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Da problemi diretti (processo noto) a 

Il calcolo della probabilità, dalle origini all'enunciazione del Teorema di
Bayes, si è sviluppato per risolvere problemi diretti: conosco il meccanismo
casuale che genera le osservazioni e posso calcolare la probabilità dei vari
risultati.

In un pacchetto di jelly bears ce ne sono R rossi e G gialli. Se ne estraiamo  (con
"reimbussolamento"), qual è la probabilità che  siano rossi?

Dato ,

Supponiamo di non conoscere , possiamo ancora calcolare la probabilità sopra
ipotizzando una distribuzione di probabilità per (la v.a.)  e applicando il teorema
delle probabilità totali.

Supponiamo, e.g., che  sia deciso lanciando un dado a  facce (dove ).

dove  e .

→

m
x

θ = R

R+G

Pr(X = x) = ( )θx (1 − θ)m−xm

x

R
R

R n n = R + G

Pr(X = x) =
n

∑
i=1

Pr(R = i ∩ X = x) =
n

∑
i=1

Pr(R = i)Pr(X = x|R = i)

X = 1, … ,m θ = R/n
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Direct problems

Law of total probability

Let  be a partition of , i.e.,

1.  (exhaustive),
2.  if  (pairwise incompatible),

then

{Hi|i = 1, … ,n} Ω

⋃n

i=1 Hi = Ω
Hi ∩ Hj = ϕ i ≠ j

P(E) = P(E ∩ Ω) =
n

∑
i=1

P(Hi ∩ E) =
n

∑
i=1

P(Hi)P(E|Hi)
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Law of total probability in tabular form

E.g., se , , allora , 

Probabilità condizionali:

Probabilità congiunte:

che sommandole danno: 

n = 10 m = 5 X = 0, 1, … , 5 θ = 0.1, 0.2, … , 0.9, 1

Pr(X = x|R = i) o Pr(X = x|R = 10θ)

Pr(R = i ∩ X = x) = Pr(R = i)Pr(X = x|R = i))

∑10
i=1 Pr(R = i ∩ X = x) = Pr(X = x) 6 / 82



Thomas Bayes (c. 1702-1761)} was a Presbyterian minister. In Essay
Towards Solving a Problem in the Doctrine of Chances (1763) he
considers the inverse probability problem for which he formalizes a
solution. His work was published posthumously by his friend
Richard Price (1723-1791).

problemi indiretti o inversi (probabilità delle cause)

Nell'ambito esperimento di cui sopra, possiamo anche porre la seguente
domanda

Avendo estratto  orsetti, qual è la probabilità che nel pacchetto ce ne siano 
rossi?

Questo problema è risolto dal Teorema di Bayes.

X = x R
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Teorema di BayesTeorema di Bayes
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Formulazione originaria del Teorema di Bayes

Il reverendo Thomas Bayes scrisse un articolo intitolato "Essay Towards
Solving a Problem in the Doctrine of Chances" (pubblicato post-mortem nel
1763)

Theorem (PROP. 3)

The probability that two subsequent events will both happen is a
ratio compounded of the probability of the 1st, and the probability
of the 2d on supposition the 1st happens.

Corollary (PROP. 3)

Hence if of two subsequent events the probability of the 1st be a/N ,
and the probability of both together be P/N , then the probability of
the 2d on supposition the 1st happens is P/a.
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Teorema di Bayes

Siano  e  due eventi, con ,

allora

E H P(E) ≠ 0

P(H|E) = =
P(H ∩ E)

P(E)

P(H)P(E|H)

P(E)
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Bayes' Theorem for the jelly bears example

Avendo estratto  orsetti, qual è la probabilità che nel pacchetto ce ne siano 
rossi?

La risposta ci viene dal Teorema di Bayes:

Supponiamo che , si considerino le probabilità congiunte

da cui

X = x R

P(R = θn|X = x) = =
P(R = θn ∩ X = x)

P(X = x)

P(R = θn)P(X = x|R = θn)

P(X = x)

X = 2

Pr(R = 10θ ∩ X = 2)

Pr(R = 10θ ∣ X = 2) =
Pr(R = 10θ ∩ X = 2)

Pr(X = 2)
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Cosa c'è di così strano?

Ciò che abbiamo appena ottenuto, la probabilità di ogni possibile
composizione dell'urna, è incontrovertibile e standard.

