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Il modello Binomiale
In  c'è un solo parametro di interesse (tipicamente,  si assume noto),
i.e. la probabilità  di un certo risultato in ognuna delle  prove considerate.

Stima Bayesiana di una probabilità da dati binomiali

BDA3: pag. 37, sez. 2.4, codice R placenta.r nelle note del Lab

interesse nella proporzione di nascite femminili nella cd condizione materna
"placenta previa"
i dati consistono in un precedente studio in Germania:  femmine su 
nascite "placenta previa"
con che evidenza i dati ci dicono che la proporzioe di nascite femminili
"placenta previa" è minore della proporzione di nascite femminili nella
popolazione generale pari a 0.485 ?

Bin(n, θ) n

θ n

437 980
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Analisi con una a priori uniforme

Il parametro 1-dimensionale  denoti la proporzione di nascite femminili "placenta
previa"

Assumiamo che  sia il modello che abbia
generato i dati
Specifichiamo la a priori per  essere una uniforme 
La a posteriori per  è, quindi, , i.e., è una

.

θ

Bin(θ, 980) ∝ θ437 (1 − θ)980−437

θ U [0, 1]
θ ∝ θ437 (1 − θ)980−437

Beta(437 + 1, 980 − 437 + 1)
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Analisi con a priori Beta

Poichè la verosimiglianza  è  , se la priori è della
stessa forma, e.g.,  è 

allora la posteriori sarà anche di questa forma. Infatti,  è 

La distribuzione a priori Beta è una famiglia coniugata per la verosimiglianza
binomiale.

p(y|θ) ≡ L(θ; y) ∝ θy (1 − θ)n−y

p(θ) ∝

θα−1 (1 − θ)β−1

p(θ|y) ∝

θy+α−1 (1 − θ)n−y+β−1 = Beta(α + y, β + n − y)
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Quale compromesso la a posteriori realizza tra la a
priori e i dati?

Il compromesso dipende da quanto peso (informativa) la a priori ha (è)
rispetto ai dati disponibili

i.e., nel caso binomiale, dipende dal peso relativo di

 il numero delle "osservazioni a priori" (  precisione della a priori ) rispetto
a

la grandezza campionaria.

Nota:  dove 

α + β − 2

≈ ∼

n

precisione = 1
varianza

var =
μ(1−μ)

α+β+1
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Una prima analisi di sensitività

Concetto di sensitività: sensitività o robustezza dell'inferenza rispetto alla scelta
della a priori

A former sensitivity analysis
Prior information Posterior information

alpha + beta - 2 mean mean median 95% interval length

0 0.5 0.446 0.446 [ 0.415 , 0.477 ] 0.062

0 0.485 0.446 0.446 [ 0.415 , 0.477 ] 0.062

10 0.485 0.446 0.446 [ 0.416 , 0.477 ] 0.062

100 0.485 0.45 0.45 [ 0.42 , 0.479 ] 0.059

1000 0.485 0.466 0.466 [ 0.444 , 0.488 ] 0.044

10000 0.485 0.482 0.482 [ 0.472 , 0.491 ] 0.019

Si noti che nello studio  e .p̂ = .446 n ≈ 1000
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Un approccio alla stima basato sulla simulazione

L'approccio moderno alla stima bayesiana è diventato strettamente legato ai
metodi di stima basati sulla simulazione.

In effetti, la stima bayesiana si concentra sulla stima dell'intera densità di un
parametro.

Questa stima della densità si basa sulla generazione di campioni dalla
densità a posteriori dei parametri stessi o di funzioni dei parametri.

Nel modello BETA-BINOMIALE, la coniugatezza ci permette di conoscere la densità
a posteriori in forma chiusa.

Quindi, è fattibile sia il calcolo diretto che la simulazione diretta dalla densità
a posteriori.

