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Problemi diretti e inversi



Da problemi diretti (processo noto) a —

Il calcolo della probabilita, dalle origini all'enunciazione del Teorema di
Bayes, si e sviluppato per risolvere problemi diretti: conosco il meccanismo
casuale che genera le osservazioni e posso calcolare la probabilita dei vari
risultati.

In un pacchetto di jelly bears ce ne sono R rossi e G gialli. Se ne estraiamo m (con
"reimbussolamento”), qual € la probabilita che x siano rossi?

R

Dato 0 = m,

m
Wi

Pr(X =z) = ( )09” (1—6)m*

Supponiamo di non conoscere R, possiamo ancora calcolare la probabilita sopra
ipotizzando una distribuzione di probabilita per (la v.a.) R e applicando il teorema
delle probabilita totali.

Supponiamo, e.g., che R sia deciso lanciando un dado a n facce (dove n = R + G).
Pr(X==z)=) Pr(R=inNX=z)=)» Pr(R=i)Pr(X=zx|R=1i)
i=1 i=1

dove X =1,...,mef = R/n.
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Direct problems
Law of total probability
Let {H;|i = 1,...,n} be a partition of {2, i.e.,

1.J;_, H; = Q (exhaustive),
2. H; N H; = ¢ifi # j (pairwise incompatible),

then

P(E)=P(ENQ) = zn: P(H;NE) =) P(H;)P(E|H)
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Law of total probability in tabular form

E.g,sen =10,m = 5,allora X =0,1,...,5,0 =0.1,0.2,...,0.9,1
Probabilita condizionali:

Pr(X =z|R =1) o Pr(X = z|R = 100)

Urn compoesition (€, proportion of red marbles)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
.0 5905 27T 1681 0778 0312 0102 o024 0003 0000 0
X001 3280 4096 3601 2502 1562 0768 0284 0064 0oo4 0
w 2 0729 2048 3087 3456 3125 2304 1323 0512 0081 0
E‘ 3 0081 0512 1323 2304 3125 3456 o087y 2048 0729 0
D 4 .DD0s 0064 D284 0768 1562 2502 3601 A096 32E0 0
ok 5 0000 .0003 0024 0102 0312 0778 1681 3277 5905 1
Probabilita congiunte:
Pr(R=iN X=2z)=Pr(R=1)Pr(X =z|R =1))
x 0.1 0.2 DL.I:;n Compgfgmn @ g.rgportmn l;;rea marg’!;ﬂ 0.8 0.9 1 P(X = x)
1] .05905 03277 01681 00778 00313 00102 00024 00003 .00000 0 12083
1 .03280 04096 03601 02592 01562 00768 00283 00064 00004 0 16252
2 .00729 02048 03087 03456 03125 02304 01323 .0os12 .00081 0 16665
3 .00081 00512 01323 02304 03125 03456 03087 02048 .00729 0 16665
4 .00005 00064 00284 00768 01562 .02592 03602 04096 .03281 0 16253
5 .00000 .00003 00024 .00102 .00313 00778 01681 03277 .05905 1 22083

che sommandole danno: Zgl Pr(R=iNX=2)=Pr(X=1z) 5,4,



problemi indiretti o inversi (probabilita delle cause)

Nell'ambito esperimento di cui sopra, possiamo anche porre la seguente
domanda

Avendo estratto X = x orsetti, qual & la probabilita che nel pacchetto ce ne siano R
rossi?

Questo problema é risolto dal Teorema di Bayes.

Thomas Bayes (c. 1702-1761)} was a Presbyterian minister. In Essay
Towards Solving a Problem in the Doctrine of Chances (1763) he
considers the inverse probability problem for which he formalizes a
solution. His work was published posthumously by his friend
Richard Price (1723-1791).
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Teorema di Bayes



Formulazione originaria del Teorema di Bayes

Il reverendo Thomas Bayes scrisse un articolo intitolato "Essay Towards
Solving a Problem in the Doctrine of Chances" (pubblicato post-mortem nel
1763)

Theorem (PROP. 3)

The probability that two subsequent events will both happen is a
ratio compounded of the probability of the 1st, and the probability
of the 2d on supposition the 1st happens.

Corollary (PROP. 3)

Hence if of two subsequent events the probability of the 1st be a/N,
and the probability of both together be P/N, then the probability of
the 2d on supposition the 1st happens is P/a.
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Teorema di Bayes

Siano E e H due eventi, con P(E) # 0,

allora

P(HNE) P(H)P(E|H)
P(E) P(E)

P(H|E) =

E

10/ 82



Bayes' Theorem for the jelly bears example

Avendo estratto X = x orsetti, qual & la probabilita che nel pacchetto ce ne siano R

rossi?