A statistical problem in the search for causes

Ora rendiamo questo problema più interessante:

In un pacchetto di  jelly bears ce ne sono  rossi (  ). Ne estraiamo  (con
"reimbussolamento") e osserviamo  rossi, cosa possiamo dire riguardo a  ?

Nella presentazione precedente del problema  si era supposto generato da
un meccanismo casuale e ciò rendeva la soluzione standard (non
controversa).

Ora,  (  ) è semplicemente non noto.

Ora il problema è presentato come un problema statistico generale in cui si
sa che l'osservazione è generata da un meccanismo casuale di cui non si
conoscono tutte le caratteristiche.

Come interpretiamo la probabilità di una probabilità  (delle cause),
?

Può rappresentare le nostre opinioni su  ?
Per alcuni Sì, per altri No.

n R R ≥ 1 m
x R

R

R R = R(θ)

θ
P(θ|X = x)

θ
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Due tipi di incertezza

Distinguiamo due tipi di incertezza:

aleatoria in cui l'incertezza è dovuta alla casualità (randomness)

non siamo in grado di ottenere osservazioni che potrebbero ridurre
questa incertezza

epistemica in cui l'incertezza è dovuta alla mancanza di conoscenza

Siamo in grado di ottenere osservazioni che possono ridurre questa
incertezza
due osservatori possono avere un'incertezza epistemica diversa
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Aggiornamento dell'incertezza (probabilità)

Probabilità di rosso 

 incertezza aleatoria

 incertezza epistemica

L'estrazione ripetuta di orsetti aggiorna la nostra incertezza sulla proporzione

secondo la regola di Bayes 

= θR
R+G

p(y = rosso|θ) = θ

p(θ)

p(θ|y = rosso, giallo, rosso, rosso, …) =?

p(θ|y) =
p(y|θ)p(θ)

∫ p(y|θ)p(θ)dθ
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(Anticipazione) Modello vs Verosimiglianza (Likelihood), a priori vs a
posteriori

regola di Bayes 

Modello:  come funzione di  dato un  fissato descrive l'incertezza
aleatoria

Verosimiglianza:  ( ) come funzione di  dato un  fissato
fornisce informazione sull'incertezza epistemica, ma non è una
distribuzione di probabilità

Bayes rule combina la verosimiglianza con l'incertezza a priori  e li
transforma nella incertezza a posteriori aggiornata.

p(θ|y) ∝ p(y|θ)p(θ)

p(y|θ) y θ

p(y|θ) = L(θ|y) θ y

p(θ)
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Bayes: inference for a probability

This is stated and more or less solved in Bayes essay as follows.

Given the number of times on which an unknown event has
happened and failed:

Required the chance that the probability of its happening in a single
trial lies somewhere between any two degrees of probability that
can be named.

Bayes solution was not actually very clear, the one from Laplace was better.
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Pierre-Simon Laplace (1749-1827) in Essai philosophique sur les
probabilites (1814) gives a systematic treatment to the approach
which we call Bayesian today.

Laplace e la probabilità (epistemica) che nasca una femmina

Laplace (1749-1827) è stato il primo a formulare un problema statistico e a
risolverlo con la statistica bayesiana.

La domanda che si pose era se la probabilità che nasca una femmina (  ) fosse
o no inferiore a .

Il problema è del tutto analogo a quello dell'estrazione dall'urna sopra, se non
per il fatto che esiste un continuum di possibili composizioni dell'urna.

Egli osservò che a Parigi, dal 1745 al 1770, le nascite erano state 493,472 di cui
241,945 femmine da cui derivò che

ricavando la "certezza morale" che .

θ
0.5

P(θ ≥ 0.5 | dati) ≈ 1.15 × 10−42

θ < 0.5
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Laplace e l'estensione del teorema di Bayes

Laplace estese il teorema di Bayes a  possibili cause, , , di un
evento .

