Modelli a parametro singolo

Analisi Bayesiana di dati binomiali
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Il modello Binomiale

In Bin(n, #) c'¢ un solo parametro di interesse (tipicamente, n si assume noto),
i.e. la probabilita 8 di un certo risultato in ognuna delle n prove considerate.

Stima Bayesiana di una probabilita da dati binomiali

BDA3: pag. 37, sez. 2.4, codice R placenta. r nelle note del Lab

* interesse nella proporzione di nascite femminili nella cd condizione materna
"placenta previa"

e idati consistono in un precedente studio in Germania: 437 femmine su 980
nascite "placenta previa"

e con che evidenza i dati ci dicono che la proporzioe di nascite femminili
"placenta previa" € minore della proporzione di nascite femminili nella
popolazione generale pari a 0.485?
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Analisi con una a priori uniforme

Il parametro 1-dimensionale 6 denoti la proporzione di nascite femminili "placenta
previa"

e Assumiamo che Bin(6,980) oc 6*7 (1 — 0)%°7%37 sja il modello che abbia

generato i dati

e Specifichiamo la a priori per 6 essere una uniforme U|0, 1]

e La a posteriori per 6 &, quindi, oc 8437 (1 — 9)%80-437 i e, & una
Beta (437 + 1,980 — 437 + 1).
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Analisi con a priori Beta

Poiché la verosimiglianza p(y|6) = L(6;y) € < 6Y (1 — )" Y, se la priori & della
stessa forma, e.g., p(0) &

0t (1—-0)7!
allora la posteriori sara anche di questa forma. Infatti, p(0|y) &
gvre (1 — 9" ¥ = Beta(a+y,B+n—1y)

La distribuzione a priori Beta & una famiglia coniugata per la verosimiglianza
binomiale.
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Quale compromesso la a posteriori realizza tra la a
priori e i dati?
¢ Il compromesso dipende da quanto peso (informativa) la a priori ha (&)
rispetto ai dati disponibili
e i.e., nel caso binomiale, dipende dal peso relativo di
a+p—2

~ il numero delle "osservazioni a priori" ( ~ precisione della a priori ) rispetto
a

la grandezza campionaria.

_ p(l—p)
varianza dove var = a+B+1

Nota: precisione =
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Una prima analisi di sensitivita

Concetto di sensitivita: sensitivita o robustezza dell'inferenza rispetto alla scelta
della a priori

A former sensitivity analysis

Prior information Posterior information

alpha + beta-2 mean mean median 95% interval length

0 0.5 0.446 0.446 [0.415,0.477] 0.062
0 0.485 0.446 0.446 [0.415,0.477] 0.062
10 0.485 0.446 0.446 [0.416,0.477] 0.062
100 0.485 0.45 0.45 [0.42,0.479] 0.059
1000 0.485 0.466 0.466 [0.444,0.488] 0.044
10000 0.485 0.482 0.482 [0.472,0.491] 0.019

Si noti che nello studio p = .446 e n ~ 1000.
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Un approccio alla stima basato sulla simulazione

e L'approccio moderno alla stima bayesiana é diventato strettamente legato ai
metodi di stima basati sulla simulazione.

* In effetti, la stima bayesiana si concentra sulla stima dell'intera densita di un
parametro.

e Questa stima della densita si basa sulla generazione di campioni dalla
densita a posteriori dei parametri stessi o di funzioni dei parametri.

Nel modello BETA-BINOMIALE, la coniugatezza ci permette di conoscere la densita
a posteriori in forma chiusa.

e Quindi, e fattibile sia il calcolo diretto che la simulazione diretta dalla densita
a posteriori.

e Tuttavia, anche se la densita a posteriori non puod essere integrata in modo
esplicito, i metodi di simulazione iterativa (0 MCMC) vengono in alternativa
utilizzati.
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Una prima simulazione (diretta)

Congdon, pag. 77, ex. 3.4, Program 2.11

e Wilcox (1996) presenta i dati di un sondaggio d'opinione (fatto da Gallup Poll,
agenzia statunitense pubblica per sondaggi d'opinione) sulla moralita del
presidente Bush che non aiuto i gruppi ribelli iracheni dopo la fine formale
della Guerra del Golfo. Dei 751 adulti che risposero, 150 ritennero che le azioni
del presidente non furono etiche.

* (i interessa valutare la probabilita che un adulto campionato a caso giudichi
"immorale" il presidente.

* Nell'inferenza potremmo usare le evidenze di precedenti sondaggi sulla
proporzione della popolazione che in generale puo considerare le azioni di un
presidente immorali.
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Beta: alcune note
A priori m ~ Beta(a, )

Interpretazione dei parametri: assumiamo che si siano osservati o successi e 3
fallimenti in un campione di s = a + (8 prove, con

p(l — p)

a+pB+1

E(r)=p= aixl—ﬂ var(m) =V =

Beta puod anche essere espressa come Beta(su, s(1 — p)).

Si noti come non sia del tutto chiaro cosa significhi definire una a priori non-
informativa.

Ad es, I'a priori uniforme Beta(1,1) comporta una media a posteriori
(y +1)/(n + 2), come anche una Beta(e, €) con € — 0 comporta una media a
posteriori che tende alla MLE y/n.

