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Binomial model: a one-parameter model

We start to illustrate Bayesian inference in the context of statistical models
where only a single scalar parameter is to be estimated; that is, the estimand 6
is onedimensional.

We start with the Binomial model where the aim is estimating a probability
from binomial data, i.e., the results of a sequence of ‘Bernoulli trials’.

Although a very simple model, it has relevant applications.
It is also used as a building block in more complex models.
Also, it was dealt with by many of the first scholars working in probability.

In fact, it was the motivating example to develop Bayesian statistics both for T.
Bayes and for Laplace. The former considered it in an abstract context, the
latter had the aim of estimating the probability of a female birth.
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Binomial data

We observe the results of a sequence of ‘Bernoulli trials’ (trials or draws from
a large population), i.e., data y1, - . . , Y, each of which is either 0 or 1 (coding
'failure’ and 'success' labels, respectively).

Let 6 be the probability of success in each trial. If we consider the trials
exchangeable, that is equivalent to say that, conditional on 6, the y1, ..., Yy,
are 71d, i.e.,

- independent: if i # j, P(y; = 1|ly; = 1,0) = P(y; = 1|0)
- identically distributed: P(y; = 1|6) = 0 Vi.
so that, e.g., a sequence 1,1,0,1,0,0, ... has probability #9(1 — 8)6(1 — 6)(1 — 0) ...

we are saying that we disregard the order and the data can be summarized
by the total number of 1 (successes), which we denote by y.

If n is the # of trials, the sampling model for y|@ is then a binomial model

n
Y

pule) = (T)ora - oy

where on the left side we suppress the dependence on 1 because it is regarded
as part of the experimental design that is considered fixed(; all the 6/78
probabilities discussed for this problem are assumed to be conditional on n).



Binomial model (y/|6): @ known

e Observational model(/sampling distribution/statistical model) (discrete

function of y)
n _
pule) = (7)o o
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Binomial model as likelihood: & unknown

Likelihood (continuous function of 6)

n
Y

pule) = (7)o - o

E.g., consider y = 6 and n = 10

Likelihood given y=6, n=10
0.25

0.20

o
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o
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0.05

0.00

Likelihood (probability of y=6 given 6)

00 01 02 03 04 05 06 07 08 09 1.0
0

p(y = 6|n = 10,0): 0.00 0.00 0.01 0.04 0.11 0.21 0.25 0.20 0.09 0.01 0.00
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Binomial model as likelihood: & unknown

Likelihood (continuous function of 6)

n
Y

pule) = (7)o - o

E.g., consider y = 6 and n = 10

Likelihood given y=6, n=10
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o
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o

0.05

0.00

00 01 02 03 04 05 06 07 08 09 1.0
0

integrate(function(#) dbinom(6, 10, #), 0, 1) ~0.09# 1

Likelihood (probability of y=6 given 6)
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Binomial model with uniform prior

The posterior (continous function of #) by the Bayes rule

p(y|0)p(0)
p(y)

p(Oly) =

where p(y) = [ p(y|0)p(0)do

Let's start with a uniform prior

p(d) =1, with0< 9 <1

Hence
p(oly) = 290 _ ()6 (1 — o)
_ Ly gyps
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Binomial model with uniform prior
 Z (costante dato y) & il termine di normalizzazione

MNy+ 1)'(n—y+1)
I'(n+2)

1
7= / (1 — )" Vdh —
0

e Il termine di normalizzazione ha la forma della funzione Beta

o quando integrato su (0, 1) il risultato puo essere presentato con
Funzioni gamma

o con numeri interi I'(n) = (n — 1)!

o se 1 numeri interi sono grandi anche questo calcolo e impegnativo e di
solito log I'(-) viene calcolato invece di I'(-)

 Valutiamolo cony = 6,n = 10

y<-63;n<-10; integrate(function(theta) theta?*yx(1-theta)”*(n-y),
0, 1) ~0.0004329

gamma (y+1)*gamma(n-y+1) /gamma(n+2) =~ 0.0004329
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Binomial model with uniform prior

The posterior

I'(n+2)
Fy+1)I'(n—y+1)

p(fly) = /(1 —0)"",

is the Beta distribution with parameters y + 1 and n — y + 1, and we can also
write

Oy ~ Beta(y +1,n —y+1)
E.g., consider y = 6 and n = 10

p( 6 | y=6, n=10, M=binom + uniform prior)

0.00 0.25 0.50 0.75 1.00
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Conditioning to the model

A volte il condizionamento al modello M viene mostrato esplicitamente

La a posteriori con la regola di Bayes (funzione di 6, continua)

s, ) - POADD(OAD

dove p(y|M) = [ p(yl0, M)p(6]M)do

« rende piu chiaro che la verosimiglianza e la a priori fanno entrambe
parte del modello