Dati:

, un insieme di ipotesi

, , probabilità a priori, 

, , verosimiglianza di  quando  è vera

La probabilità a posteriori di  dato  è proporzionale al prodotto della
probabilità a priori di  e della verosimiglianza di  quando  è vera.

n Hi i = 1, … ,n
E

H1, … ,Hn

P(Hi) i = 1, … ,n ∑
i

P(Hi) = 1

P(E|Hi) i = 1, … ,n E Hi

P(Hi|E) =
P(E|Hi)P(Hi)

∑n

i=1 P(E|Hi)P(Hi)

Hi E
Hi E Hi
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Corollario: confronto tra due ipotesi

Si supponga che si confrontino due particolari ipotesi,  e , il rapporto a
posteriori è dato da:

i.e., il rapporto delle probabilità a priori (prior odds) per il rapporto delle
verosimiglianze (likelihood ratio).

Hi Hj

= ×
P(Hi|E)

P(Hj|E)

P(Hi)

P(Hj)

P(E|Hi)

P(E|Hj)
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Esempio: Diagnosi medica

Obiettivo: valutare se una persona sottoposta a test - risultato positivo - sia
malata

Un paziente può essere affetto da una data malattia (essere nello stato )
o non esserlo (essere nello stato )

 è la prevalenza della malattia nella popolazione alla quale si
suppone che il paziente appartenga (probabilità a priori di ,  =

 )

Il paziente viene sottoposto a test da cui si ricava l'informazione se sia
verosimilmente malato, test positivo (  ) o test negativo (  ):

,  sono i tassi di true posititive e true negative, anche
detti sensibilità e specificità del test clinico

La situazione ottimale è

Il teorema di Bayes ci permette di capire combinando le caratteristiche
del test con la prevalenza della malattia quale sia il potere discriminante
del test diagnostico.

H1
H2

P(H1)
H1 P(H2)

1 − P(H1)

E Ē

P(E|H1) P(Ē|H2)

P(E|H1) = 1 → P(Ē|H1) = 0 false negative

P(Ē|H2) = 1 → P(E|H2) = 0 false positive
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Covid-19 e tamponi naso-faringei

Studi recenti suggeriscono che i tamponi naso-faringei usati per la diagnosi di
COVID-19 abbiano sensibilità  =  e specificità = 
e che la prevalenza di COVID-19 in Italia (in fase pandemica) sia circa pari a

 = .
Applichiamo il teorema di Bayes per calcolare la probabilità di essere malato
in seguito a risultato positivo di un test diagnostico:

la probabilità di non essere malato in seguito a risultato negativo:

P(E|H1) 0.777 P(Ē|H2) 0.988

P(H1) 0.13

P(H1|E) =

= =

= = 0.9063257

‘

P(E|H1)P(H1)

P(E|H1)P(H1) + P(E|H2)P(H2)

sensibilità ⋅ prevalenza

sensibilità ⋅ prevalenza + (1-specificità) ⋅ (1-prevalenza)

0.777 ⋅ 0.13

0.777 ⋅ 0.13 + (1 − 0.988) ⋅ (1 − 0.13)

P(H2|Ē) = =

= = 0.9673738

‘

specificità ⋅ 1-prevalenza

specificità ⋅ 1-prevalenza + (1-sensibilità) ⋅ (prevalenza)

0.988 ⋅ (1 − 0.13)

0.988 ⋅ (1 − 0.13) + (1 − 0.777) ⋅ 0.13
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Requisiti test per covid-19

L’area nera indica i requisiti
necessari

per un test con 
(azzurra i requisiti ottimali per

).

Il punto giallo indica i parametri di
sensibilità e specificità dei test RT-
PCR SARS-CoV-2 RNA test per COVID-
19: sensibilità  e

specificità di .

Test ideale

Data la prevalenza di una malattia, , le caratteristiche ideali del test per una
diagnosi il più corretta possibile sono mostrate nel grafico.

M

P(M|T ) > .5 e P(M|T̄ ) < .05

P(M) = .13

P(M|T ) > .9

P(T |M) = 0.777
P(T̄ |M) = 0.988
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Un problema statistico

Riprendendo l'esempio dell'urna, il punto cruciale è che  non è casuale
nel senso di essere generato attraverso un esperimento casuale (incertezza
aleatoria). Piuttosto,  è non noto (incertezza epistemica).

Come dobbiamo quindi interpretare la probabilità che attribuiamo a :
?

Può rappresentare le nostra opinione sul valore di ?

Secondo alcuni potrebbe, secondo altri è un'interpretazione priva di senso.

R(θ)

R(θ)

θ
P(θ| = x)

θ
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Bayesian approach put aside

Nei primissimi esempi, l'inferenza statistica - di Thomas Bayes in termini
generali e Pierre-Simon Laplace su dati reali - era basata sul paradigma
bayesiano.