Tuttavia, una Beta(0, 0) puo essere vista come informativa dato che si riduce a
due punti massa 0 e 1 come per i casi meno estremi di bimodalita a priori, e.g.,

Beta(0.5,0.5) ove p(7) o ﬁ
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Diversi gradi di "informativita" della priori Beta

Presentiamo l'inferenza bayesiana sulla probabilita che un adulto risponda
"immorale" assumendo diverse a priori Beta:

l.a==1 prior information~ 0 FE =1/2
2.aa= 3 =0.001 priorinformation< 0 FE =1/2
3.a=1, #=0.11 priorinformation< 0 FE =0.9
4. = 1.8, B = 0.2 priorinformation~ 0 FE =10.9
5.a = 4.5, 8 = 0.5 priorinformation~3 FE = 0.9
6.a =45, =5  priorinformation~ 48 FE =0.9

Priori 1. e 2. sono non-informative, sebbene 2. possa essere piu specifica per eventi
one-off (o correlati)

Priori 3. e 4. possono essere assunte sulla base di precedenti indagini, ma,
sebbene £ = 0.9, rimangono diffuse, cioé sono poco informative

Priori 5. e 6. sono crescentemente informative,
11722



Le a priori
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Inferenza Bayesiana sulla base della simulazione diretta
In ogni figura, curve:

e likelihood o Bin(150,751)
e posteriori Beta(a + 150, 8 4 601): istogramma di 10,000 estrazioni (dirette)

intervalli a posteriori 95%

e del modello Uniforme-Binomiale (come riferimento a non-informativita)

e del modello Beta-Binomiale (calcolo esatto)

e utilizzando un'approssimazione normale sulle estrazioni della simulazione

e invertendo l'intervallo costruito su scala logit sulle estrazioni della
simulazione

13722



15 20 25

10

15 20 25

10

15 20 25

10

|

[ T T T T T 1
0.14 0.16 0.18 0.20 0.22 0.24 0.26

a=1
15

o+p-2=-0.89

| s

15 20 25

10

25

20

10

el

a+p—2=-1998
0.=0.001

lo

0.16 0.18

ol

I T T T T 1
0.16 0.18 0.20 0.22 0.24 0.26

=3

a=45

a+p-2

_—

[ T T T T 1
0.16 0.18 0.20 0.22 0.24 0.26

15 20 25

10

0.20

0.22

0.24

1
0.26

1.8

at+p-2=0
ol

e

I
0.16

T
0.18

T
0.20

0.22

0.24

1
0.26

=48
45

oa+p-2
o

0.18

0.20

y

0.22

0.24

T
0.26

T
0.28

1
0.30

14 /22



Campione grande

Sebbene @ sia non lontano da 0 ( ~ 0.2), poiche il campione & grande (n = 751),
I'approssimazione normale & buona cosi come le inferenze a posteriori sono
robuste rispetto alla priori scelta (anche se discorde rispetto ai dati), almeno per
un'informazione a priori < 0
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Campione piccolo

Cosa accade se n = 5 e y = 1 adulti che ritengono immorali le azioni del
presidente?

Si noti che la proporzione empirica & sempre 0.2.
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Large sanple

Prior information

Posterior information

mean sd mean sd 95% L 95% U length
0.500 0.289 0.201 0.015 0.173 0.230 0.057
0.500 0.500 0.200 0.015 0.171 0.229 0.058
0.901 0.206 0.201 0.015 0.173 0.230 0.057
0.900 0.173 0.202 0.015 0.173 0.231 0.058
0.900 0.122 0.204 0.015 0.177 0.234 0.057
0.900 0.042 0.243 0.015 0.214 0.275 0.061
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In WinBUGS

Program 2.11 Presidential Actions

BUGS code for Example 3.4 Presidential Actions in Bayesian Statistical Modelling
(Congdon, 2nd ed.)

Blith (1986) suggerisce che quando y = 0, il limite superiore di un CI al 95%
dovrebbe essere 1 — al/™ invece che vicino a 0 (come risulta se si usa
I'approssimazione usuale).

Pern = 8 ea = .05 il limite estremo di in CI al 95% risulterebbe quindi 0.312344.

Lo si confronti con i risultati nell'inferenza Bayesiana, considerando I'effetto delle
due a priori diffuse.
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Confidence interval around binomial estimate of 0 or 1

What is the best technique to calculate a confidence interval of a binomial
experiment, if your estimate is that p = 0 (or similarly p = 1) and sample size is
relatively small

A general advice is to never use the normal approximation (i.e., the asymptotic /
Wald confidence interval),

B £ zap24/B(1 — B)/n
as it has terrible coverage properties.

The standard interval is often presented with the caveat that it should be usedonly
when n - min(p, 1 — p) is at least 5 (or 10).
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See the erratic behavior of the coverage probability of the standard Wald
confidence interval

library(binom)

p <- seq(0,1,.001)

coverage <- binom.coverage(p, n=25, method="asymptotic")S$coverage
plot(p, coverage, type="1") ; abline(h=.95, col="red")
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For small success probabilities, you might ask for a 95% confidence interval, but

actually get, say, a 10% confidence interval!
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Different methods to obtain a confidence interval on the binomial probability.

binom.confint(x=0, n=8)

##
##
##
##
##
##
##
##
##
##
##
##

Brown et al. (in Statistical Science, 2001) recommend the Wilson interval or the
equal-tailed Jeffreys prior interval for small n and the interval suggested in Agresti

method

agresti-coull
asymptotic

bayes
cloglog
exact
logit
probit
profile
lrt
prop.test
wilson

and Coull for larger n.
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https://projecteuclid.org/journals/statistical-science/volume-16/issue-2/Interval-Estimation-for-a-Binomial-Proportion/10.1214/ss/1009213286.full

