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Modello binomiale
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Binomial model: a one-parameter model

We start to illustrate Bayesian inference in the context of statistical models
where only a single scalar parameter is to be estimated; that is, the estimand 
is onedimensional.

We start with the Binomial model where the aim is estimating a probability
from binomial data, i.e., the results of a sequence of ‘Bernoulli trials’.

Although a very simple model, it has relevant applications.

It is also used as a building block in more complex models.

Also, it was dealt with by many of the first scholars working in probability.

In fact, it was the motivating example to develop Bayesian statistics both for T.
Bayes and for Laplace. The former considered it in an abstract context, the
latter had the aim of estimating the probability of a female birth.

θ
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Binomial data

We observe the results of a sequence of ‘Bernoulli trials’ (trials or draws from
a large population), i.e., data  each of which is either  or  (coding
'failure' and 'success' labels, respectively).

Let  be the probability of success in each trial. If we consider the trials
exchangeable, that is equivalent to say that, conditional on , the 
are , i.e.,

-- independent: if  , 

-- identically distributed: .
so that, e.g., a sequence  has probability 

we are saying that we disregard the order and the data can be summarized
by the total number of  (successes), which we denote by .

If  is the # of trials, the sampling model for  is then a binomial model

where on the left side we suppress the dependence on  because it is regarded
as part of the experimental design that is considered fixed(; all the
probabilities discussed for this problem are assumed to be conditional on ).

y1, … , yn 0 1

θ
θ y1, … , yn

iid

i ≠ j P(yi = 1|yj = 1, θ) = P(yi = 1|θ)
P(yi = 1|θ) = θ ∀i

1, 1, 0, 1, 0, 0, … θθ(1 − θ)θ(1 − θ)(1 − θ) …

1 y

n y|θ

p(y|θ) = ( )θy(1 − θ)n−yn

y

n

n
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Binomial model ( ):  known

Observational model(/sampling distribution/statistical model) (discrete
function of y)

y|θ θ

p(y|θ) = ( )θy(1 − θ)n−yn

y
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Binomial model as likelihood:  unknown

Likelihood (continuous function of )

E.g., consider  and 

: 

θ

θ

p(y|θ) = ( )θy(1 − θ)n−yn

y

y = 6 n = 10

p(y = 6|n = 10, θ) 0.00 0.00 0.01 0.04 0.11 0.21 0.25 0.20 0.09 0.01 0.00
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Binomial model as likelihood:  unknown

Likelihood (continuous function of )

E.g., consider  and 

integrate(function(  ) dbinom(6, 10,  ), 0, 1)  0.09 

θ

θ

p(y|θ) = ( )θy(1 − θ)n−yn

y

y = 6 n = 10

θ θ ≈ ≠ 1
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Binomial model with uniform prior

The posterior (continous function of ) by the Bayes rule

where 

Let's start with a uniform prior

Hence

θ

p(θ|y) =
p(y|θ)p(θ)

p(y)

p(y) = ∫ p(y|θ)p(θ)dθ

p(θ) = 1, with 0 ≤ θ ≤ 1

p(θ|y) = =

= θy(1 − θ)n−y

p(y|θ)

p(y)

( )θy(1 − θ)n−yn
y

∫ 1

0 ( )θy(1 − θ)n−ydθ
n
y

1

Z

10 / 78



Binomial model with uniform prior

 (costante dato ) è il termine di normalizzazione

Il termine di normalizzazione ha la forma della funzione Beta

quando integrato su  il risultato può essere presentato con
Funzioni gamma
con numeri interi 
se i numeri interi sono grandi anche questo calcolo è impegnativo e di
solito  viene calcolato invece di 

Valutiamolo con 

y<-6;n<-10; integrate(function(theta) theta^y*(1-theta)^(n-y),
0, 1)  0.0004329

gamma(y+1)*gamma(n-y+1)/gamma(n+2)  0.0004329

Z y

Z = ∫
1

0

θy(1 − θ)n−ydθ =
Γ(y + 1)Γ(n − y + 1)

Γ(n + 2)

(0, 1)

Γ(n) = (n − 1)!

log Γ(⋅) Γ(⋅)

y = 6,n = 10

≈

≈
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Binomial model with uniform prior

