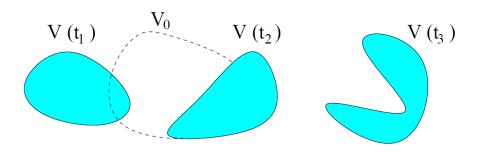
Teorema del trasporto di Reynolds

Definizioni:

volume materiale e volume di controllo

Immaginiamo in un istante t1 di delimitare un volume V (t_1) contenente delle particelle fluide che identifichiamo in qualche modo. Se fossimo in grado di seguire il moto di tutte le particelle fluide, ad un tempo $t_2 > t_1$ avremo che il volume avrà cambiato posizione e forma (V (t_2)) e lo stesso accadrà per un tempo successivo $t_3 > t_2$. Un volume così definito prende il nome di volume materiale (o sistema materiale o sistema fluido) ed ha la caratteristica di essere composto per qualunque tempo dalle particelle fluide che lo componevano inizialmente.

Se al contrario si delimita un volume (fisso o mobile) V_0 questo potrà contenere o meno alcune delle particelle fluide del volume materiale, ma comunque nel tempo queste varieranno e si può verificare (in figura per $t=t_3$) che il volume fisso non contenga alcuna particella del volume materiale. Il volume V_0 è chiamato volume di controllo e può essere scelto in modo del tutto arbitrario anche se, come si vedrà nelle applicazioni, una sua definizione in modo oculato semplifica notevolmente la soluzione dei problemi pratici.



grandezze intensive ed estensive

Definiamo grandezza estensiva B (scalare, vettoriale o tensoriale) una quantità il cui valore dipende dall'estensione del volume V considerato, mentre una grandezza intensiva b è una quantità indipendente dal valore di V.

Per esempio se si misura la temperatura di 1, 2 o 100 metri cubi d'aria questa sarà sempre la stessa, quindi la temperatura è una grandezza intensiva. Al contrario, se si misurasse la massa, questa evidentemente crescerà linearmente con il volume del sistema stesso, risultando quindi la massa una grandezza estensiva.

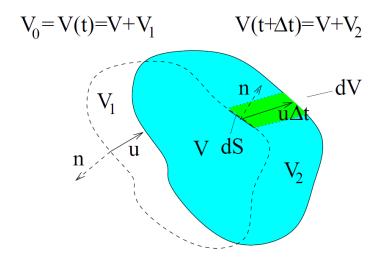
In particolare, detta b una grandezza intensiva si può scrivere

$$B = \int_{V} \rho b dV$$

essendo ρ la densità del fluido nel volume V, e si dirà che B è la grandezza estensiva coniugata a quella intensiva b. Per esempio la massa è la grandezza estensiva coniugata all'unità, la quantità di moto alla velocità, etc. Questa definizione è riferita alla massa infinitesima ρ dV.

Teorema

Calcoliamo la variazione nel tempo di una grandezza estensiva B. Consideriamo allo scopo un volume di controllo V_0 fisso che al tempo t viene preso coincidente con il volume materiale V (t); dopo un tempo Δt il volume materiale si sarà mosso come in figura.



Per la variazione nel tempo di B possiamo scrivere

$$\frac{dB}{dt} = \frac{d}{dt} \int_{V(t)} \rho b dV = \lim_{\Delta t \to 0} \frac{\int_{V(t+\Delta t)} \rho b dV - \int_{V(t)} \rho b dV}{\Delta t}$$

In base alla figura possiamo scrivere V (t) = V + V_1 e V (t + Δ t) = V + V_2 da cui

$$\frac{dB}{dt} = \lim_{\Delta t \to 0} \frac{\int\limits_{V} (\rho b)_{t+\Delta t} dV + \int\limits_{V_2} (\rho b)_{t+\Delta t} dV - \int\limits_{V} (\rho b)_{t} dV - \int\limits_{V_1} (\rho b)_{t} dV}{\Delta t}$$

in cui tutte le funzioni integrande sono calcolate al tempo relativo al volume di appartenenza.