La risposta ci viene dal Teorema di Bayes:

P(R=6n|X=2x) =

P(R=6mNX =x)

P(R=6n)P(X = z|R = 6n)

P(X =)

P(X =x)

Supponiamo che X = 2, si considerino le probabilita congiunte

Pr(R=100 N X = 2)

Urn composition (€, share of red marbles)

X 01 0.2 03 0.4 05 0.6 07 0.8 09 p | PX=x)
0 | 05905 03277 01681 00778 00313 00102 00024 00003 .00000 O 12083
1 | 03280 04006  .03601 .02502 01562 00768 00283  .00064  .00004 O 16252
2 | .00729  .02048  .03087  .03456  .03125  .02304  .01323  .00512  .00081 0 16665
3 | ooos1t 00512 01323 02304 03125 03456 03087 02048 00729 O 16665
4 | 00005 .0DOG4 00284 00768 01562 02592  .03602 04096  .03281 0 16253
5 | ooooo 00003 00024 00102  .00313 00778  .01681 03277  .05905 .1 22083
da cui
Pr(R =100 N X = 2)
Pr(R=100 | X =2) =
r(X = 2)

f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1

P(R=100]X = 2) 0437  .1220 1852 2074  .18/5  .1383 0794 0307  .0049
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Cosa c'e di cosi strano?

Cio che abbiamo appena ottenuto, la probabilita di ogni possibile
composizione dell'urna, é incontrovertibile e standard.

A statistical problem in the search for causes

Ora rendiamo questo problema piu interessante:

In un pacchetto di n jelly bears ce ne sono R rossi (R > 1). Ne estraiamo m (con
"reimbussolamento") e osserviamo «x rossi, cosa possiamo dire riguardo a R ?

Nella presentazione precedente del problema R si era supposto generato da
un meccanismo casuale e cio rendeva la soluzione standard (non
controversa).

Ora, R (R = R(0) ) é semplicemente non noto.

Ora il problema é presentato come un problema statistico generale in cui si
sa che l'osservazione € generata da un meccanismo casuale di cui non si
conoscono tutte le caratteristiche.

« Come interpretiamo la probabilita di una probabilita € (delle cause),
PO X = x)?
« Puo rappresentare le nostre opinioni su 6 ?
e Per alcuni Sj, per altri No. 12/ 82



Due tipi di incertezza

Distinguiamo due tipi di incertezza:
e aleatoria in cui l'incertezza e dovuta alla casualita (randomness)

o non siamo in grado di ottenere osservazioni che potrebbero ridurre
questa incertezza

e epistemica in cui l'incertezza € dovuta alla mancanza di conoscenza

o Siamo in grado di ottenere osservazioni che possono ridurre questa
incertezza
o due osservatori possono avere un'incertezza epistemica diversa
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Aggiornamento dell'incertezza (probabilita)

ciex s R
Probabilita di rosso G = 0

« p(y =rosso|f) =0 incertezza aleatoria
« p(f) incertezza epistemica

L'estrazione ripetuta di orsetti aggiorna la nostra incertezza sulla proporzione

« p(0|y = rosso, giallo, rosso, rosso, ...) =7

« secondo la regola di Bayes p(0|y) =
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(Anticipazione) Modello vs Verosimiglianza (Likelihood), a priori vs a
posteriori

+ regola di Bayes p(6ly) o p(y|6)p(6)

« Modello: p(y|€) come funzione di y dato un @ fissato descrive l'incertezza
aleatoria

« Verosimiglianza: p(y|6) (= L(0|y)) come funzione di # dato un y fissato
fornisce informazione sull'incertezza epistemica, ma non e una
distribuzione di probabilita

« Bayes rule combina la verosimiglianza con l'incertezza a priori p(9) e li
transforma nella incertezza a posteriori aggiornata.
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Bayes: inference for a probability

This is stated and more or less solved in Bayes essay as follows.

Given the number of times on which an unknown event has
happened and failed:

Required the chance that the probability of its happening in a single
trial lies somewhere between any two degrees of probability that
can be named.

If nothing is known of an event but that it has happened p times and failed
¢ in p + g or n trials, and from hence I judge that the probability of it’s hap-
pening in a single trial lies between £ + z and £ — z my chance to be right

. F i G i 2.2 n

is greater than v Kpgxh T x2H - 7"2 X % x == x 1 — 2= 5+l and
2y Kpgt+hng+hn~ 2 Kk ! = !
Topg = 1 T ] . /5

less than — multiplied by the 3 terms 2H — 2 x 2L 5 L

v K n—+2 Lz

]
Q\J’qu—ff.?l%—ff.'H._f
1 2mZ2z2 &4 V2 i 11 1 1 _

1 n |2 + VE A -+ 2 X 1+ X m zd x 1 e
H stand for the quantities already explained.

v 2.2, y
2=z |2 +2 where 'H’I,zj K._. h- ﬁ-nd

Bayes solution was not actually very clear, the one from Laplace was better.
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Laplace e la probabilita (epistemica) che nasca una femmina

Laplace (1749-1827) é stato il primo a formulare un problema statistico e a
risolverlo con la statistica bayesiana.