Tuttavia, anche se la densità a posteriori non può essere integrata in modo
esplicito, i metodi di simulazione iterativa (o MCMC) vengono in alternativa
utilizzati.
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Una prima simulazione (diretta)

Congdon, pag. 77, ex. 3.4, Program 2.11

Wilcox (1996) presenta i dati di un sondaggio d'opinione (fatto da Gallup Poll,
agenzia statunitense pubblica per sondaggi d'opinione) sulla moralità del
presidente Bush che non aiutò i gruppi ribelli iracheni dopo la fine formale
della Guerra del Golfo. Dei 751 adulti che risposero, 150 ritennero che le azioni
del presidente non furono etiche.

Ci interessa valutare la probabilità che un adulto campionato a caso giudichi
"immorale" il presidente.

Nell'inferenza potremmo usare le evidenze di precedenti sondaggi sulla
proporzione della popolazione che in generale può considerare le azioni di un
presidente immorali.
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Beta: alcune note

A priori 

Interpretazione dei parametri: assumiamo che si siano osservati  successi e 
fallimenti in un campione di  prove, con

Beta può anche essere espressa come .

Si noti come non sia del tutto chiaro cosa significhi definire una a priori non-
informativa.

Ad es, l'a priori uniforme  comporta una media a posteriori
, come anche una  con  comporta una media a

posteriori che tende alla MLE .

Tuttavia, una  può essere vista come informativa dato che si riduce a
due punti massa  e  come per i casi meno estremi di bimodalità a priori, e.g.,

 ove 

π ∼ Beta(α, β)

α β
s = α + β

E(π) = μ = var(π) = V =
α

α + β

μ(1 − μ)

α + β + 1

Beta(sμ, s(1 − μ))

Beta(1, 1)
(y + 1)/(n + 2) Beta(ϵ, ϵ) ϵ → 0

y/n

Beta(0, 0)
0 1

Beta(0.5, 0.5) p(π) ∝ 1

√π(1−π)
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Diversi gradi di "informatività" della priori Beta

Presentiamo l'inferenza bayesiana sulla probabilità che un adulto risponda
"immorale" assumendo diverse a priori Beta:

1.  prior information  

2.  prior information  

3.  prior information  

4.  prior information  

5.  prior information  

6.  prior information  

Priori 1. e 2. sono non-informative, sebbene 2. possa essere più specifica per eventi
one-off (o correlati)

Priori 3. e 4. possono essere assunte sulla base di precedenti indagini, ma,
sebbene , rimangono diffuse, cioè sono poco informative

Priori 5. e 6. sono crescentemente informative,

α = β = 1 ∼ 0 E = 1/2

α = β = 0.001 < 0 E = 1/2

α = 1, β = 0.11 < 0 E = 0.9

α = 1.8, β = 0.2 ∼ 0 E = 0.9

α = 4.5, β = 0.5 ∼ 3 E = 0.9

α = 45, β = 5 ∼ 48 E = 0.9

E = 0.9
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Le a priori

distinte per grado di "informatività"
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Inferenza Bayesiana sulla base della simulazione diretta

In ogni figura, curve:

likelihood 
posteriori : istogramma di 10,000 estrazioni (dirette)

intervalli a posteriori 95%

del modello Uniforme-Binomiale (come riferimento a non-informatività)
del modello Beta-Binomiale (calcolo esatto)
utilizzando un'approssimazione normale sulle estrazioni della simulazione
invertendo l'intervallo costruito su scala logit sulle estrazioni della
simulazione

∝ Bin(150, 751)
Beta(α + 150, β + 601)
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Campione grande

Sebbene  sia non lontano da 0 (  ), poichè il campione è grande (  ),
l'approssimazione normale è buona così come le inferenze a posteriori sono
robuste rispetto alla priori scelta (anche se discorde rispetto ai dati), almeno per
un'informazione a priori 

θ ∼ 0.2 n = 751

≤ 0
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Campione piccolo

Cosa accade se  e  adulti che ritengono immorali le azioni del
presidente?