« rende piu chiaro che non esiste una probabilita assoluta per p(y), ma essa
dipende dal modello M

 in caso di due modelli, possiamo valutare le probabilita marginali

p(y|Mh) e p(y|Mz)
« di solito é sottintesa per rendere la notazione piu concisa
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Posterior densities for binomial parameter 6

1.05 :
prior (n=0, y=0) n=10, y=6
3.0
1.03
2.0
1.00
0.98 10
0.95 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0 0
10.0 | n=100, y=60 30.0 n=1000, y=600
7.5
20.0
5.0
55 10.0 \
0.0 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0 )

Posterior density for binomial parameter 8, based on uniform prior
distribution and y successes out of n trials. Curves displayed for several
values of n and y.
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Still on Bayes' Thorem: Impact of More Evidence

Incorporating Evidence

e Reasoning under uncertainty requires a mechanism for incorporating
evidence
« Bayes’ theorem as an updating mechanism
o From prior to posterior
e Properly synthesizes information in the data to revise the probability
distribution for the unknown parameter

1. Impact of More Evidence
The more data we have, the more the posterior reflects that

o As sample size increases, the posterior becomes increasing similar to
the likelihood (usually)

2. Accumulation of Evidence
As new data arrives, proper synthesis, updating of the distribution

o Today’s posterior is tomorrow’s prior
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Laplace example, revisited

Laplace observed 241 945 females and 251 527 males, that is if

0 = probability of a female birth

he had

n = 241945 4 251 527 = 493 472;

y = 241945

hence the posterior distribution for 6 is a Beta(241 946, 251 528) and

P(6 > 0.5]y) ~ 1.15 x 10~*?

We ought to appreciate the fact that to get to this number Laplace had to develop

appropriate approximations, it is not immediate even today (R may give 0 depending

on how the problem is formulated due to machine precision).
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Modello binomiale: calcolo

e R

(0]

density dbeta

CDF pbeta

quantile gbeta
random number rbeta

o

(o}

(¢]

« Beta CDF non banale calcolarla

e E.g., pbetain R usa una frazione continua con fattori di ponderazione e
espansione asintotica

e Bayes was able to solve integral given small n and y. In case of large n
and y, Laplace developed a Gaussian approximation (Laplace
approximation) of the posterior. In this specific case, R pbeta gives the
same results as Laplace’s result with at least 3 digit accuracy.
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Distribuzioni Beta
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Distribuzioni Beta

Distribuzione su [0, 1]
f|c, B ~ Beta(a, B) o< §271(1 — )51
La costante di normalizzazione e il reciproco di

Z = /O g1(1 — 6)1dp — ?((Z)i(g))

La densita é finita se o, 8 > 1, e l'integrale é finito se se o, 8 > 0.

o La densita ha un asintotoin0sea < 1,in 1se 8 < 1.

E(Beta(a, B)) = O%ﬂ

Var(Beta(a, 8)) = (a+ﬁ)2(z£+ﬂ+1)

Moda(Beta(a, 5)) = af_g; sea,B>1,=1sea>1,<1,=0se

a<1,68>1;haduemodesea, 5 <1

a=E@)(a+pB),8=(1-E@0)(a+ph)
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Inferenza con dati binomiali

Approccio classico/frequentista

Dato 0, quali sono le probabilita dei vari possibili risultati per la v.a. y?

Legge (debole) dei grandi numeri (Weak Law of Large Numbers) (teorema di
Bernoulli)

y ~ Bin(n, )
: Y B
lzmn_mP(— —0 > e|9) =0
n
« MLE:0 = ¥
Approccio Bayesiano

Dato vy, quali sono le probabilita dei vari possibili risultati per la v.a. 6?

* [0]y]

e as well as summaries of the posterior distribution
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Summarizing posterior distribution

In a Bayesian analysis, the “solution/answer” is the posterior distribution on 6.
Though, it is relevant to distill down the information it contains. This can be
done in the usual ways in which we summarize a probability distribution
(similar to the frequentist approach), so by

e point summaries of the
o central tendency
= the mean
= the median
= the mode
o variability
= variance (and standard deviation)
= range, interquartile range
« intervals or regions as reflection of uncertainty
o central posterior interval
o highest posterior density interval / region
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Point Summaries/Estimates of Central Tendency

* Mean, E(0|y), pg),

o Expected a posteriori (EAP) estimator
o Smallest root mean square error (RMSE) in population defined by
p(0)
e Median, 50th %ile
o Often preferred in skewed distributions

+ Mode, 6 := p(6y) = max p(6ly)
o Maximum a posteriori (MAP) estimator

o Somewhat akin to ML, especially with diffuse priors
o Less used in empirically based estimation (e.g., MCMC)

Point Summaries/Estimates of Variability

e Range, interquartile range

« Posterior variance, V (8|y), o2

Oy’

 Interpretation as the variability of the parameter

e Thus while posterior standard deviations may be numerically similar to
frequentist standard errors, they have critically different
meanings/interpretations

Posterior standard deviation, Tg|y
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Posterior intervals

Another common way to summarize the posterior conveying uncertainty is to
use intervals of a given posterior probability, say 100(1 — «)%, this is any

interval |07, 0] such that
P(HL S@SHU’y) =1—«
This is also called a credibility interval (“Bayesian confidence interval®).