The posterior

is the Beta distribution with parameters  and , and we can also
write

E.g., consider  and 

p(θ|y) = θy(1 − θ)n−y,
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)

y + 1 n − y + 1

θ|y ∼ Beta(y + 1,n − y + 1)

y = 6 n = 10
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Conditioning to the model

A volte il condizionamento al modello  viene mostrato esplicitamente

La a posteriori con la regola di Bayes (funzione di , continua)

dove 

rende più chiaro che la verosimiglianza e la a priori fanno entrambe
parte del modello
rende più chiaro che non esiste una probabilità assoluta per , ma essa
dipende dal modello 
in caso di due modelli, possiamo valutare le probabilità marginali

 e 
di solito è sottintesa per rendere la notazione più concisa

M

θ

p(θ|y,M) =
p(y|θ,M)p(θ|M)

p(y|M)

p(y|M) = ∫ p(y|θ,M)p(θ|M)dθ

p(y)
M

p(y|M1) p(y|M2)
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Posterior densities for binomial parameter 

Posterior density for binomial parameter , based on uniform prior
distribution and  successes out of  trials. Curves displayed for several
values of  and .

θ

θ
y n

n y
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Still on Bayes' Thorem: Impact of More Evidence

Incorporating Evidence

Reasoning under uncertainty requires a mechanism for incorporating
evidence
Bayes’ theorem as an updating mechanism

From prior to posterior
Properly synthesizes information in the data to revise the probability
distribution for the unknown parameter

1. Impact of More Evidence
The more data we have, the more the posterior reflects that

As sample size increases, the posterior becomes increasing similar to
the likelihood (usually)

2. Accumulation of Evidence
As new data arrives, proper synthesis, updating of the distribution

Today’s posterior is tomorrow’s prior
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Posterior distribution
for Laplace

Laplace example, revisited

Laplace observed  females and  males, that is if

he had

hence the posterior distribution for  is a  and

We ought to appreciate the fact that to get to this number Laplace had to develop
appropriate approximations, it is not immediate even today (R may give 0 depending
on how the problem is formulated due to machine precision).

241 945 251 527

θ = probability of a female birth

n = 241 945 + 251 527 = 493 472; y = 241 945

θ Beta(241 946, 251 528)

P(θ ≥ 0.5|y) ≈ 1.15 × 10−42
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Modello binomiale: calcolo

R
density dbeta
CDF pbeta
quantile qbeta
random number rbeta

Beta CDF non banale calcolarla
E.g., pbeta in R usa una frazione continua con fattori di ponderazione e
espansione asintotica
Bayes was able to solve integral given small  and . In case of large 
and , Laplace developed a Gaussian approximation (Laplace
approximation) of the posterior. In this specific case, R pbeta gives the
same results as Laplace’s result with at least 3 digit accuracy.

n y n
y
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Distribuzioni Beta
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Distribuzioni Beta

Distribuzione su 

La costante di normalizzazione è il reciproco di

La densità è finita se , e l'integrale è finito se se .

La densità ha un asintoto in  se , in  se .

 se ,  se ,  se

; ha due mode se 

, 

[0, 1]

θ|α,β ∼ Beta(α,β) ∝ θα−1(1 − θ)β−1

Z = ∫
1

0

θα−1(1 − θ)β−1dθ =
Γ(α)Γ(β)

Γ(α + β)

α,β ≥ 1 α,β > 0

0 α < 1 1 β < 1

E(Beta(α,β)) = α

α+β

Var(Beta(α,β)) =
αβ

(α+β)2(α+β+1)

Moda(Beta(α,β)) = α−1
α+β−2

α,β > 1 = 1 α ≥ 1,β < 1 = 0

α < 1,β ≥ 1 α,β < 1

α = E(θ)(α + β) β = (1 − E(θ))(α + β)
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Inferenza con dati binomiali

Approccio classico/frequentista

Dato , quali sono le probabilità dei vari possibili risultati per la v.a. ?