La domanda che si pose era se la probabilita che nasca una femmina ( 6 ) fosse
o no inferiore a 0.95.

Il problema e del tutto analogo a quello dell'estrazione dall'urna sopra, se non
per il fatto che esiste un continuum di possibili composizioni dell'urna.

Egli osservo che a Parigi, dal 1745 al 1770, le nascite erano state 493,472 di cui
241,945 femmine da cui derivo che

P(# > 0.5|dati) ~ 1.15 x 1042

ricavando la "certezza morale" che 8 < 0.5.

Pierre-Simon Laplace (1749-1827) in Essai philosophique sur les
probabilites (1814) gives a systematic treatment to the approach
which we call Bayesian today.
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Laplace e l'estensione del teorema di Bayes

Laplace estese il teorema di Bayes a n possibili cause, H;,7 =1,...,n,diun
evento .
Dati:

« Hi,..., H,, un insieme di ipotesi

- P(H;),i=1,...,n,probabilita a priori, .. P(H;) =1
- P(E|H;),i =1,...,n,verosimiglianza di E quando H; ¢ vera

_ P(E|H;)P(H;)
- Yr, P(E|H;)P(H,))

P(H;|E)

La probabilita a posteriori di H; dato E é proporzionale al prodotto della
probabilita a priori di H; e della verosimiglianza di &/ quando H; € vera.
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Corollario: confronto tra due ipotesi

Si supponga che si confrontino due particolari ipotesi, H; e H;, il rapporto a
posteriori e dato da:

P(H;|E) P(H;) P(E|H;)

P(H;|E) P(H;) P(EIH,)

i.e., il rapporto delle probabilita a priori (prior odds) per il rapporto delle
verosimiglianze (likelihood ratio).
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Esempio: Diagnosi medica

Obiettivo: valutare se una persona sottoposta a test - risultato positivo - sia
malata

« Un paziente puo essere affetto da una data malattia (essere nello stato H;)
o non esserlo (essere nello stato Ho)

« P(H,) élaprevalenza della malattia nella popolazione alla quale si
suppone che il paziente appartenga (probabilita a priori di H,, P(H>) =
1— P(Hy))

« Il paziente viene sottoposto a test da cui si ricava l'informazione se sia
verosimilmente malato, test positivo ( E') o test negativo ( F ):

 P(E|Hy), P(E|H,) sono i tassi di true posititive e true negative, anche
detti sensibilita e specificita del test clinico
La situazione ottimale e

P(E|H))=1 — P(E|H;) =0 falsenegative
P(E|Hy) =1 — P(E|H;) =0 false positive
Il teorema di Bayes ci permette di capire combinando le caratteristiche

del test con la prevalenza della malattia quale sia il potere discriminante
del test diagnostico. 20/ 82



Covid-19 e tamponi naso-faringei

Studi recenti suggeriscono che i tamponi naso-faringei usati per la diagnosi di
COVID-19 abbiano sensibilita P(E|Hy) = 0.777 e specificita P(E|H;)=0.988
e che la prevalenza di COVID-19 in Italia (in fase pandemica) sia circa pari a
P(Hy)=0.13.

Applichiamo il teorema di Bayes per calcolare la probabilita di essere malato
in seguito a risultato positivo di un test diagnostico:

P(E|H,)P(H,)
(E|H1)P(H) + P(E|H2)P(H>)
sensibilita - prevalenza .

P(H,|E) =

~ sensibilitd - prevalenza + (1-specificitd) - (1-prevalenza)
B 0.777-0.13
T 0.777-0.13 + (1 — 0.988) - (1 — 0.13)

= 0.9063257

la probabilita di non essere malato in seguito a risultato negativo:

P(H,|E) = specificita - 1-prevalenza, B
2177 Specificita - 1-prevalenza -+ (1-sensibilitd) - (prevalenza)
0.988 - (1 — 0.13)

T 0.988- (1 —0.13) + (1 — 0.777) - 0.13

4

= 0.9673738
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Test ideale

Data la prevalenza di una malattia, M, le caratteristiche ideali del test per una
diagnosi il piu corretta possibile sono mostrate nel grafico.

Sensibilita P(®|M)

Requisiti test per P(M) =0.13

10

[=]
w

[=]
a

o
~

09

Specificita P(©|M)

Requisiti test per covid-19

10

[’area nera indica i requisiti
necessari

P(M|T)>.5 e P(M|T)< .05

per un test con P(M) = .13

(azzurra i requisiti ottimali per
P(M|T) > .9.

Il punto indica 1 parametri di
sensibilita e specificita dei test RT-
PCR SARS-CoV-2 RNA test per COVID-
19: sensibilita P(T|M) = 0.777 e
specificita di P(T'|M) = 0.988.
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Un problema statistico

Riprendendo I'esempio dell'urna, il punto cruciale & che R(6) non & casuale

nel senso di essere generato attraverso un esperimento casuale (incertezza
aleatoria). Piuttosto, R(60) & non noto (incertezza epistemica).