It is somehow the analogue of a confidence interval in classical statistics, but
notice the different interpretation, here we say that the unknown parameter
lies in the interval with the given probability (rather than saying that the
interval is random ...).
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(Remind) Interpreting Posterior Credibility Intervals

Posterior credibility intervals, expression of uncertainty, are interpreted as
direct probability statements for the unknown parameter.

« The interpretation of the interval is such that probability is ascribed to the
parameter

e Thus while posterior credibility intervals are often numerically similar to
frequentist confidence intervals, they have critically different
meanings/interpretations

Adopting an explicitly Bayesian approach would resolve a
recurring source of confusion for these researchers, letting them
say what they mean and mean what they say.

-- Jackman (2009, p. xxviii)

Frequentist CI theory says nothing at all about the probability that
a particular, observed confidence interval contains the true value;
it is either O (if the interval does not contain the parameter) or 1 (if
the interval does contain the true value)...

...Only the Bayesian procedure...[yielding posterior] credible
intervals...allows the interpretation that there is a [X]% probability

that the [parameter] is located in the interval.
-- Morey et al. (2016, p. 105, pp. 113-114)
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Central Credibility Intervals

A 100(1 — )% central Interval, CI, or equal-tailed interval is the interval of
values below and above which the 100 /2% of posterior probability lies

I, = [QQ/27Q1—a/2]

where g, is the quantile of order x of p(@|y). Below, two examples of central
posterior intervals based on quantiles.
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Highest Posterior Density Intervals/Regions

Highest Posterior Density, HPD, region: set of values that contains the
100(1 — a)% of posterior probability and for which the density is never

lower than the density outside it.

In formulas

{0|7(6ly) > ca}

where ¢, is such that

/ r(0y) =1 - a
0| (6|y)>cq

CI #HPD when posterior is bimodal (/multimodal) or asymmetric
CI =HPD when posterior is unimodal and symmetric
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Central posterior intervals vs HPD regions

1-0 1_
GL elu gL elU
1= 1-0o
GL BIU gL elU
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Posterior point estimates for the Uniform-Binomial model

1
« E(Oly) = L5

The posterior mean represents a compromise between the prior mean, %,

and the observed proportion, %, and in this compromise data weight
increases with their numerosity.

« Mode(fly) = 2
The posterior mode is the MLE: since the prior is flat, the maximum of the
posterior is where the maximum of the likelihood is.

_ (y+1)(n—y+1)
» V(Oly) = (n+2)2(n+3)

The posterior variance is less readable, notice that it has n> at the
denominator and n? at the numerator.
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Relation between prior and posterior

Note that
« E(0) = E(E(0]y))
- V(0) = E(V(0ly) + V(E(0]y))

that is, the posterior variance is, on average, smaller than the prior
variance (V(6) > E(V(0|y))).

In particular it is smaller the greater is the variation of E(6|y) across .

Hint to conflicting priors.

This is a general result obtained if we express the mean and variance of a r.v. v in
terms of the conditional mean and variance given some related quantity v.

* E(u) = E(E(ulv)),
o V(u) = E(V(ulv)) + V(E(u|v))
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More on posterior summaries for Uniform-Binomial model

We may compute the average over y

B(V(OW) = gy g7 B+ Dn =+ 1)
1 2
= i 2imig P tn-y )
1 2
= oy /6 n/6 )

(by using the result that the marginal distribution of y is uniform on (0, 72).)

Remember that V(0) = 1—12 andifn =1, E(V(0ly)) = %
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Prediction for a future Bernoulli trial

Consider a new observation g, which behaves like the y;, that is

¢ isindependent of ¥y, ..., y, conditional on 6
+ P(5=1[0) =0

then the prior predictive distribution is

Pj=1)= /01 Op(0)d6 = /01 0d0 = E(0) = 1/2

while the posterior predictive distribution is

1
- y+1
P(g = 1ly) = Op(6 do = E(0|y) =
@ =1) = | o0(0l) = do = BOly) = L
Extreme cases
_ 1 _ n—+1
p(yzl\yzo):n_i_z and p(g=1lly=n)=

e cf. maximum likelihood
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Benefici dell'integrazione

Consider the number of correct responses in the set of responses to the ]
equally difficult tasks.

Example: Perfect Response Patterns (n = 10,y = 10)

« An examinee correctly completes all 10 tasks

« What should you believe about the examinee’s proclivity to complete
tasks?