Si noti che la proporzione empirica è sempre .

n = 5 y = 1

0.2
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Large sanple
Prior information Posterior information

mean sd mean sd 95% L 95% U length

0.500 0.289 0.201 0.015 0.173 0.230 0.057

0.500 0.500 0.200 0.015 0.171 0.229 0.058

0.901 0.206 0.201 0.015 0.173 0.230 0.057

0.900 0.173 0.202 0.015 0.173 0.231 0.058

0.900 0.122 0.204 0.015 0.177 0.234 0.057

0.900 0.042 0.243 0.015 0.214 0.275 0.061
Tiny sanple

Prior information Posterior information

mean sd mean sd 95% L 95% U length

0.500 0.289 0.286 0.160 0.041 0.646 0.605

0.500 0.500 0.200 0.163 0.007 0.608 0.601

0.901 0.206 0.327 0.176 0.053 0.710 0.657

0.900 0.173 0.400 0.173 0.100 0.753 0.653

0.900 0.122 0.550 0.150 0.255 0.827 0.572

0 900 0 042 0 836 0 049 0 728 0 922 0 194
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In WinBUGS

Program 2.11 Presidential Actions

BUGS code for Example 3.4 Presidential Actions in Bayesian Statistical Modelling
(Congdon, 2nd ed.)

Blith (1986) suggerisce che quando , il limite superiore di un CI al 95%
dovrebbe essere  invece che vicino a  (come risulta se si usa
l'approssimazione usuale).

Per  e  il limite estremo di in CI al 95% risulterebbe quindi 0.312344.

Lo si confronti con i risultati nell'inferenza Bayesiana, considerando l'effetto delle
due a priori diffuse.

y = 0
1 − α1/n 0

n = 8 α = .05
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Confidence interval around binomial estimate of 0 or 1

What is the best technique to calculate a confidence interval of a binomial
experiment, if your estimate is that  (or similarly ) and sample size is
relatively small

A general advice is to never use the normal approximation (i.e., the asymptotic /
Wald confidence interval),

as it has terrible coverage properties.

The standard interval is often presented with the caveat that it should be usedonly
when  is at least 5 (or 10).

p = 0 p = 1

p̂ ± zα/2√p̂(1 − p̂)/n

n ⋅ min(p, 1 − p)
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See the erratic behavior of the coverage probability of the standard Wald
confidence interval

library(binom)

p <- seq(0,1,.001)

coverage <- binom.coverage(p, n=25, method="asymptotic")$coverage

plot(p, coverage, type="l") ; abline(h=.95, col="red")

For small success probabilities, you might ask for a 95% confidence interval, but
actually get, say, a 10% confidence interval!
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Different methods to obtain a confidence interval on the binomial probability.

binom.confint(x=0, n=8)

##           method x n       mean       lower     upper

## 1  agresti-coull 0 8 0.00000000 -0.04776038 0.3721679

## 2     asymptotic 0 8 0.00000000  0.00000000 0.0000000

## 3          bayes 0 8 0.05555556  0.00000000 0.2075080

## 4        cloglog 0 8 0.00000000  0.00000000 0.3694166

## 5          exact 0 8 0.00000000  0.00000000 0.3694166

## 6          logit 0 8 0.00000000  0.00000000 0.3694166

## 7         probit 0 8 0.00000000  0.00000000 0.3694166

## 8        profile 0 8 0.00000000  0.00000000 0.3203933

## 9            lrt 0 8 0.00000000  0.00000000 0.2134440

## 10     prop.test 0 8 0.00000000  0.00000000 0.4022967

## 11        wilson 0 8 0.00000000  0.00000000 0.3244076

Brown et al. (in Statistical Science, 2001) recommend the Wilson interval or the
equal-tailed Jeffreys prior interval for small n and the interval suggested in Agresti
and Coull for larger n.
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https://projecteuclid.org/journals/statistical-science/volume-16/issue-2/Interval-Estimation-for-a-Binomial-Proportion/10.1214/ss/1009213286.full