Come dobbiamo quindi interpretare la probabilita che attribuiamo a 6:
P8 = x)?

Puo rappresentare le nostra opinione sul valore di 6?

Secondo alcuni potrebbe, secondo altri e un'interpretazione priva di senso.
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Bayesian approach put aside

e Nei primissimi esempi, l'inferenza statistica - di Thomas Bayes in termini
generali e Pierre-Simon Laplace su dati reali - era basata sul paradigma
bayesiano.

e Quindj, fine XIX e inizio XX secolo, I'approccio bayesiano fu messo da
parte per ragioni filosofiche e tecniche

o L'idea che la probabilita possa essere utilizzata per modellare
I'ignoranza / le opinioni era considerata ridicola.

o Inoltre, per ottenere P(6| X = x) dobbiamo iniziare da P(6),
un'opinione a priori su @ (che viene prima delle osservazioni), il che
comporta l'introduzione di un elemento di soggettivita nell'analisi,
che allora era, ancora una volta, ritenuto non scientifico.

o Infine, c'erano problemi di calcolo: anche per problemi relativamente
semplici, I'approccio bayesiano comporta solitamente calcoli
intrattabili.
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Modern (classical) statistics



New questions, new answers

Tra il XIX e il XX-esimo secolo nascono nuovi ambiti di applicazione delle
tecniche statistiche come:

-la genetica e l'ereditarieta;
-1l controllo di qualita

One has a, possibly incomplete, theory, i.e., a Model, on how some outcome is
generated and wants to use Data to confirm/clarify the said model.

Vengono sviluppati nuovi approcci in cui il parametro € ¢ un numero fisso.

William Gosset (1876-1937) Working for Guiness, he developed the
Student-t distribution to evaluate quality of barley.

Office in London, later the Galton labooratory. Develops linear

A sir Francis Galton (1822-1911) Founded the Eugenics Record
regression.

Karl Pearson (1857-1936)
Introduces the concept of

correlation and of goodness
of fit.
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Verosimiglianza e il campionamento ripetuto

o L'inferenza & basata sulla verosimiglianza: si confronta P(Data|Model)
(nell'esempio dell'urna L(0) oc P(X = x| R = n#)) per i differenti
modelli
(Nella statistica bayesiana confrontiamo P(Model|Data)),

 la performance e valutata secondo il principio del campionamento
ripetuto: le procedure sono valutate in base a ripetizioni fittizie

dell'esperimento (Mean Square Error, coverage probability, significance
level, etc.).

sir Ronald Fisher (1890-1932) introduces, among other things, the
concepts of likelihood, analysis of variance, experimental design.
Also, he originates the ideas of sufficiency, ancillarity, and
information. His main works: Statistical Methods for Research
Workers (1925), The design of experiments (1935), Contributions to
mathematical statistics (1950), Statistical methods and statistical
inference (1956).

Egon Pearson (1895-1980) with Jerzy Neyman develops the 27/ 82
theory of hypotheses testing.



Verosimiglianza

La verosimiglianza sintetizza l'informazione su @ proveniente da X = x

L(6) x P(X = x|R = 106)

y Urn composition (#, share of red marbles)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 5905 3277 1681 0778 0312 0102 0024 .0003 .0000 0
1 3280 4096 3601 .2592 1562 0768 0284 .0064 .0004 0
2 0729 2048 3087 .3456 3125 2304 1323 0512 0081 0
3 0081 0512 1323 2304 3125 3456 3087 2048 0729 0
4 0005 0064 0284 0768 1562 2592 3601 4096 3280 0
5 0000 .0003 0024 .0102 0312 0778 1681 3277 5905 1

Dalla verosimiglianza possiamo ottenere:

 ]lo stimatore di massima verosimiglianza:

o0 =X/5=0.6

e p-values:

o il p-value per l'ipotesi 8 < 0.2 & 0.0579 (come si calcola?)
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Principio del campionamento ripetuto

Secondo il principio del campionamento ripetuto, valutiamo le procedure in
base a come si comporterebbero a lungo termine con nuovi set di dati

Utilizzando il principio del campionamento ripetuto possiamo valutare le
prestazioni di

 stimatori = Errore quadratico medio (Mean Square Error)
o intervalli di confidenza = probabilita di copertura (coverage probability)

Il test d' ipotesi di Neyman-Pearson ha il legame piu evidente con
campionamento ripetuto:

« il livello di significativita ( o) é la frequenza relativa con cui ci aspettiamo
di rifiutare un'ipotesi nulla se dovessimo eseguire il test su un certo
numero di campioni provenienti da una popolazione per la quale 1'ipotesi
nulla e vera.

« la potenzae ...