« Likelihood vs Bayes with minimal prior information
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Perfect Response Pattern: ML

Likelihood given y=10, n=10

o

& 1.00

= |
[@)] |
o |
T 0.75 |
by |
° I
£ 0.50 |
-8 I
o |
025 i
= |
2 |
2 0.00 MLE
(0]

= 00 01 02 03 04 05 06 07 08 09 10

0

e The maximum likelihood estimate (MLE) is 1.0

« This is a boundary: problems arise with standard errors, sampling
distribution, hypothesis testing

e Do we really think this is a good estimate of an examinee’s proclivity to
correctly complete tasks? Do we really think the examinee will correctly
complete every single task?
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Perfect Response Pattern: Bayes with minimal prior information

e Uniform prior: U(0,1)
« Beta posterior: Beta(11,1)

Posterior of 6 of Unif-Binom model with y=10, n=10

0.00 0.25 0.50 0.75 1.00

. E(0ly) = 11/12
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Example: Perfect Response Patterns

Prior

_| Beta(l.1) Prior mean = .5
N Prior mode = NA
] Prior sd = .29
e

Likelihood
2y = 107710 Max. likelithood = 1
e w, s e

Posterior
-] Beta(lL.1) Posterior mean = .92
° Posterior mode = 1
- Posterior sd = .08
T 2 e, 48 a o
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Note: Prior predictive distribution for y

With a uniform prior on 6, the distribution of a Bernoulli ¢ prior to observing
the datais P(§ = 1) =

For a binomial y = (3>, 4;) ~ Bin(n, 0)

p<y>=/ (4/6)p(6)d6

()
(1) (y+ ) —y+1) _

"Yp(0)do

I'(n+ 2)

n+1
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Justification of the uniform prior
p(0)=1if

e we want a uniform prior predictive distribution; in the binomial example
the Bayesian reasoning entails:

B 1
- 14n

p(y) y=20,1,...,n

o justification based on the observables y and n
o justification of Bayes

« we think that all values of 8 are equally probable; principle of insufficient
reason (Laplace), i.e. "If nothing is known about 6 then the uniform is
appropriate".

o justification based on the unobservable 6
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Prior

We considered a uniform prior on 6, this has been the choice of both Bayes
and Laplace, who (loosely speaking) justified it

« Bayes based on the fact that it implies a uniform predictive prior on y
« Laplace based on the so called "principle of insufficient reason' because he
had no information about 6

Afterwards different approaches to the prior specification have been
considered, in what follows we discuss different choices and look at their
consequences, keeping in mind the following

o a prior need only to reasonably summarize the knowledge we have on 6

o if this information is scarce, the effect of the prior should vanish as
enough data are collected

e sometimes we have relevant prior information, and we want to use it,
sometimes we want to use a prior that is weakly informative, sometimes
we want to use a prior that is non-informative, or sometimes we want to
use a prior that is computationally convenient
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Conjugate priors
A convenient type of prior is the kind that leads to a posterior in the same
family, this property is called conjugacy.

 This is not available for any likelihood (just for exponential distributions,
plus some irregular cases),

Used for computational reasons, and still sometimes used for special models
to allow partial analytical marginalization

Definition

If F is the class of sampling distributions and P is the class of prior
distributions, P is a natural conjugate for J if P is the set of all densities
having the same functional form in € as the likelihood.

Conjugate priors are useful because

« itis easy to obtain the results (analytic forms for the mean, variance, etc.)
 they simplify the calculations

e they are a good starting point

e you can use mixtures of conjugate families
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Conjugate priors and exponential families

Probability distributions belonging to an exponential family have natural
conjugate prior distributions.

Definition

A family of distributions F = {p(y|6) : § € ® C R} is an exponential
family if all its members have the form

p(yl6) = f(y)g(8) exp?®

where f: R 5 R, g:R? 5 R, ¢: R* —» R? and u : R? — R are known
functions.

¢(0) is called the natural parameter of F.
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Exponential family: likelihood and sufficient statistic

If a vector of observations y = (y1,- .., Y,) is observed and y; are iid
following a distribution from F

p(yl0) = (H f(yi ) " exp <¢(9)T En: U(y¢)>
hence

p(y|60) o g(6)" exp(4(6)"¢(y))

where

= Zu(yz)

is a sufficient statistic.

The quantity ¢(y) is called a sufficient statistic for 6, because the likelihood for 8
depends on the data y only through the value of ¢(y).
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Conjugate distribution for an exponential family
If the prior is of the form
p(8) o g"(6) exp(¢(6)"v)
then the posterior is
p(8ly) o< g""(6) exp(8(6)” (¢(y) + v))
which has the same form as the prior.

It can be shown that only exponential families of distributions have natural
conjugate priors.