Quindi, fine XIX e inizio XX secolo, l'approccio bayesiano fu messo da
parte per ragioni filosofiche e tecniche

L'idea che la probabilità possa essere utilizzata per modellare
l'ignoranza / le opinioni era considerata ridicola.

Inoltre, per ottenere  dobbiamo iniziare da ,
un'opinione a priori su  (che viene prima delle osservazioni), il che
comporta l'introduzione di un elemento di soggettività nell'analisi,
che allora era, ancora una volta, ritenuto non scientifico.

Infine, c'erano problemi di calcolo: anche per problemi relativamente
semplici, l'approccio bayesiano comporta solitamente calcoli
intrattabili.

P(θ|X = x) P(θ)
θ

24 / 82



Modern (classical) statisticsModern (classical) statistics
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William Gosset (1876-1937) Working for Guiness, he developed the
Student-t distribution to evaluate quality of barley.

Karl Pearson (1857-1936)
Introduces the concept of
correlation and of goodness
of fit.

sir Francis Galton (1822-1911) Founded the Eugenics Record
Office in London, later the Galton labooratory. Develops linear
regression.

New questions, new answers

Tra il XIX e il XX-esimo secolo nascono nuovi ambiti di applicazione delle
tecniche statistiche come:

-la genetica e l'ereditarietà;
-il controllo di qualità

One has a, possibly incomplete, theory, i.e., a , on how some outcome is
generated and wants to use  to confirm/clarify the said model.

Vengono sviluppati nuovi approcci in cui il parametro  è un numero fisso.

Model
Data

θ
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sir Ronald Fisher (1890-1932) introduces, among other things, the
concepts of likelihood, analysis of variance, experimental design.
Also, he originates the ideas of sufficiency, ancillarity, and
information. His main works: Statistical Methods for Research
Workers (1925), The design of experiments (1935), Contributions to
mathematical statistics (1950), Statistical methods and statistical
inference (1956).

Egon Pearson (1895-1980) with Jerzy Neyman develops the
theory of hypotheses testing.

Verosimiglianza e il campionamento ripetuto

L'inferenza è basata sulla verosimiglianza: si confronta 
(nell'esempio dell'urna   ) per i differenti
modelli
(Nella statistica bayesiana confrontiamo ),

la performance è valutata secondo il principio del campionamento
ripetuto: le procedure sono valutate in base a ripetizioni fittizie
dell'esperimento (Mean Square Error, coverage probability, significance
level, etc.).

P(Data|Model)
L(θ) ∝ P(X = x|R = nθ)

P(Model|Data)
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Verosimiglianza

La verosimiglianza sintetizza l'informazione su  proveniente da 

Dalla verosimiglianza possiamo ottenere:

lo stimatore di massima verosimiglianza:

p-values:
il p-value per l'ipotesi  è  (come si calcola?)

θ X = x

θ̂ = X/5 = 0.6

θ ≤ 0.2 0.0579
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Principio del campionamento ripetuto

Secondo il principio del campionamento ripetuto, valutiamo le procedure in
base a come si comporterebbero a lungo termine con nuovi set di dati

Utilizzando il principio del campionamento ripetuto possiamo valutare le
prestazioni di

stimatori  Errore quadratico medio (Mean Square Error)
intervalli di confidenza  probabilità di copertura (coverage probability)

Il test d' ipotesi di Neyman-Pearson ha il legame più evidente con
campionamento ripetuto:

il livello di significatività (  ) è la frequenza relativa con cui ci aspettiamo
di rifiutare un'ipotesi nulla se dovessimo eseguire il test su un certo
numero di campioni provenienti da una popolazione per la quale l'ipotesi
nulla è vera.
la potenza è ...