29 /82



Approccio classico

Per quanto riguarda la probabilita che nasca una femmina, Laplace osservo
che a Parigi, dal 1745 al 1770, le nascite erano state 493,472 di cui 241,945
femminili —

. . ~ 241,945
e stima di ML 0 = 105073 -

0.4903 e abbiamo ottenuto un intervallo
10,4889, 0,4917] come una
* B%IC [0‘4889’ 0'4917] realizzazione di un intervallo
« p-value per l'ipotesi casuale che ha probabilita del
Hy:0>058~0 95% di coprire il vero valore di

 La stima migliore per 6 & 0.4903

e se Hy: 0 > 0.5 fosse vera, la
probabilita di osservare una
statistica estrema come quella
osservata sarebbe ~ (

Cio che ci dice non e di immediata traduzione . .. Con questo intendo dire che
dobbiamo fare un ulteriore passo avanti per tradurlo in informazioni su 6.
(vedi slide sull'inferenza frequentista)
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Classical approach or approaches?

Note that within the classical approach different views can be distinguished,
this is particularly evident in hypotheses testing.

A Fisherian approach is to view the likelihood as central as a measure of
evidence brought by the data. As such, a p-value is a measure of evidence
against a given hypotheses.

The Neyman-Pearson view is behavioural, they devise a decision rule which
controls the probability of error (not the overall one, but at least the
conditional ones).

The above is a very simplistic summary, however it is true that the two
approaches are incompatible and there have been harsh debates between the
proponents.
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Interpretazione dei risultati nell' approccio Bayesiano

A primary motivation for Bayesian thinking is that it facilitates a
common sense interpretation of statistical conclusions.
-- Gelman

Al contrario della stima d'intervallo o della verifica d'ipotesi, la statistica
Bayesiana ci dice quello che vogliamo sapere, la statistica classica no, ed é
probabile che molti utenti interpreterebbero erroneamente i risultati della
statistica classica alla maniera bayesiana.

Bayesian inference is the process of fitting a probability model to a
set of data and summarizing the result by a probability distribution
on the parameters of the model and on unobserved quantities such
as predictions for new observations.

-- Gelman
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Approccio classico vs approccio bayesiano all'inferenza

Nel'INFERENZA CLASSICA Nel INFERENZA BAYESIANA
o il parametro é una costante. il parametro € una v.a.
 la conclusione non e derivata il ragionamento e la conclusione
all'interno delle regole del SONo una conseguenza
calcolo delle probabilita (queste immediata delle regole del
sono usate in effetti, ma la calcolo delle probabilita (del
conclusione non ne é una Teorema di Bayes in
diretta conseguenza) particolare);
 la verosimiglianza e la » la verosimiglianza e la
distribuzione di probabilita del distribuzione a priori vengono
campione vengono utilizzate utilizzate
Framework per estrarre evidenza Framework per aggiornare le
dai dati. informazioni.
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Statistica Bayesiana



Il teorema di Bayes a fondamento dellinferenza Bayesiana

Il teorema di Bayes costituisce la chiave di volta e il concetto
informatore di ogni attivita costruttiva del pensiero.
-- Bruno de Finetti, 1970

il teorema di Bayes é lo strumento par excellence capace di aggiornare le
probabilita delle ipotesi H; alla luce di nuovi fatti.

L’esempio che segue evidenzia I’errore che si commette quando si trascurano

le informazioni disponibili, nel nostro caso le probabilita a priori, e si
traggono inferenze (e conclusioni) usando solo le verosimiglianze.
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Esempio: Diagnosi medica
(Gigerenzer, 2002)

e Consider women aged 40-50 with no family history of cancer and no
symptoms of cancer
o The proportion that have breast cancer is .008
e Conduct mammogram screening
o If a woman has breast cancer, the probability of a positive
mammogram is .90
o If a woman does not have breast cancer, the probability of a positive
mammogram is .07
o A woman undergoes the mammogram, the result is positive
« What should we infer?
o What’s the probability the woman has breast cancer?

See natural frequencies —
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Maximum Likelihood
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Logica della Massima Verosimiglianza (Maximum Likelihood)

« A general approach to parameter estimation

e The use of a model implies that the data may be sufficiently characterized
by the features of the model, including the unknown parameters

e Parameters govern the data in the sense that the data depend on the
parameters

o Given values of the parameters we can calculate the (conditional)
probability of the data

o Mammogram (data) depends on breast cancer status (parameter)

o When conventional statistical approaches discuss a “model” they
usually refer to this dependence structure

o Maximum likelihood (ML) estimation asks: “What are the values of the
parameters that make the data most probable?”