(That is because have a fixed number of sufficient statistics)
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Beta-Binomial model

The conjugate prior for the Binomial model is the Beta distribution:
If 0 ~ Beta(a, 8) then 8|y ~ Beta(a +y,8+n — y)
as is easily checked:

p(Oly) o< 6Y(1 — 6)" 61 (1 — 6)7!
— ey-l-a—l(l . e)n—y+ﬂ—l

e (¢ —1)e (B —1) can be interpreted as the number of prior successes
and prior failures, and o + 3 — 2 as the number of prior observations

e Uniform priorwhena =1land =1
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Example: placenta previa

Probability of a female birth with placenta previa (BDA3 p. 37)

In a study in Germany, 437 females out of 980 births with placenta previa
were observed.

Do we have evidence that the proportion of female births with placenta previa
is less than 0.485, which is the corresponding proportion in the general
population?

e (empirical proportion is 0.445)

Likelihood: oc 6437(1 — 9)980-437

Prior: U(6]0,1) = Beta(0|1,1)

Posterior: oc 9437 (1 — 6)%97437) Beta(0|438, 544)
P(6 < 0.485|y) = 0.9928

Uniform prior -> Posterior is Beta(438,544)

0.40 0.45 " 050
0
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« Comparison of posterior distributions with different parameter values for
the Beta prior distribution: Beta priors centered in the population mean,
0.485, and with increasing strenght

alpha/(alpha+beta)=0.485, alpha+beta=2

alpha/(alpha+beta)=0.485, alpha+beta=20

T B T
0.40 0.45 0.50

— Posterior with unif prior -- Prior — Posterior

45/78



Still on Perfect Response Pattern example

Example: n = 10,y = 10 - uniform priori vs Beta(2,2)

p( 6 | y=10, n=10, M=Uniform-Binomial)

e

0.00 0.25 0.50
0

p( 6 | y=10, n=10, M=Beta(2,2)-Binomial)

N w A~ O

0.00 0.25
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Esempio: Perfect Response Patterns

Bayes with an informative prior

e Do you believe a priori that the candidate is very capable of successfully

completing these tasks?
What should you believe about the candidate's ability to complete the
tasks?

Diftuse Prior: Beta(1,1) Informed Prior: Beta(9,3)
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Esempio: Perfect Response Patterns

Prior mean = .75

Prior mode = .80
Prior sd = .12

Max. likelithood = 1

Posterior mean = .86

Posterior mode = .90
Posterior sd = .07

Prior

-] Beta(9.3)

o+ —

o
e
-
o

0.0 0.2 0.4 g 06 0.8 1.0
Likelihood
L1v=10:J=10
© -
< |
(=1
<
< T T T T T T
0.0 0.2 0.4 06 0.8 1.0
g
Posterior
r_u -

~4{ Beta(19,3)

o
1

o —

= -

0.8 0.8 1.0
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Esempio: Perfect Response Patterns

Beta(1,1)

Prior

=1 Beta(l.1)

T T T T T T
0.0 02 0.4 g 0.6 0.8 1.0

Likelihood

1y =10:J=10

0.0 0.2 0.4 P 0.6 0.8 1.0

Posterior

21 Beta(11.,1)

0.0 0.2 0.4 0.6 0.8 1.0

Beta(9,3)

Prior
o
- Beta(9.3)
o
-
o /\
.
T T T T T T
0.0 0.2 0.4 g 0.6 0.5 1.0
Likelihood
-1y=10.J=10
24
= |
=1
=
< T T T T T T
0.0 0.2 04 P D& 0.8 1.0
Posterior
L= ] -
-4{ Beta(19,3)
—
3 -
=
T T T T T T
0.0 0.2 0.4 8 0.6 0.5 1.0
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Beta Binomial model: Posterior mean

Let us synthesize the posterior distribution using the expectation

B6ly) — [ ox0w)ale) = ¥

a—+ o N n Yy
a+pf+na+pf a+pP+nn
a+p n Y

= E@6) + =
a+pB+mn \() a—l—ﬂ—l—n\fn;

Prior mean MLE

The posterior mean is a weighted average of the prior expectation and the ML
estimate, where

« ML estimate prevails if n is large;
« ML estimate prevails if o and 3 are small:
o the variance of the prior distribution is large
o a + B(—2), the equivalent number of observation of the prior
distribution, is small.
e if n — oo, E[f|ly] — y/n
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Beta Binomial model: Posterior variance

The posterior variance is

V(6ly) = (a+y)(B+n—y) ~ E(8ly)(1 - E(8]y))
YT @+ BtnplatBin+l) a+frntl

e decreases as n increases
e ifn — oo, Var[f|y] — 0
e Asyand n gets big

o E(0ly) =~ y/n

o Vly) ~ ~2(1-2)

nn n
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Distribuzioni a posteriori quando la dimensione compionaria — 00
p(0ly) = Beta(b|a +y, 8+ n —y)

n— oo

p(0ly) o« p(y|0)p(0) = p(0ly) o p(y|0)

All'aumentare della dimensione del campione, la distribuzione a posteriori
diventa sempre piu simile alla verosimiglianza [di solito]
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Esempio (n =10,y =17)
Osserviamo il numero di successi nelle n prove