Legge (debole) dei grandi numeri (Weak Law of Large Numbers) (teorema di
Bernoulli)

MLE: 

Approccio Bayesiano

Dato , quali sono le probabilità dei vari possibili risultati per la v.a. ?

as well as summaries of the posterior distribution

θ y

y ∼ Bin(n, θ)

limn→∞ P ( − θ > ϵ | θ) = 0
y

n

θ̂ =
y

n

y θ

[θ|y]
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Summarizing posterior distribution

In a Bayesian analysis, the “solution/answer” is the posterior distribution on .
Though, it is relevant to distill down the information it contains. This can be
done in the usual ways in which we summarize a probability distribution
(similar to the frequentist approach), so by

point summaries of the
central tendency

the mean
the median
the mode

variability
variance (and standard deviation)
range, interquartile range

intervals or regions as reflection of uncertainty
central posterior interval
highest posterior density interval / region

θ
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Point Summaries/Estimates of Central Tendency

Mean, , 

Expected a posteriori (EAP) estimator
Smallest root mean square error (RMSE) in population defined by

Median, 50th %ile
Often preferred in skewed distributions

Mode, 
Maximum a posteriori (MAP) estimator
Somewhat akin to ML, especially with diffuse priors
Less used in empirically based estimation (e.g., MCMC)

Point Summaries/Estimates of Variability

Range, interquartile range
Posterior variance, , ; Posterior standard deviation, 

Interpretation as the variability of the parameter
Thus while posterior standard deviations may be numerically similar to
frequentist standard errors, they have critically different
meanings/interpretations

E(θ|y) μθ|y

p(θ)

θ̂ := p(θ̂ |y) = max p(θ|y)

V (θ|y) σ2
θ|y

σθ|y
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Posterior intervals

Another common way to summarize the posterior conveying uncertainty is to
use intervals of a given posterior probability, say , this is any
interval  such that

This is also called a credibility interval (“Bayesian confidence interval”).

It is somehow the analogue of a confidence interval in classical statistics, but
notice the different interpretation, here we say that the unknown parameter
lies in the interval with the given probability (rather than saying that the
interval is random ...).

100(1 − α)%
[θL, θU ]

P(θL ≤ θ ≤ θU |y) = 1 − α
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(Remind) Interpreting Posterior Credibility Intervals

Posterior credibility intervals, expression of uncertainty, are interpreted as
direct probability statements for the unknown parameter.

The interpretation of the interval is such that probability is ascribed to the
parameter

Thus while posterior credibility intervals are often numerically similar to
frequentist confidence intervals, they have critically different
meanings/interpretations

Adopting an explicitly Bayesian approach would resolve a
recurring source of confusion for these researchers, letting them
say what they mean and mean what they say.

-- Jackman (2009, p. xxviii)

Frequentist CI theory says nothing at all about the probability that
a particular, observed confidence interval contains the true value;
it is either 0 (if the interval does not contain the parameter) or 1 (if
the interval does contain the true value)…
…Only the Bayesian procedure…[yielding posterior] credible
intervals…allows the interpretation that there is a [X]% probability
that the [parameter] is located in the interval.

-- Morey et al. (2016, p. 105, pp. 113-114)
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Central Credibility Intervals

A % central Interval, CI, or equal-tailed interval is the interval of
values below and above which the % of posterior probability lies

where  is the quantile of order  of . Below, two examples of central
posterior intervals based on quantiles.

100(1 − α)
100α/2

Iα = [qα/2, q1−α/2]

qx x p(θ|y)
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Highest Posterior Density Intervals/Regions

Highest Posterior Density, HPD, region: set of values that contains the
% of posterior probability and for which the density is never

lower than the density outside it.

In formulas

where  is such that

CI HPD when posterior is bimodal (/multimodal) or asymmetric
CI HPD when posterior is unimodal and symmetric

100(1 − α)

{θ|π(θ|y) > cα}

cα

∫
θ|π(θ|y)>cα

π(θ|y) = 1 − α

≠
=
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Central posterior intervals vs HPD regions
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Posterior point estimates for the Uniform-Binomial model

The posterior mean represents a compromise between the prior mean, ,

and the observed proportion, , and in this compromise data weight
increases with their numerosity.

The posterior mode is the MLE: since the prior is flat, the maximum of the
posterior is where the maximum of the likelihood is.

The posterior variance is less readable, notice that it has  at the
denominator and  at the numerator.

E(θ) = 1
2

E(θ|y) =
y+1

n+2
1
2

y

n

Mode(θ|y) =
y

n

V (θ|y) =
(y+1)(n−y+1)

(n+2)2(n+3)

n3

n2
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Relation between prior and posterior

Note that

that is, the posterior variance is, on average, smaller than the prior
variance ( ).

