applicativi di base tipo "Office" (Video-scrittura, foglio elettronico), dei programmi tecnici (MAPLE, MATLAB e per la produzione di diagrammi), ed avere a disposizione i software necessari,
- 5.3. avere una casella di e-mail,

6. Uso del PC per programmi di calcolo numerico:

- 6.1. disponibilità di un compilatore FORTRAN o di altri linguaggi; relativa operatività,
- 7. Capacità di leggere l'inglese tecnico.

Scheda di valutazione

corso di Fluidodinamica Comprimibile

docente: prof. Antonio VIVIANI Laurea in Ingegneria Aerospaziale, Facoltà di Ingegneria, S.U.N. <u>Anno Accademico 2002-2003</u>

valutazione (mettere una croce) 1 (scarso) \rightarrow 3 (buono) \rightarrow 5 (ottimo)	1	2	3	4	5	Eventuali Commenti
1 (Sourso) 7 5 (Subito) -7 5 (Stuffie)	<u> </u>	<u> </u>		<u> </u>		
Contenuti						
Qualità appunti						
Quantità appunti						
Modalità di lezione						
Modalità di esercitazioni						
Modalità di esame						
Ritmo						
Su	ıggeri	ment	i per	il mio	liorar	nento del corso
			•			mento del colso
degli appunti:						
delle lezioni:						
degli esercizi:						
delle prove di esame:						
		Rila	ncio:	finale	(onzi	ionale)
In macha narala a acce Ti \ accente \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	aa (-					
In poche parole a cosa Ti è servito il corso (a parte la considerazione di aver acquisito 6 dei 180 crediti)?						
T					-	
Firmare apponendo una croce (asettican						la L e mettere il foglio, debitamente piegato, nella orridoio del Dipartimento di Ingegneria Aerospaziale
e Meccanica.	u ucs	ııu, a	.11 11118	. 0000	aci ()	ornació del Diparamento di nigegneria Aciospaziate