« Ad esempio, 7 risposte corrette su 10 compiti
o Iniziamo con una a priori uniforme Beta(1,1) (come dire: 0 successi a

priori e 0 fallimenti a priori) e via via costruiamo a priori piu informative
» Calcoliamo la a posteriori

53/78



Esempio (n =10,y =17)
A priori uniforme

Beta(1,1) Prior

Prior Mean
: : . : : , =1/2=.50

0.0 0.2 0.4 0.6 0.8 1.0

Likelihood (y = 7: J= 10)

Mean of the Data

=7/10=.70
DfD DfZ Df4 9 D!G D!8 1!0
Posterior Mean
Beta(8.4) Posterior = 8/12 = 67
Posterior as
synthesis of prior
DfD DfZ Df4 6 D!G D!8 1!0 a'Ild likelillOOd
B
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Effetti dell'informazione nella a priori

Beta(1,1)

Prior
& _
| Beta(l.1)
= |
o~
= |
= |
< T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
g
Likelihood
§__ y=T.J=10
(=]
?__
S._
=]
é_ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
g
- Posterior
(351 P "
| Beta(8.4)
= |
o4
= _|
= |
= T T T T T T
0.0 0.2 0.4 0e 0.8 1.0
a

Beta(6,6)

Prior
_ | Beta(6.6)
o
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
g
Likelihood
§y="71J=10
[=]
E_
S_
[=]
g_ T T T T T T
0.0 0.2 04 0.6 0.8 1.0
g
) Posterior
Beta(13.9)
= -

0.8
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Effetti dell'informazione nella a priori

Beta(10,2)

Prior

Beta(10.2)

0.0 02

Likelihood

0.0000 0.0010 0.0020
|

Posterior

Beta(17.5)

Beta(2,10)

Prior
i Beta(2.10)
™ -
od -
= -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
g
Likelihood
g y=7.7=10
=
E_
E._
(=]
g_ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
g
Posterior
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Effetti dell'informazione nei dati

Mantenendo lo stesso tasso di successo nel campione (cioé, y / T e costante),
all'aumentare di n, a e 8 diminuiscono di importanza eidati/la
verosimiglianza dominano l'a posteriori.

Prior: Beta(2,10)
/ out of 10 14 out of 20 70 out of 100

i Beta(2.10) Prior ~ Beta(2,10) Prior Beta(2.10) Prior
P FA .-""-_"'.

P £y iy
% % F N

o : H
. : " H S

. : - : .

0.0 022 04 _06 o0& 10 oo o2 01460'_6 o 10 00 02 032 06 0

Likelihood (v = 7, J = 10) Likelihood (y = 14,J=20) = Likelihood (y = 70. J = 100)

o,
]"'
s
Il.
s
r
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h
I
n L
¥

- LY £ ~ r v
- LY - - ‘ 1Y
- - - - - *

oo o2 01480'.6 o's 1.0 oo o2 0.'490'.6 olg 1.0 o0lo o2 01460_'6 oz 1lo

Beta(9.13) Posterior Beta(16.16) Posterior Beta(72.40) Posterior
oo o2 o4 _oe o2 10 oo o2 o044 _ols o2 10 0o o2 oa_olée o 10
) ) )
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Different priors = different posteriors

uniform, centered at 0.5, 0-1, rightly asymmetric

- - priorBeta(1,1) --+- lik(y=4,n=5) —— posterior - - opriorBeta(3.,3) +++- lik(y=4,n=5) —— posterior
2.5 7 05
2.0 1 50 -
1.5 15
1.0 10 4
0.5 0.5
0.0 - | | | T T T 0.0 - ' ' ' ' ' !
00 02 04 06 08 1.0 00 02 04 06 08 1.0
prior Beta(0.5,05) «+-- lik(y=4,n=5) — posterior == priorBeta(2,4) ++++ lik(y=4,n=5) === posterior
2.5 2.5
2.0 2.0 1
1.5 1.5
1.0 1.0 -
0.5 0.5
0.0 - | | T | | | 0.0 -
0.0 0.2 0.4 0.6 0.8 1.0 0.0
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Prior effect as n increases

The effect of the prior, however, tend to disappear as enough sample
information is entered.

In the following we observe the effect on the posterior of two distinct priors
on samples of n = 5,20, 50, 200, always with y/n = 0.8
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Prior effect as o + (3 increases

We can see things from another point of view and consider different priors
with the same sample.