In particular it is smaller the greater is the variation of  across .

Hint to conflicting priors.

This is a general result obtained if we express the mean and variance of a r.v.  in
terms of the conditional mean and variance given some related quantity .

,

E(θ) = E(E(θ|y))

V (θ) = E(V (θ|y)) + V (E(θ|y))

V (θ) > E(V (θ|y))

E(θ|y) y

u
v

E(u) = E(E(u|v))
V (u) = E(V (u|v)) + V (E(u|v))
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More on posterior summaries for Uniform-Binomial model

We may compute the average over 

(by using the result that the marginal distribution of  is uniform on .)

Remember that  and if , 

y

E(V (θ|y)) = E((y + 1)(n − y + 1))

= E(ny + n − y2 + 1)

= (n2/6 + 5n/6 + 1)

1

(n + 2)2(n + 3)

1

(n + 2)2(n + 3)
1

(n + 2)2(n + 3)

y (0,n)

V (θ) = 1
12

n = 1 E(V (θ|y)) = 1
18
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Prediction for a future Bernoulli trial

Consider a new observation , which behaves like the , that is

 is independent of  conditional on 

then the prior predictive distribution is

while the posterior predictive distribution is

Extreme cases

cf. maximum likelihood

~y yi

~y y1, … , yn θ
P(~y = 1|θ) = θ

P(~y = 1) = ∫
1

0

θp(θ)dθ = ∫
1

0

θdθ = E(θ) = 1/2

P(~y = 1|y) = ∫
1

0

θp(θ|y) ∗ dθ = E(θ|y) =
y + 1

n + 2

p(~y = 1|y = 0) = and p(~y = 1|y = n) =
1

n + 2

n + 1

n + 2
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Benefici dell'integrazione

Consider the number of correct responses in the set of responses to the J
equally difficult tasks.

Example: Perfect Response Patterns ( ,  )

An examinee correctly completes all  tasks
What should you believe about the examinee’s proclivity to complete
tasks?
Likelihood vs Bayes with minimal prior information

n = 10 y = 10

10
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Perfect Response Pattern: ML

The maximum likelihood estimate (MLE) is 1.0
This is a boundary: problems arise with standard errors, sampling
distribution, hypothesis testing
Do we really think this is a good estimate of an examinee’s proclivity to
correctly complete tasks? Do we really think the examinee will correctly
complete every single task?
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Perfect Response Pattern: Bayes with minimal prior information

Uniform prior: 
Beta posterior: 

U(0, 1)
Beta(11, 1)

E(θ|y) = 11/12
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Example: Perfect Response Patterns
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Note: Prior predictive distribution for 

With a uniform prior on , the distribution of a Bernoulli  prior to observing

the data is .

For a binomial 

y

θ ~y
P(~y = 1) = 1

2

y = (∑n

i=1 yi) ∼ Bin(n, θ)

p(y) = ∫
1

0

p(y|θ)p(θ)dθ

= ( )∫
1

0

θy(1 − θ)n−yp(θ)dθ

= ( ) =

=

n

y

n

y

Γ(y + 1)Γ(n − y + 1)

Γ(n + 2)
1

n + 1
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Justification of the uniform prior

=1 if

we want a uniform prior predictive distribution; in the binomial example
the Bayesian reasoning entails:

justification based on the observables  and 
justification of Bayes

we think that all values of  are equally probable; principle of insufficient
reason (Laplace), i.e. "If nothing is known about  then the uniform is
appropriate".

justification based on the unobservable 

p(θ)

p(y) = y = 0, 1, … ,n
1

1 + n

y n

θ
θ

θ
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Prior

We considered a uniform prior on , this has been the choice of both Bayes
and Laplace, who (loosely speaking) justified it

Bayes based on the fact that it implies a uniform predictive prior on 
Laplace based on the so called 'principle of insufficient reason' because he
had no information about 

Afterwards different approaches to the prior specification have been
considered, in what follows we discuss different choices and look at their
consequences, keeping in mind the following

a prior need only to reasonably summarize the knowledge we have on 
if this information is scarce, the effect of the prior should vanish as
enough data are collected
sometimes we have relevant prior information, and we want to use it,
sometimes we want to use a prior that is weakly informative, sometimes
we want to use a prior that is non-informative, or sometimes we want to
use a prior that is computationally convenient

θ

y

θ

θ
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Conjugate priors

A convenient type of prior is the kind that leads to a posterior in the same
family, this property is called conjugacy.