38 /82



Maximum Likelihood

« Specify the conditional probability of the data as p(z|6)

o E.g.,0 = (p,0°%),p(x|p,0%) = N(u,o?)
o This describes the structure as function of

« When taken as a function of 0, this is referred to as the likelihood
L(0|z) = p(z|0)

e ML estimation then maximizes this function w.r.t. 8, using the known
values of x
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Diagnosi medica
Conditional Probability Distribution

« If a woman has breast cancer, the probability of a positive mammogram
is .90

p(Mam = +|BC =Y) = .90, p(Mam = —|BC =Y) = .10

« If a woman does not have breast cancer, the probability of a positive
mammogram is .07

p(Mam = +|BC = N) = .07, p(Mam = —|BC = N) = .93

Mammogram Result
Breast » .
Cancer Positive Negative
Yes 90 10
No .07 93
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Diagnosi medica
Maximum Likelihood

« A woman undergoes the mammogram, the result is positive
L(BC =Y|Mam =+) =p(Mam =+|BC =Y) = .90

L(BC = N|Mam = +) = p(Mam = +|BC = N) = .07

Mammogram Result
Breast .
Positive a
Cancer
Yes 90
No 07

e ML: What is the value of BC that maximizes the likelihood?

EE’:Yes
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Inferenza Bayesiana
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Esempio: Diagnosi medica
Frequenze naturali

<— See case description

e Consider 1,000 women aged 40-50 with no family history of cancer and no
symptoms of cancer
o 8 of the 1,000 women have breast cancer
e Conduct mammogram screening
o Of the 8 women with breast cancer, 7 will have a positive
mammogram
o Of the remaining 992 women w/o breast cancer, 69 will have a
positive mammogram
« Awoman undergoes the mammogram, the result is positive
« What should we infer?
o What’s the probability the woman has breast cancer?
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Esempio: Diagnosi medica
Diagramma ad albero

1.000
women

/\

8 992
breast cancer no breast cancer

7 l 69 923
positive negative positive negative
mammogram 1aminogram mammogram 11aminogram

i » 7 7
p(Breast Cancer = Yes| Mammogram = Positive) = =—=.09
7+69 76
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Teorema di Bayes in azione

e The setup

o Two entities:  (data) and @ (parameter)
o We know the conditional probabilities p(z|f), which tell us what to

believe about x if we knew the value of 6
o When we learn the value of x, what should we believe about 6?

« We combine three things (two of which are important)

o Conditional probabilities for x given 6, the likelihood
o Previous probabilities about 6
o The marginal probability for x

p(z|0)p(6)

p(flz) = (@)
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Conditional Probability or Likelihood

p(z|0):

« Conditional probability of x given 0:
probability of x given the value of 6,
e likelihood for 6:
Once value of z is known, and this is viewed as a function of # it is a

likelihood

~ p(z[0)p(0)
p(flz) = (@)
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Diagnosi medica
Conditional Probability Distribution

« If a woman has breast cancer, the probability of a positive mammogram
is .90

p(Mam =+|BC =Y)=.90,p(Mam = —|BC =Y) = .10

« If a woman does not have breast cancer, the probability of a positive
mammogram is .07

p(Mam = +|BC = N) = .07, p(Mam = —|BC = N) = .93

Mammogram Result
Breast - .
B} Positive Negative
Cancer -
Yes .90 10
No .07 93
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Prior distribution

p(0):

e Prior probability distribution for unknown 6:
Everything we know about 8 before we observe value for x

p(z|0)p(6)

p(flz) = (@)
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Diagnosi medica
Prior Distribution for breast cancer

e The proportion of women aged 40-50 with no family history of cancer and
no symptoms that have breast cancer is .008

e Assign a prior distribution

p(Breast Cancer = Yes) = .008
p(Breast Cancer = No) =.992

Breast

Cancer
Yes 008
No 992
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Marginal distribution

p(z):

« Marginal probability of z (over 6):  p(z) = >_,p(x|0)p(6)
o Serves to normalize the distribution
o Note that p(x) does not vary with 6

We will eventually discard it

p(z]0)p(0)
p(z)

p(f|z) =
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Diagnosi medica
Marginal Probability of Mammogram = +

p(z) = >y p(x|60)p(6)

p(x|0) p(0) p(x.0)
Mammogram
BC + BC BC
Yes 90 Yes | .008 | — Yes | .00720
No .07 No | .992 No 06944
2 07664
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Posterior distribution

p(0]z):

o Posterior probability distribution for unknown 6 given «:
o Captures what we think about # now that we have incorporated x

p(z|0)p(6)

p(flz) = (@)
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Diagnosi medica
Posterior distribution

p(z|0)p(0)  p(Mam = +|BC)p(BC)

plfle) == ) p(Mam = 1)

Mammogram

BC T = BC BC
Yes 90 x Yes | .008 Yes | .00720
No 07 No 992 No 06944
07664 07664
BC
Yes .09
No 91




Bayesian Inference as Updating
from Probability-Based Reasoning

b

{

«

)

)

“Prior to the mammogram, we didn’t think the
woman had breast cancer.

After the positive result on the mammogram ... we
don’t think the woman had breast cancer.

So it seems the mammogram is irrelevant, or Bayes
doesn’t work”

“We are uncertain if the woman has breast cancer.
And our language for uncertainty is probabilities.
Before the mammogram, the probability of breast
cancer is p(BC' =Y) = .008.

After the mammogram, the probability of breast
canceris (BC' =Y |M = +) = .09.