We observe a sample with n = 100 and y = 50, the prior mean is 0.25, o + 3
is 2, 20, 50, 200

5) e+ lik(y=50,n=100) ,15) +++ lik(y=50,n=100) 7.5) +++ lk(y=50,n=100) 150) +++ lik (y=50,n=100)

8 i . | i 10 - 15 -
' 8 ” \
67 6 - , . [} 104 N
4_1 . 61 ., : Nl
. 41 v a4 1} Al
2_‘\ X ; ! LI N B L I 51 i :
AN D AT T M
- ) .‘\ " ! ‘\ " 4 ‘_
D_l I I I I I D_l I I I I I D_l I I I I I D_l |-| I I I
00 04 08 00 04 08 00 04 08 00 04 08
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Posterior mean as a function of sample size

Posterior mean as n increases for different priors

y/n= 0.75

E(6ly,n)

— 0.75

— 0.90

0 500 1000 1500
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Posterior mean: conflicting priors

Posterior mean as n increases for different priors

y/n=0.75

E(B]y,n) — 0.75
o=0.2,=1.8 —
o=2,=18 —

a=20,=180 — — 0.10

0 500 1000 1500
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Posterior mean: all together

Posterior mean as n increases for different priors

y/n= 0.75

-~ 0.75

— 0.90

— 0.10
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Posterior variance as a function of sample size

Posterior variance as n increases for different priors

y/n= 0.75
sd(6]y,n)
a:B:’] —
] T T B
G=B=100 o — e
| I | | | | | |

0 50 100 150 200 250 300 350

0.4

0.3

0.2

0.1

0.0
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##
##

##
##
##

a=p=10 —

a=p=100 -

0 50 100 130

sd(MLE) with n=1:3,10,50,100,350
prior sd: 0.289 0.109 0.035

post sd with n=1:3,10,50,100,350
post sd with n=1:3,10,50,100,350
post sd with n=1:3,10,50,100,350

n

200

0.30

0.25

0.20

0.15

0.10

0.05

0.43 0.31 0.25 0.14 0.06 0.04 0.02

0.25 0.22 0.19 0.13 0.06 0.04 0.02

0.11 0.1 0.1 0.09 0.06 0.04 0.02

0.04 0.04 0.04 0.03 0.03 0.03 0.02
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Posterior variance:

conflicting priors

Posterior variance as n increases for different priors

y/n= 0.75

sd(0]y,n)

0=0.2,$=1.8 —

0=2,p=18 —

a=20,=180 —--

0 50 100 150 200 250 300 350
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##
##

##
##
##

a=0.2,=1.8 —
a=2,=18 —
a=20,=180 —
I I I
0 50 100
sd(MLE), n=1:3,10,50,100,350
prior sd: 0.173 0.065 0.021
post sd, n=1:3,10,50,100,350
post sd, n=1:3,10,50,100,350
post sd, n=1:3,10,50,100,350

y/n=0.75

0.25

0.20

0.15

0.10

0.05

0.433 0.306 0.25 0.137 0.061 0.043 0.023

0.233 0.221 0.204 0.133 0.061 0.043 0.023
0.072 0.076 0.079 0.084 0.059 0.044 0.023
0.021 0.022 0.022 0.023 0.027 0.027 0.021
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y/n=0.9

sd(0]y,n) 0.30
0=0.2.p=1.8 — 0.25
0.20
0.15
0.10
a=2,=18 —

0.05

a=20,8=180 -
— 0.00

sd(MLE), n=1:3,10,50,100,350 0.3 0.212 0.173 0.095 0.042 0.03 0.016
prior sd: 0.17 0.07 0.02

1:3,10,50,100,350 0.241 0.224 0.201 0.117 0.046 0.032 0.016
1:3,10,50,100,350 0.074 0.079 0.082 0.087 0.056 0.038 0.018
1:3,10,50,100,350 0.021 0.022 0.022 0.024 0.028 0.028 630218

post sd, n
post sd, n=
post sd, n



y/n=0.9

~ 0.15
— 0.10

0=2,$=18 —
- 0.05

0=20,3=180 —

0 50 100 150 200 250 300 350
n
## sd(MLE), n=1:3,10,50,100,350 0.3 0.212 0.173 0.095 0.042 0.03 0.016
## prior sd: 0.17 0.07 0.02

1:3,10,50,100,350 0.241 0.224 0.201 0.117 0.046 0.032 0.016
1:3,10,50,100,350 0.074 0.079 0.082 0.087 0.056 0.038 0.018
1:3,10,50,100,350 0.021 0.022 0.022 0.024 0.028 0.028 §90218

## post sd, n
## post sd, n=
## post sd, n



A priori non-informative, a priori proprie e improprie

« Vaghe, piatte, diffuse o noninformative

o tendono a "to let the data speak for themselves"

o tipicamente si definiscono noninformative distribuzioni che sono flat
sopra l'intero asse reale (e.g., < 1). A priori noninformative comuni
includono distribuzioni uniformi larghe (e.g. U(—1000,1000) o
U(0,1000) per parametri solo positivi) o distribuzioni normali
diffuse (e.g. N(0,10000))

o flat non e sempre vero che sia non-informativa

= Assigning flat prior distributions to transformed parameters
often yields highly skewed, strongly informative priors for the
parameter in the original scale.