⇒
⇒

α
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stima di ML =

95% IC 

p-value per l'ipotesi
 è 

La stima migliore per  è 0.4903

abbiamo ottenuto un intervallo
 come una

realizzazione di un intervallo
casuale che ha probabilità del
95% di coprire il vero valore di 

se  fosse vera, la
probabilità di osservare una
statistica estrema come quella
osservata sarebbe 

Approccio classico

Per quanto riguarda la probabilità che nasca una femmina, Laplace osservò
che a Parigi, dal 1745 al 1770, le nascite erano state 493,472 di cui 241,945
femminili 

Ciò che ci dice non è di immediata traduzione  Con questo intendo dire che
dobbiamo fare un ulteriore passo avanti per tradurlo in informazioni su .
(vedi slide sull'inferenza frequentista)

→

θ̂ =
241,945

493,472

0.4903

[0.4889, 0.4917]

H0 : θ ≥ 0.5 ≈ 0

θ

[0, 4889, 0, 4917]

θ

H0 : θ ≥ 0.5

≈ 0

…
θ
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Classical approach or approaches?

Note that within the classical approach different views can be distinguished,
this is particularly evident in hypotheses testing.

A Fisherian approach is to view the likelihood as central as a measure of
evidence brought by the data. As such, a -value is a measure of evidence
against a given hypotheses.

The Neyman-Pearson view is behavioural, they devise a decision rule which
controls the probability of error (not the overall one, but at least the
conditional ones).

The above is a very simplistic summary, however it is true that the two
approaches are incompatible and there have been harsh debates between the
proponents.

p
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Interpretazione dei risultati nell'approccio Bayesiano

A primary motivation for Bayesian thinking is that it facilitates a
common sense interpretation of statistical conclusions.

-- Gelman

Al contrario della stima d'intervallo o della verifica d'ipotesi, la statistica
Bayesiana ci dice quello che vogliamo sapere, la statistica classica no, ed è
probabile che molti utenti interpreterebbero erroneamente i risultati della
statistica classica alla maniera bayesiana.

Bayesian inference is the process of fitting a probability model to a
set of data and summarizing the result by a probability distribution
on the parameters of the model and on unobserved quantities such
as predictions for new observations.

-- Gelman
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Nell'INFERENZA CLASSICA

il parametro è una costante.
la conclusione non è derivata
all'interno delle regole del
calcolo delle probabilità (queste
sono usate in effetti, ma la
conclusione non ne è una
diretta conseguenza)
la verosimiglianza e la
distribuzione di probabilità del
campione vengono utilizzate

Framework per estrarre evidenza
dai dati.

Nell'INFERENZA BAYESIANA

il parametro è una v.a.
il ragionamento e la conclusione
sono una conseguenza
immediata delle regole del
calcolo delle probabilità (del
Teorema di Bayes in
particolare);
la verosimiglianza e la
distribuzione a priori vengono
utilizzate

Framework per aggiornare le
informazioni.

Approccio classico vs approccio bayesiano all'inferenza
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Statistica BayesianaStatistica Bayesiana
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Il teorema di Bayes a fondamento dell'inferenza Bayesiana

Il teorema di Bayes costituisce la chiave di volta e il concetto
informatore di ogni attività costruttiva del pensiero.

-- Bruno de Finetti, 1970

il teorema di Bayes è lo strumento par excellence capace di aggiornare le
probabilità delle ipotesi  alla luce di nuovi fatti.

L’esempio che segue evidenzia l’errore che si commette quando si trascurano
le informazioni disponibili, nel nostro caso le probabilità a priori, e si
traggono inferenze (e conclusioni) usando solo le verosimiglianze.

Hj
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Esempio: Diagnosi medica
(Gigerenzer, 2002)

Consider women aged 40-50 with no family history of cancer and no
symptoms of cancer

The proportion that have breast cancer is .008
Conduct mammogram screening

If a woman has breast cancer, the probability of a positive
mammogram is .90
If a woman does not have breast cancer, the probability of a positive
mammogram is .07
A woman undergoes the mammogram, the result is positive

What should we infer?
What’s the probability the woman has breast cancer?

See natural frequencies →
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Maximum Likelihood
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Logica della Massima Verosimiglianza (Maximum Likelihood)

A general approach to parameter estimation

The use of a model implies that the data may be sufficiently characterized
by the features of the model, including the unknown parameters

Parameters govern the data in the sense that the data depend on the
parameters

Given values of the parameters we can calculate the (conditional)
probability of the data
Mammogram (data) depends on breast cancer status (parameter)
When conventional statistical approaches discuss a “model” they
usually refer to this dependence structure

Maximum likelihood (ML) estimation asks: “What are the values of the
parameters that make the data most probable?”
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Maximum Likelihood