This is not available for any likelihood (just for exponential distributions,
plus some irregular cases),

Used for computational reasons, and still sometimes used for special models
to allow partial analytical marginalization

Definition

If  is the class of sampling distributions and  is the class of prior
distributions,  is a natural conjugate for  if  is the set of all densities
having the same functional form in  as the likelihood.

Conjugate priors are useful because

it is easy to obtain the results (analytic forms for the mean, variance, etc.)
they simplify the calculations
they are a good starting point
you can use mixtures of conjugate families

F P

P F P

θ
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Conjugate priors and exponential families

Probability distributions belonging to an exponential family have natural
conjugate prior distributions.

Definition

A family of distributions  is an exponential
family if all its members have the form

where , ,  and  are known
functions.

 is called the natural parameter of .

F = {p(y|θ) : θ ∈ Θ ⊂ R
d}

p(y|θ) = f(y)g(θ) expϕ(θ)Tu(y)

f : R → R g : R
d → R ϕ : R

d → R
d u : R

d → R
d

ϕ(θ) F
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Exponential family: likelihood and sufficient statistic

If a vector of observations  is observed and  are 
following a distribution from 

hence

where

is a sufficient statistic.

The quantity  is called a sufficient statistic for , because the likelihood for 
depends on the data  only through the value of .

y = (y1, … , yn) yi iid
F

p(y|θ) = (
n

∏
i=1

f(yi)) g(θ)n exp(ϕ(θ)T
n

∑
i=1

u(yi))

p(y|θ) ∝ g(θ)n exp(ϕ(θ)T t(y))

t(y) =
n

∑
i=1

u(yi)

t(y) θ θ
y t(y)
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Conjugate distribution for an exponential family

If the prior is of the form

then the posterior is

which has the same form as the prior.

It can be shown that only exponential families of distributions have natural
conjugate priors.

(That is because have a fixed number of sufficient statistics)

p(θ) ∝ gη(θ) exp(ϕ(θ)Tν)

p(θ|y) ∝ gn+η(θ) exp(ϕ(θ)T (t(y) + ν))
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Beta-Binomial model

The conjugate prior for the Binomial model is the Beta distribution:

If  then 

as is easily checked:

 e  can be interpreted as the number of prior successes
and prior failures, and  as the number of prior observations

Uniform prior when  and 

θ ∼ Beta(α,β) θ|y ∼ Beta(α + y,β + n − y)

p(θ|y) ∝ θy(1 − θ)n−yθα−1(1 − θ)β−1

= θy+α−1(1 − θ)n−y+β−1

(α − 1) (β − 1)
α + β − 2

α = 1 β = 1
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Example: placenta previa

Probability of a female birth with placenta previa (BDA3 p. 37)

In a study in Germany, 437 females out of 980 births with placenta previa
were observed.

Do we have evidence that the proportion of female births with placenta previa
is less than 0.485, which is the corresponding proportion in the general
population?

(empirical proportion is )
Likelihood: 
Prior: 
Posterior: , 

0.445
∝ θ437(1 − θ)980−437

U(θ|0, 1) = Beta(θ|1, 1)
∝ θ437(1 − θ)980−437 Beta(θ|438, 544)

P(θ < 0.485|y) = 0.9928
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Comparison of posterior distributions with different parameter values for
the Beta prior distribution: Beta priors centered in the population mean,
0.485, and with increasing strenght
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Still on Perfect Response Pattern example

Example:  - uniform priori vs Beta(2,2)n = 10, y = 10
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Esempio: Perfect Response Patterns

Bayes with an informative prior

Do you believe a priori that the candidate is very capable of successfully
completing these tasks?
What should you believe about the candidate's ability to complete the
tasks?
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Esempio: Perfect Response Patterns
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Esempio: Perfect Response Patterns
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Beta Binomial model: Posterior mean

Let us synthesize the posterior distribution using the expectation

The posterior mean is a weighted average of the prior expectation and the ML
estimate, where