Notiamo ora che il primo e terzo integrale dell'equazione sono valutati sullo stesso dominio V ma gli integrandi sono calcolati in tempi differenti per cui si ha

$$\lim_{\Delta t \to 0} \frac{\int\limits_{V} (\rho b)_{t+\Delta t} dV - \int\limits_{V} (\rho b)_{t} dV}{\Delta t} = \int\limits_{V_{0}} \frac{\partial (\rho b)}{\partial t} dV$$

avendo notato che per Δt ->0, V(t) -> V₀.

Per gli altri due integrali osserviamo dalla figura che, detto dS un elemento di superficie del volume V_0 , \mathbf{n} la sua normale ed \mathbf{u} la velocità di traslazione risulterà $dV = \mathbf{u} \cdot \mathbf{n} \Delta t$ dS per il volume V_2 e $dV = -\mathbf{u} \cdot \mathbf{n} \Delta t$ dS per il volume V_1 . Il secondo e quarto integrale diventeranno allora

$$\lim_{\Delta t \to 0} \frac{\int_{V_2} (\rho b)_{t+\Delta t} dV - \int_{V_1} (\rho b)_t dV}{\Delta t} = \lim_{\Delta t \to 0} \left(\int_{V_2} (\rho b)_{t+\Delta t} \frac{dV}{\Delta t} - \int_{V_1} (\rho b)_t \frac{dV}{\Delta t} \right) = \lim_{\Delta t \to 0} \left(\int_{S_2} (\rho b)_{t+\Delta t} \mathbf{u} \cdot \mathbf{n} dS - \int_{S_1} (\rho b)_t \mathbf{u} \cdot \mathbf{n} dS \right) = \int_{S_0} \rho b \mathbf{u} \cdot \mathbf{n} dS$$

dove per Δt ->0, $S_1 + S_2$ -> S_0 .

Quindi, possiamo scrivere:

$$\frac{dB}{dt} = \int_{V_0} \frac{\partial (\rho b)}{\partial t} dV + \int_{S_0} \rho b \mathbf{u} \cdot \mathbf{n} dS$$

con la quale abbiamo messo in relazione la grandezza B calcolata su un volume materiale con quantità calcolate su un volume di controllo e quindi di più facile valutazione.

La relazione precedente ci dice che le variazioni di B hanno due cause, una interna al sistema stesso e quindi dovuta a variazioni di b all'interno del volume V. L'altra possibilità è causata da scambi del sistema attraverso la sua superficie, ossia il flusso di b attraverso S.

Se la funzione pbu è continua e differenziabile allora il secondo integrale si può trasformare utilizzando il teorema della divergenza e scrivere:

$$\frac{dB}{dt} = \int_{V_0} \frac{\partial (\rho b)}{\partial t} dV + \int_{V_0} \nabla \cdot (\rho b \mathbf{u}) dV$$

Un'ultima precisazione è necessaria circa il significato fisico di \mathbf{u} a seconda che V_0 sia fisso o in movimento. Nel primo caso, risultando nulla la velocità di S_0 (e di dS) non nascono dubbi e \mathbf{u} è la velocità con cui si muove il fluido nel punto considerato. Se, al

contrario, V_0 è in movimento, dovendo valutare il flusso di ρ b attraverso dS non saremo più interessati alla velocità assoluta del fluido ma piuttosto alla velocità relativa tra il fluido e la superficie S_0 . Indicata allora con \mathbf{v} la velocità del fluido e con \mathbf{u}_r quella di S_0 risulterà $\mathbf{u} = \mathbf{v} - \mathbf{u}_r$ e quindi

$$\boxed{\frac{dB}{dt} = \frac{\partial}{\partial t} \int_{V_0} \rho b dV + \int_{S_0} \rho b \left(\mathbf{v} - \mathbf{u}_r \right) \cdot \mathbf{n} dS}$$