Specify the conditional probability of the data as 

E.g., , 
This describes the structure as function of 

When taken as a function of , this is referred to as the likelihood

ML estimation then maximizes this function w.r.t. , using the known
values of 

p(x|θ)

θ = (μ,σ2) p(x|μ,σ2) = N(μ,σ2)
x

θ
L(θ|x) = p(x|θ)

θ
x
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Diagnosi medica
Conditional Probability Distribution

If a woman has breast cancer, the probability of a positive mammogram
is .90

, 

If a woman does not have breast cancer, the probability of a positive
mammogram is .07

, 

p(Mam = +|BC = Y ) = .90 p(Mam = −|BC = Y ) = .10

p(Mam = +|BC = N) = .07 p(Mam = −|BC = N) = .93
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Diagnosi medica
Maximum Likelihood

A woman undergoes the mammogram, the result is positive

ML: What is the value of BC that maximizes the likelihood?

L(BC = Y |Mam = +) = p(Mam = +|BC = Y ) = .90

L(BC = N |Mam = +) = p(Mam = +|BC = N) = .07

B̂C = Y es
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Inferenza Bayesiana

42 / 82



Esempio: Diagnosi medica
Frequenze naturali

 See case description

Consider 1,000 women aged 40-50 with no family history of cancer and no
symptoms of cancer

8 of the 1,000 women have breast cancer
Conduct mammogram screening

Of the 8 women with breast cancer, 7 will have a positive
mammogram
Of the remaining 992 women w/o breast cancer, 69 will have a
positive mammogram

A woman undergoes the mammogram, the result is positive
What should we infer?

What’s the probability the woman has breast cancer?

←
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Esempio: Diagnosi medica
Diagramma ad albero
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Teorema di Bayes in azione

The setup

Two entities:  (data) and  (parameter)
We know the conditional probabilities , which tell us what to
believe about  if we knew the value of 
When we learn the value of , what should we believe about ?

We combine three things (two of which are important)

Conditional probabilities for  given , the likelihood
Previous probabilities about 
The marginal probability for 

x θ
p(x|θ)

x θ
x θ

x θ
θ
x

p(θ|x) =
p(x|θ)p(θ)

p(x)
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Conditional Probability or Likelihood

:

Conditional probability of  given :
probability of  given the value of ;
likelihood for :
Once value of  is known, and this is viewed as a function of  it is a
likelihood

p(x|θ)

x θ
x θ
θ
x θ

p(θ|x) =
p(x|θ)p(θ)

p(x)
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Diagnosi medica
Conditional Probability Distribution

If a woman has breast cancer, the probability of a positive mammogram
is .90

, 

If a woman does not have breast cancer, the probability of a positive
mammogram is .07

, 

p(Mam = +|BC = Y ) = .90 p(Mam = −|BC = Y ) = .10

p(Mam = +|BC = N) = .07 p(Mam = −|BC = N) = .93
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Prior distribution

:

Prior probability distribution for unknown :
Everything we know about  before we observe value for 

p(θ)

θ
θ x

p(θ|x) =
p(x|θ)p(θ)

p(x)
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Diagnosi medica
Prior Distribution for breast cancer

The proportion of women aged 40-50 with no family history of cancer and
no symptoms that have breast cancer is .008
Assign a prior distribution

p(Breast Cancer = Yes) = .008
p(Breast Cancer = No) = .992
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Marginal distribution

:

Marginal probability of  (over ):  
Serves to normalize the distribution
Note that  does not vary with 
We will eventually discard it

p(x)

x θ p(x) = ∑
θ
p(x|θ)p(θ)

p(x) θ

p(θ|x) =
p(x|θ)p(θ)

p(x)
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Diagnosi medica
Marginal Probability of Mammogram = +

p(x) = ∑
θ

p(x|θ)p(θ)
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Posterior distribution

:

Posterior probability distribution for unknown  given :
Captures what we think about  now that we have incorporated 

p(θ|x)

θ x
θ x

p(θ|x) =
p(x|θ)p(θ)

p(x)

52 / 82



Diagnosi medica
Posterior distribution

p(θ|x) = →
p(x|θ)p(θ)

p(x)

p(Mam = +|BC)p(BC)

p(Mam = +)
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😞

😄

“Prior to the mammogram, we didn’t think the
woman had breast cancer.
After the positive result on the mammogram ... we
don’t think the woman had breast cancer.
So it seems the mammogram is irrelevant, or Bayes
doesn’t work”

“We are uncertain if the woman has breast cancer.
And our language for uncertainty is probabilities.
Before the mammogram, the probability of breast
cancer is .
After the mammogram, the probability of breast
cancer is .
These probabilities are expressions of our beliefs.
We still think it’s unlikely the patient has breast
cancer, but our beliefs have shifted considerably
from what they were.”