ML estimate prevails if  is large;
ML estimate prevails if  and  are small:

the variance of the prior distribution is large
, the equivalent number of observation of the prior

distribution, is small.
if , 

E(θ|y) = ∫ θπ(θ|y)d(θ) =

= +

= E(θ)


prior mean

+

MLE

α + y

α + β + n

α + β

α + β + n

α

α + β

n

α + β + n

y

n

α + β

α + β + n

n

α + β + n

y

n

n
α β

α + β(−2)

n → ∞ E[θ|y] → y/n
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Beta Binomial model: Posterior variance

The posterior variance is

decreases as  increases
if , 
As  and  gets big

V (θ|y) = =
(α + y)(β + n − y)

(α + β + n)2(α + β + n + 1)

E(θ|y)(1 − E(θ|y))

α + β + n + 1

n
n → ∞ Var[θ|y] → 0
y n
E(θ|y) ≈ y/n
V (θ|y) ≈ (1 − )1

n

y

n

y

n
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Distribuzioni a posteriori quando la dimensione compionaria 

All'aumentare della dimensione del campione, la distribuzione a posteriori
diventa sempre più simile alla verosimiglianza [di solito]

→ ∞

p(θ|y) = Beta(θ|α + y,β + n − y)

n → ∞

p(θ|y) ∝ p(y|θ)p(θ)⟹ p(θ|y) ∝ p(y|θ)
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Esempio ( ,  )

Osserviamo il numero di successi nelle  prove

Ad esempio, 7 risposte corrette su 10 compiti
Iniziamo con una a priori uniforme  (come dire: 0 successi a
priori e 0 fallimenti a priori) e via via costruiamo a priori più informative
Calcoliamo la a posteriori

n = 10 y = 7

n

Beta(1, 1)
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Esempio ( ,  )

A priori uniforme

n = 10 y = 7
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Effetti dell'informazione nella a priori
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Effetti dell'informazione nella a priori
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Effetti dell'informazione nei dati

Mantenendo lo stesso tasso di successo nel campione (cioè,  è costante),
all'aumentare di ,  e  diminuiscono di importanza e i dati / la
verosimiglianza dominano l'a posteriori.

y/n
n α β
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Different priors  different posteriors

uniform, centered at 0.5, 0-1, rightly asymmetric

⇒
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Prior effect as  increases

The effect of the prior, however, tend to disappear as enough sample
information is entered.

In the following we observe the effect on the posterior of two distinct priors
on samples of , always with 

n

n = 5, 20, 50, 200 y/n = 0.8
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Prior effect as  increases

We can see things from another point of view and consider different priors
with the same sample.

We observe a sample with  and , the prior mean is 0.25, 
is 2, 20, 50, 200

α + β

n = 100 y = 50 α + β
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Posterior mean as a function of sample size

Posterior mean as  increases for different priorsn
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Posterior mean: conflicting priors

Posterior mean as  increases for different priorsn
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Posterior mean: all together

Posterior mean as  increases for different priorsn
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Posterior variance as a function of sample size

Posterior variance as  increases for different priorsn
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## sd(MLE) with n=1:3,10,50,100,350  0.43 0.31 0.25 0.14 0.06 0.04 0.02 
## prior sd: 0.289 0.109 0.035

## post sd with n=1:3,10,50,100,350  0.25 0.22 0.19 0.13 0.06 0.04 0.02 
## post sd with n=1:3,10,50,100,350  0.11 0.1 0.1 0.09 0.06 0.04 0.02 
## post sd with n=1:3,10,50,100,350  0.04 0.04 0.04 0.03 0.03 0.03 0.02
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Posterior variance: conflicting priors

Posterior variance as  increases for different priorsn
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## sd(MLE), n=1:3,10,50,100,350  0.433 0.306 0.25 0.137 0.061 0.043 0.023 
## prior sd: 0.173 0.065 0.021

## post sd, n=1:3,10,50,100,350  0.233 0.221 0.204 0.133 0.061 0.043 0.023 
## post sd, n=1:3,10,50,100,350  0.072 0.076 0.079 0.084 0.059 0.044 0.023 
## post sd, n=1:3,10,50,100,350  0.021 0.022 0.022 0.023 0.027 0.027 0.021
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## sd(MLE), n=1:3,10,50,100,350  0.3 0.212 0.173 0.095 0.042 0.03 0.016