o flat puo essere una scelta stupida

= A more accurate definition of noninformative priors would be
‘distributions that possess a range of uncertainty larger than any
plausible parameter value’

o rendendo la a priori flat in qualche parte si puo renderla non-flat in
qualche altra parte

« a priori proprie hanno [p(f) =1
 la densita delle a priori improprie non ha un integrale finito
o la a posteriori puo ancora talvolta essere proria
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A priori debolmente informative

 Le a priori debolmente informative producono un comportamento delle a
posteriori migliore dal pdv computazionale

o abbastanza spesso c'é almeno una certa conoscenza della scala

o utile anche se si hanno informazioni dalle osservazioni precedenti,
ma non siamo certi di quanto queste informazioni siano applicabili
all'incertezza del nuovo caso

e Costruzione

o Inizia con una qualche versione di distribuzione a priori non
informativa e quindi aggiungi informazioni sufficienti a rendere le
inferenze "ragionevoli".

o Inizia con una a priori forte e molto informativa e ampliala per
tenere conto dell'incertezza nelle proprie convinzioni a priori e
nell'applicabilita di qualsiasi distribuzione a priori basata sulla storia
passata a nuovi dati.

« Raccomandazioni sulla scelta preliminare del team di Stan
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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Esempio di a priori informativa

« La percentuale di nascite femminil e segnatamente stabile intorno a
48.5% , raramente varia di piu di 0.5% da questo tasso

e C'é¢ uno studio sulla percentuale di nascite di femmine tra genitori nelle
categorie di attrattivita 1-5 (valutate da intervistatori in un sondaggio
faccia a faccia)

Data on beauty and sex ratio Data and least-squares regression line

55%
55%

y=494+15x -
(Std e of slope-isT34)

Fercentage of gil babies
0
L ]

L]
Percentage of gid babies
50%

L]

L]

\

\

45%
45%

a1

-2 -1 0 1 2 -2 -1 i 1
Attractivenesas of parent Attractiveness of parent
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Esempio di a priori informativa

Least—squares regression line and

Posterior simulations under default prior terior uncertainty given default prior

10

35 40 45 50 L] Lii] -2 -1 0 1 2
Intercept. 3 Attractiveness of parent

Bayes estimated regression line and
poesterior uncertainty given informative prior

Posterior simulations under informative prior

10

i
=
o £ 3
&
35 40 45 50 55 &0 -2 -1 0 i 2
Intercept. 3 Attractiveness of parsnt
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Stima della distribuzione a posteriori via simulazione

Soluzioni analitiche (fare calcoli matematici)

 Facilitate dalle a priori coniugate
o Per x ~ Binom(60,n), 8 ~ Beta — 0|z ~ Beta
« Not feasible in more complex models

Quando non possiamo ottenere analiticamente 1'a posteriori, si rende
necessario stimarla o approssimarla in qualche modo

e Sipuo approssimarla o stimarla

« Sivuole un approccio flessibile e generale alla stima delle distribuzioni
o Realizzato tramite simulazione
o Un po' adesso, di piu avanti
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Stima basata sulla simulazione

Si costruisce un algoritmo di campionamento per simulare o estrarre dalla a
posteriori. Si campiona molte di queste estrazioni, che servono ad
approssimare empiricamente la distribuzione a posteriori, e puo essere
utilizzato per approssimare empiricamente le statistiche riassuntive.

Principio di Monte Carlo:

Anything we want to know about a random variable 6 can be
learned by sampling many times from f(6), the density of 6.

-- Jackman (2009, p. 133)
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Simulazione dell'a posteriori nel modello Beta-Binomiale

Si costruisce un algoritmo di campionamento per simulare o estrarre dalla a
posteriori.

Trace of theta Density of theta
R
— =
7] / \
@@ | o | f',( \
[ I \
= I II"|
o / Y
/ \
w i |
= 0 / \
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/ \
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< _ =] / )
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° / f K
o \
S - o | .-
T T T T T T T T T

0 2000 4000 6000 8000 10000 0.2 0.4 06 0.8 1.0

Iterations N=10000 Bandwidth=0.02186
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Modello Beta-Binomiale: densita

Si colleziona molte di queste estrazioni, che servono ad approssimare
empiricamente la distribuzione a posteriori

1.0

0.0

Empirical approximation ——;
from 10.000 simulated
values

Beta(8.4) Posterior
~a
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Modello Beta-Binomiale: statistiche riassuntive
ed anche ad approssimare empiricamentele statistiche riassuntive.

Iterations = 1:10000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each
variable, plus standard error of the mean:
Mean SD Naive SE Time-series SE

0.667688 0.130130 0.001301 0.001272

2. Quantiles for each wvariable:
2.5% 25% 50%

7 97.5%
0.3874 0.5815 0.6779 0.

71636 0.8925
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