Bayesian Inference as Updating
from Probability-Based Reasoning

p(BC = Y ) = .008

(BC = Y |M = +) = .09
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Proportionality in the Posterior Distribution

Marginal probability of  (over ), :

does not change for different values of 

discarding yields proportionality

p(θ|x) = ∝ p(x|θ)p(θ)
p(x|θ)p(θ)

p(x)

x θ p(x)

θ
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Diagnosi medica
Proportionality of Posterior Distribution

p(BC|Mam = +) = ∝ p(Mam = +|BC)p(BC)
p(Mam = +|BC)p(BC)

p(Mam = +)
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Approccio generale alla modellazione Bayesiana
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Approccio generale alla modellazione Bayesiana

Un'analisi Bayesianly justifiable è una che

“treats known values as observed values of random variables,
treats unknown values as unobserved random variables, and
calculates the conditional distribution of unknowns given knowns
and model specifications using Bayes’theorem.”

-- Rubin (1984, p. 1152)
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3 Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables (  ) and unobservables (  ) in accordance with all
that is known about the problem

2. Condition on the observed data (  ), calculate the conditional probability
distribution for the unobservable entities (  ) of interest given the
observed data: the posterior distribution

3. Examine fit, tenability/sensitivity of assumptions, reasonable
conclusions?, respecify, summarize results, etc.

x θ

x
θ
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Step 1

1. Set up the full probability model: the joint distribution of all entities,
including observables (  ) and unobservables (  ) in accordance with all
that is known about the problem

Difficult to do as a multivariate system
Joint probability of breast cancer and mammogram results

x θ

p(x, θ)
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Step 1

1. Set up the full probability model via a conditional distribution , and
a prior 

The prior probability of cancer
The conditional probability of the mammogram result, given cancer
status

p(x|θ)
p(θ)

p(x, θ) = p(x|θ)p(θ)

61 / 82



Step 2

1. Condition on the observed data (  ), calculate the conditional probability
distribution for the unobservable entities (  ) of interest given the
observed data: obtain the posterior distribution as

Bayes’ Theorem for Discrete and Continuous Variables

x
θ

p(θ|x) =

=

∝ p(x|θ)p(θ)

p(x, θ)

p(x)

p(x|θ)p(θ)

p(x)

p(θ|x) = == ∝ p(x|θ)p(θ)
p(x|θ)p(θ)

p(x)

p(x|θ)p(θ)

∑ p(x|θ)p(θ)

p(θ|x) = = ∝ p(x|θ)p(θ)
p(x|θ)p(θ)

p(x)

p(x|θ)p(θ)

∫
θ

p(x|θ)p(θ)
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Bayes’ Theorem

Effects a reversal of the conditional probability, 

From  to 

Confusion of these conditional probabilities is quite common

p(x|θ) ⇒ p(θ)|x)

p(θ|x) ∝ p(x|θ)p(θ)

p(Mam|BC) p(BC|Mam)

63 / 82



Confronto tra inferenza frequentista & inferenza
bayesiana
(sin qui)
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Inferenza frequentista vs. inferenza bayesiana

Data viewed as random, conditionally distributed given parameters
Mammogram is conditionally distributed given BC
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Inferenza frequentista vs. inferenza bayesiana

Frequentist inference: parameters are fixed and unknown
Frequentist perspective defines probabilities as long-run freq.
We don’t know if the woman has breast cancer, but she either does or
she doesn’t, hardly something that invokes long-run frequencies
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Inferenza frequentista vs. inferenza bayesiana

Random entities are assigned distributions
Parameters aren’t random  not assigned distributions⇒
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Inferenza frequentista vs. inferenza bayesiana

ML estimation attempts to find the value of the parameters that make the
data seem most likely
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Diagnosi medica
Maximum Likelihood

A woman undergoes the mammogram, the result is positive

ML: What is the value of BC that maximizes this? 