Equazione di conservazione della massa

Prendendo un sistema materiale e avendo, dalla stessa definizione, che la sua massa M non varia nel tempo, ponendo quindi B = M ne conseguirà che b = 1 da cui la conservazione della massa si esprimerà

$$\frac{dM}{dt} = \frac{d}{dt} \int_{V(t)} \rho dV = 0$$
$$\int_{V_0} \frac{\partial \rho}{\partial t} dV + \int_{S_0} \rho \mathbf{u} \cdot \mathbf{n} dS = 0$$

$$\int_{V_0} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) \right] dV = 0$$

Equazione di bilancio della quantità di moto

Iniziamo con il definire

$$\mathbf{Q} = \int_{V_0} \rho \mathbf{u} dV$$

e, utilizzando il secondo principio della dinamica possiamo scrivere:

$$\frac{d\mathbf{Q}}{dt} = \mathbf{F}$$

dove con **F** sono state indicate tutte le forze che agiscono sul volume materiale in esame. Il primo membro si può esplicitare tramite il teorema del trasporto di Reynolds, mentre per esprimere **F** bisogna distinguere i vari tipi di forze che agiscono sul sistema.

Possiamo distinguere tra le forze di contatto \mathbf{F}_S , quelle cioè che agiscono solo attraverso azioni di contatto sulla superficie S del volume materiale, e le forze di

volume \mathbf{F}_V che agiscono anche sulle particelle fluide interne al volume materiale. Tra le prime possiamo annoverare le forze di pressione e le forze viscose, mentre la forza peso, la forza centrifuga e quella di Coriolis fanno parte della seconda categoria. Tra le forze di contatto possiamo ulteriormente distinguere l'azione della pressione da quella delle altre forze (come l'attrito) e porre

$$\mathbf{F}_{S} = -\int_{S_0} p\mathbf{n}dS + \mathbf{F'}_{S}$$

per cui dalla definizione di Q ed il teorema del trasporto di Reynolds si ottiene

$$\int_{V_0} \frac{\partial \rho \mathbf{u}}{\partial t} dV + \int_{S_0} \rho \mathbf{u} \mathbf{u} \cdot \mathbf{n} dS = -\int_{S_0} \rho \mathbf{n} dS + \mathbf{F'}_S + \mathbf{F}_v$$

$$\int_{V_0} \partial \rho \mathbf{u} \quad dV + \int_{S_0} \rho \mathbf{u} \mathbf{u} \cdot \mathbf{n} dS = -\int_{S_0} \rho \mathbf{n} dS + \mathbf{F'}_S + \mathbf{F}_v$$

$$\int_{V_0}^{\infty} \frac{\partial \rho \mathbf{u}}{\partial t} dV + \int_{S_0}^{\infty} \rho \mathbf{u} \mathbf{u} \cdot \mathbf{n} dS = -\int_{S_0}^{\infty} p \mathbf{I} \cdot \mathbf{n} dS + \int_{S_0}^{\infty} \mathbf{\sigma}^* \cdot \mathbf{n} dS + \int_{V_0}^{\infty} \rho \mathbf{f} dV$$

$$\int_{V_0}^{\infty} \frac{\partial \rho \mathbf{u}}{\partial t} dV + \int_{V_0}^{\infty} \nabla \cdot (\rho \mathbf{u} \mathbf{u}) dV = -\int_{V_0}^{\infty} \nabla p dV + \int_{V_0}^{\infty} \nabla \cdot \mathbf{\sigma}^* dV + \int_{V_0}^{\infty} \rho \mathbf{f} dV$$

$$\int_{V_0}^{\infty} \left[\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) + \nabla p - \nabla \cdot \mathbf{\sigma}^* - \rho \mathbf{f} \right] dV = 0$$