These probabilities are expressions of our beliefs.
We still think it’s unlikely the patient has breast
cancer, but our beliefs have shifted considerably
from what they were.”
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Proportionality in the Posterior Distribution

p(z|0)p(6)
p()

Marginal probability of x (over 6), p(z):

p(flz) = o p(z|0)p(6)

does not change for different values of 0

discarding yields proportionality
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Diagnosi medica
Proportionality of Posterior Distribution

p(BC|Mam = +) = p(Mam = +|BC)p(BC)

x p(Mam = +|BC)p(BC)

p(Mam = +)
Mammogram
- (1 N
B( T " BC BC
Yes | .90 X Yes | .008 | —| | Yes |.00720
No .07 No | .992 No |.06944
=j
07664 / 07664
- . . BC
Does not change for different values of &
Dividing simply serves to nermalize the Yes 09
distribution No 91
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Approccio generale alla modellazione Bayesiana
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Approccio generale alla modellazione Bayesiana

Un'analisi Bayesianly justifiable é una che

“treats known values as observed values of random variables,
treats unknown values as unobserved random variables, and
calculates the conditional distribution of unknowns given knowns
and model specifications using Bayes’theorem.”

- Rubin (1984, p. 1152)
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3 Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables ( ) and unobservables ( ) in accordance with all
that is known about the problem

2. Condition on the observed data ( x ), calculate the conditional probability
distribution for the unobservable entities (8 ) of interest given the
observed data: the posterior distribution

3. Examine fit, tenability/sensitivity of assumptions, reasonable
conclusions?, respecify, summarize results, etc.
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Step1

1. Set up the full probability model: the joint distribution of all entities,
including observables ( ) and unobservables ( ) in accordance with all
that is known about the problem

p(z,0)

Difficult to do as a multivariate system
Joint probability of breast cancer and mammogram results

Mammogram
BC + -
Yes 0.0072 | 0.0008
No 0.06944 | 0.92256
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Step1

1. Set up the full probability model via a conditional distribution p(z|#), and
a prior p(0)

status

p(z,0) = p(z|0)p(0)

o The prior probability of cancer
o The conditional probability of the mammogram result, given cancer

Mammogram

BC
Yes | .008
No | .992

BC + -
Yes 90 10
No 07 93
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Step 2

1. Condition on the observed data ( « ), calculate the conditional probability
distribution for the unobservable entities ( 8 ) of interest given the
observed data: obtain the posterior distribution as

~ p(z,0)

_ p(z[0)p(6)
p(z)
o p(z|0)p(0)

Bayes’ Theorem for Discrete and Continuous Variables
p(z10)p(6) __ p(al0)p(0)
p(z) 2. p(z|0)p(0)
o(0la) — PEORE) __palop(®)
p(x) Jor(2[0)p(0)

p(0lz) = o p(z|0)p(6)

o p(z|0)p(6)
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Bayes’ Theorem

Effects a reversal of the conditional probability, p(z|6) = p(0)|z)

p(0]z) o< p(z|60)p(0)

From p(Mam|BC) to p(BC|Mam)

Confusion of these conditional probabilities is quite common

63 /82



Confronto tra inferenza frequentista & inferenza
bayesiana

(sin qui)
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Inferenza frequentista vs. inferenza bayesiana

Status of Parameters
Prior

Solution

Characteristic Frequentist Bayesian
Status of Data Random Random until obs.
Contribution of Data Likelihood Likelihood

« Data viewed as random, conditionally distributed given parameters
o Mammogram is conditionally distributed given BC
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Inferenza frequentista vs. inferenza bayesiana

Characteristic Frequentist Bayesian
Status of Data Random Random until obs.
Contribution of Data Likelihood Likelihood
Status of Parameters Fixed (mostly)

Prior

Solution

e Frequentist inference: parameters are fixed and unknown
o Frequentist perspective defines probabilities as long-run freq.
o We don’t know if the woman has breast cancer, but she either does or
she doesn’t, hardly something that invokes long-run frequencies
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Inferenza frequentista vs. inferenza bayesiana

Characteristic Frequentist Bayesian
Status of Data Random Random until obs.
Contribution of Data Likelihood Likelihood
Status of Parameters Fixed (mostly)

Prior No

Solution

 Random entities are assigned distributions
o Parameters aren’t random = not assigned distributions
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Inferenza frequentista vs. inferenza bayesiana

Characteristic Frequentist Bayesian
Status of Data Random Random until obs.
Contribution of Data Likelihood Likelihood
Status of Parameters Fixed (mostly)

Prior No

Solution Point (e.g., ML)

e ML estimation attempts to find the value of the parameters that make the
data seem most likely
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Diagnosi medica
Maximum Likelihood

« A woman undergoes the mammogram, the result is positive
L(BC =Y|Mam =+) =p(Mam =+|BC =Y) = .90