L(BC = Y |Mam = +) = p(Mam = +|BC = Y ) = .90

L(BC = N |Mam = +) = p(Mam = +|BC = N) = .07

B̂C = Y es
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Inferenza frequentista vs. inferenza bayesiana

In a Bayesian analysis all unknown entities treated as random and
assigned a distribution

Initially the data, but once observed, they are conditioned on
The parameters as well
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Inferenza frequentista vs. inferenza bayesiana

All unknown entities are assigned distributions
Don’t know if the patient has breast cancer? Assign a distribution!
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Inferenza frequentista vs. inferenza bayesiana

The “solution/answer” in a Bayesian analysis is a distribution
Not trying to find a point, trying to find a distribution

Not trying to find the estimate of the parameter
Trying to find the distribution of a parameter
Can summarize if desired in the usual ways
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ML vs. Bayesian Estimation

ML seeks to maximize 
Bayes seeks to obtain 
Finding a point vs. finding a distribution
Other difference is the presence of the prior 

L(θ|x) = p(x|θ)
p(θ|x) ∝ p(x|θ)p(θ)

p(θ)
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Ragionare come un Bayesiano ?
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Ragioniamo come un Bayesiano?

Active debate in psychology, neuroscience
Some examples of natural occurrences in the research base and everyday
life ...
Breast cancer example drawn from work of Gigerenzer; 24 physicians
were explicitly asked for the probability that the woman has breast
cancer:

8 said < 90%, 8 said = 10%, 8 said between 50% and 80%
Most not thinking about the prior, some not thinking of the data
Only 2 gave correct reasoning, others seemed to try to do so, but came
up with the wrong answer
With natural frequencies, majority close to correct

Research program by Kahneman & Tversky
euristics e cognitive biases
theory of prospect (1979)
basis for behavioral economics
Nobel Prize in Economics (2002) to Kahneman
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Dovremmo ragionare come un Bayesiano?

Characterization as “optimal” by psychology, neuroscience
Should we include prior probability, condition on data, obtain posterior
probabilities?

Should we include the fact that only the proportion in the population
that have breast cancer is .008?

If so, why?
Better descriptions of problems, models, and inference
Probability-based reasoning
Managing uncertainty
Synthesizing information over time
Has been shown to be effective in many disciplines
The answer to all your questions…
http://en.wikipedia.org/wiki/Monty_Hall_problem
https://mathcenter.oxford.emory.edu/site/math117/bayesTheorem/
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Pensieri finali & riassunto
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General Approach to Bayesian Modeling

A Bayesianly justifiable analysis is one that

“treats known values as observed values of random variables,
treats unknown values as unobserved random variables, and
calculates the conditional distribution of unknowns given knowns
and model specifications using Bayes’ theorem.”

-- Rubin (1984, p. 1152)
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3 Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables (  ) and unobservables (  ) in accordance with all
that is known about the problem

Common (shortcut) approach to specifying models for folks new to Bayesian
analysis, but familiar with other approaches

A. Set up the model for the conditional probability of the data as you are used
to: 
B. List out all the unknown parameter(s) ( )
C. Specify prior distribution(s) for the parameter(s) , reflecting what is
believed about the situation

x θ

p(x, θ) ∝ p(x|θ)p(θ)

p(x|θ)
θ

p(θ)
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3 Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables (  ) and unobservables (  ) in accordance with all
that is known about the problem

2. Condition on the observed data (  ), calculate the conditional probability
distribution for the unobservable entities (  ) of interest given the
observed data: the posterior distribution `

3. Examine fit, tenability/sensitivity of assumptions, reasonable
conclusions?, respecify, summarize results, etc.

x θ

p(x, θ) ∝ p(x|θ)p(θ)

x
θ

p(θ|x) = = ∝ p(x|θ)p(θ)
p(x, θ)

p(x)

p(x|θ)p(θ)

p(x)
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Una riflessione sulla probabilità

Probability is not really about numbers; it is about the structure of
reasoning

-- Glenn Shafer, quoted in Pearl, 1988, p. 77
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Riassunto

Frequentist inference via ML
Overview of conceptions
Likelihood = conditional probability

Bayesian inference
Prior, likelihood, marginal, posterior
Proportionality of posterior
Bayes as updater in probability-based reasoning

Contrasting frequentist and Bayesian inference
It’s all about reasoning
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