## prior sd: 0.17 0.07 0.02

## post sd, n=1:3,10,50,100,350  0.241 0.224 0.201 0.117 0.046 0.032 0.016 
## post sd, n=1:3,10,50,100,350  0.074 0.079 0.082 0.087 0.056 0.038 0.018 
## post sd, n=1:3,10,50,100,350  0.021 0.022 0.022 0.024 0.028 0.028 0.02168 / 78
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A priori non-informative, a priori proprie e improprie

Vaghe, piatte, diffuse o noninformative
tendono a "to let the data speak for themselves"
tipicamente si definiscono noninformative distribuzioni che sono flat
sopra l'intero asse reale (e.g., ). A priori noninformative comuni
includono distribuzioni uniformi larghe (e.g.  o

 per parametri solo positivi) o distribuzioni normali
diffuse (e.g. )
flat non è sempre vero che sia non-informativa

Assigning flat prior distributions to transformed parameters
often yields highly skewed, strongly informative priors for the
parameter in the original scale.

flat può essere una scelta stupida
A more accurate definition of noninformative priors would be
‘distributions that possess a range of uncertainty larger than any
plausible parameter value’

rendendo la a priori flat in qualche parte si può renderla non-flat in
qualche altra parte

a priori proprie hanno 
la densità delle a priori improprie non ha un integrale finito

la a posteriori può ancora talvolta essere proria

∝ 1
U(−1000, 1000)

U(0, 1000)
N(0, 10000)

∫ p(θ) = 1
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A priori debolmente informative

Le a priori debolmente informative producono un comportamento delle a
posteriori migliore dal pdv computazionale

abbastanza spesso c'è almeno una certa conoscenza della scala
utile anche se si hanno informazioni dalle osservazioni precedenti,
ma non siamo certi di quanto queste informazioni siano applicabili
all'incertezza del nuovo caso

Costruzione

Inizia con una qualche versione di distribuzione a priori non
informativa e quindi aggiungi informazioni sufficienti a rendere le
inferenze "ragionevoli".
Inizia con una a priori forte e molto informativa e ampliala per
tenere conto dell'incertezza nelle proprie convinzioni a priori e
nell'applicabilità di qualsiasi distribuzione a priori basata sulla storia
passata a nuovi dati.

Raccomandazioni sulla scelta preliminare del team di Stan
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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Esempio di a priori informativa

La percentuale di nascite femminil è segnatamente stabile intorno a
48.5% , raramente varia di più di 0.5% da questo tasso
C'è uno studio sulla percentuale di nascite di femmine tra genitori nelle
categorie di attrattività 1–5 (valutate da intervistatori in un sondaggio
faccia a faccia)
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Esempio di a priori informativa
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Stima della distribuzione a posteriori via simulazione

Soluzioni analitiche (fare calcoli matematici)

Facilitate dalle a priori coniugate
Per ,   

Not feasible in more complex models

Quando non possiamo ottenere analiticamente l'a posteriori, si rende
necessario stimarla o approssimarla in qualche modo

Si può approssimarla o stimarla
Si vuole un approccio flessibile e generale alla stima delle distribuzioni

Realizzato tramite simulazione
Un po' adesso, di più avanti

x ∼ Binom(θ,n) θ ∼ Beta → θ|x ∼ Beta
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Stima basata sulla simulazione

Si costruisce un algoritmo di campionamento per simulare o estrarre dalla a
posteriori. Si campiona molte di queste estrazioni, che servono ad
approssimare empiricamente la distribuzione a posteriori, e può essere
utilizzato per approssimare empiricamente le statistiche riassuntive.

Principio di Monte Carlo:

Anything we want to know about a random variable  can be
learned by sampling many times from , the density of .

-- Jackman (2009, p. 133)

θ
f(θ) θ
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Simulazione dell'a posteriori nel modello Beta-Binomiale

Si costruisce un algoritmo di campionamento per simulare o estrarre dalla a
posteriori.
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Modello Beta-Binomiale: densità

Si colleziona molte di queste estrazioni, che servono ad approssimare
empiricamente la distribuzione a posteriori
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Modello Beta-Binomiale: statistiche riassuntive

ed anche ad approssimare empiricamentele statistiche riassuntive.
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