L(BC = N|Mam = +) = p(Mam = +|BC = N) = .07

Mammogram Result
Breast .
Positive a
Cancer
Yes 90
No 07

o ML: What is the value of BC that maximizes this? BC = Yes
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Inferenza frequentista vs. inferenza bayesiana

Characteristic Frequentist Bayesian
Status of Data Random Random until obs.
Contribution of Data Likelihood Likelihood
Status of Parameters Fixed (mostly) Random (mostly)
Prior No (even 1f not
Solution Pomnt (e.g., ML) philosophically)

e In a Bayesian analysis all unknown entities treated as random and

assigned a distribution
o Initially the data, but once observed, they are conditioned on

o The parameters as well

70/ 82



Inferenza frequentista vs. inferenza bayesiana

Characteristic Frequentist Bayesian
Status of Data Random Random until obs.
Contribution of Data Likelihood Likelihood
Status of Parameters Fixed (mostly) Random
Prior No Yes
Solution Poimnt (e.g.. ML)

« All unknown entities are assigned distributions
o Don’t know if the patient has breast cancer? Assign a distribution!
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Inferenza frequentista vs. inferenza bayesiana

Characteristic Frequentist Bayesian
Status of Data Random Random until obs.
Contribution of Data Likelihood Likelihood
Status of Parameters Fixed (mostly) Random
Prior No Yes
Solution Pomnt (e.g.. ML) Distribution

« The “solution/answer” in a Bayesian analysis is a distribution
e Not trying to find a point, trying to find a distribution

o Not trying to find the estimate of the parameter

o Trying to find the distribution of a parameter

o Can summarize if desired in the usual ways
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ML vs. Bayesian Estimation

ML seeks to maximize L(60|x) = p(z|6)

Bayes seeks to obtain p(60|x) o p(z|60)p(6)
Finding a point vs. finding a distribution

Other difference is the presence of the prior p(6)
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Ragionare come un Bayesiano ?
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Ragioniamo come un Bayesiano?

« Active debate in psychology, neuroscience

e Some examples of natural occurrences in the research base and everyday
life ...

« Breast cancer example drawn from work of Gigerenzer; 24 physicians
were explicitly asked for the probability that the woman has breast
cancer:

o 8said < 90%, 8 said = 10%, 8 said between 50% and 80%

o Most not thinking about the prior, some not thinking of the data

o Only 2 gave correct reasoning, others seemed to try to do so, but came
up with the wrong answer

o With natural frequencies, majority close to correct

e Research program by Kahneman & Tversky

o euristics e cognitive biases

o theory of prospect (1979)

o basis for behavioral economics

o Nobel Prize in Economics (2002) to Kahneman
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Dovremmo ragionare come un Bayesiano?

« Characterization as “optimal” by psychology, neuroscience
e Should we include prior probability, condition on data, obtain posterior
probabilities?
o Should we include the fact that only the proportion in the population
that have breast cancer is .008?
« If so, why?
o Better descriptions of problems, models, and inference
Probability-based reasoning
Managing uncertainty
Synthesizing information over time
Has been shown to be effective in many disciplines
The answer to all your questions...
http://en.wikipedia.org/wiki/Monty_Hall_problem
https://mathcenter.oxford.emory.edu/site/math117/bayesTheorem/

O O O O O
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Pensieri finali & riassunto
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General Approach to Bayesian Modeling

A Bayesianly justifiable analysis is one that

“treats known values as observed values of random variables,
treats unknown values as unobserved random variables, and
calculates the conditional distribution of unknowns given knowns
and model specifications using Bayes’ theorem.”

-- Rubin (1984, p. 1152)
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3 Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables ( ) and unobservables ( ) in accordance with all
that is known about the problem

p(z,0) o« p(z|0)p(6)

Common (shortcut) approach to specifying models for folks new to Bayesian
analysis, but familiar with other approaches

A. Set up the model for the conditional probability of the data as you are used
to: p(x|0)

B. List out all the unknown parameter(s) ( 6)

C. Specify prior distribution(s) for the parameter(s) p(6), reflecting what is

believed about the situation
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3 Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables ( ) and unobservables ( € ) in accordance with all
that is known about the problem

p(,0) o p(x[0)p(6)

2. Condition on the observed data ( x ), calculate the conditional probability
distribution for the unobservable entities (8 ) of interest given the
observed data: the posterior distribution °

plofe) = 220 PEEE) o aio)

3. Examine fit, tenability/sensitivity of assumptions, reasonable
conclusions?, respecify, summarize results, etc.
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Una riflessione sulla probabilita

Probability is not really about numbers; it is about the structure of
reasoning
-- Glenn Shafer, quoted in Pearl, 1988, p. 77
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Riassunto

Frequentist inference via ML
o Overview of conceptions
o Likelihood = conditional probability
Bayesian inference
o Prior, likelihood, marginal, posterior
o Proportionality of posterior
o Bayes as updater in probability-based reasoning
Contrasting frequentist and Bayesian inference
It’s all about reasoning
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