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Agenda

Modelli a parametro singolo

Modello Normale: media incognita
Modello Normale: varianza incognita
Altre distribuzioni standard

(Binomiale)
Poisson (con appl)
Esponenziale

Scelta della a priori

2 / 88



Dati normaliDati normali
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Normale / Gaussiana

Osservazioni  a valori reali

Media  e varianza  (o deviazione standard ) (dapprima assumiamo
 noto)

y

θ σ2 σ
σ2

p(y|θ) = exp(− (y − θ)2)

y ∼ N(θ,σ2)

1

√2πσ

1

2σ2
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Motivi per utilizzare la distribuzione normale

Ampiamente usato nella modellazione statistica

Fondamentale in quanto molti modelli e paradigmi di analisi avanzati si
basano su o coinvolgono distribuzioni normali

Distribuzione normale spesso giustificata in base al teorema del limite
centrale

Più spesso utilizzata per convenienza computazionale o per tradizione
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Teorema del limite centrale

De Moivre, Laplace, Gauss, Chebysev, Liapounov, Markov, et al.

A determinate condizioni la somma (e la media) di variabili casuali si
approssima alla distribuzione gaussiana al tendere di 

I problemi

non vale per tutte le distribuzioni, ad esempio, Cauchy
potrebbe richiedere  grandi, per esempio con la Binomiale quando  si
avvicina a  o 
non vale se una delle variabili ha scala molto maggiore

n → ∞

n θ
0 1
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Modello per una distribuzione normale con media non
nota e varianza nota
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Distribuzione normale (più osservazioni) con media non nota e
varianza nota

Assume that observations  are normal (with unknown mean
and known variance)

The joint distribution  (multivariate distribution) is
often (quite) difficult to specify directly

Then, it is easier to consider the joint conditional distribution 

A common assumption is that of exchangeability (beyond that of normality),
i.e.,

or

y = (y1, … , yn)

p(y) = p(y1, … , yn)

p(y|θ)

y1, … , yn|θ ∼ N(yi|θ,σ2) iid

p(y|θ) = ∏
i

p(yi|θ)

∥

N(yi|θ,σ2)

8 / 88



Note su scambiabilità

Non è necessario comprendere o utilizzare il termine scambiabilità prima del
capitolo sui modelli gerarchici (capitolo 3).
A questo punto è sufficiente sapere che assumere scambiabilità

riflette una convinzione, vale a dire che si ha un'opinione simile su ogni
soggetto

versione più debole di  (  è un caso speciale), (quindi)

l'indipendenza implica la scambiabilità,
la scambiabilità non implica indipendenza.

Implica che possiamo modellare ogni  separatamente

iid iid

xi
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De Finetti

Diffidente nei confronti delle facili ipotesi di indipendenza, per lo
più assunte da default, de Finetti avanzò l’idea che per la
dipendenza stocastica (condizionata o meno) si potesse parlare di
dipendenza in senso diretto e in senso indiretto

− diretto quando un evento modifica (in modo significativo ai fini
delle valutazioni di probabilità) le circostanze in cui si verifica un
altro evento;

− indiretto quando si manifesta un fatto H che influisce su tutta
una collezione di eventi “separati” (  ).

Per quest’ultimo, tipico è il caso (ben noto agli attuari) di un inverno rigido
che influisce sulla probabilità di morte di soggetti che non hanno tra loro nè
relazioni nè vicinanze.

E1,E2, … ,Ek
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Likelihood

The likelihood is given by

It is well known that

where  is the sample mean.

Data ( ) influence through the sample mean 

The sample mean is a sufficient statistic for  (  )
 is the variance of the sample mean

p(y|θ) =
n

∏
i=1

( exp{− (yi − θ)2})
1

√2πσ

1

2σ2

p(y|θ) ∝ exp{− (ȳ − θ)2}
n

2σ2

ȳ = ∑n

i=1 yi
1
n

y ȳ

θ μ

σ2/n
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The natural conjugate prior of an exponential distribution

The Gaussian distribution in exponential form is, for a single observation,

the likelihood is then, letting 

and the conjugate prior is

that is, the conjugate family is the Gaussian family:

p(yi|θ) = ( e
− ) e

−
e

yi1

√2πσ

y2
i

2σ2
θ2

2σ2
θ

σ2

ȳ = ∑n

i=1 yi
1
n

p(y|θ) ∝ e
−n

e
nȳ

= g(θ)neϕ(θ)T t(y)
θ2

2σ2
θ

σ2

p(θ) ∝ g(θ)ηeϕ(θ)Tν = e
−η

e
ν

= exp{− (θ2 − 2 θ)}
θ2

2σ2
θ

σ2
η

2σ2

ν

η

θ ∼ N(μ0,σ2
0)
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Distribuzione normale con media non nota 
A priori coniugata per 

Si assuma noto , la distribuzione normale è la famiglia coniugata per la
media non nota di una distribuzione normale

θ
θ

σ2

Likelihood p(y|θ) ∝ exp(− (ȳ − θ)2)n

2σ2

Prior p(θ) ∝ exp(− (θ − μ0)2)
1

2σ2
0

exp(a) exp(b) = exp(a + b)

Posterior p(θ|y) ∝ exp(− [ + ])
1

2

(ȳ − θ)2

σ2/n

(θ − μ0)2

σ2
0

∝ exp(− (θ − μn)2)
1

2σ2
n

13 / 88



Calcula

p(θ|y) ∝ p(y|θ)π(θ) ∝ exp{− (ȳ − θ)2} exp{− (θ − μ0)2}

∝ exp{− θ2 − θ2 + + }

∝ exp{− ( + ) θ2 + θ( ȳ + μ0)}

∝ exp

⎧⎪⎪
⎨
⎪⎪⎩

−
⎛
⎜
⎝
θ2 − 2θ

⎞
⎟
⎠

⎫⎪⎪
⎬
⎪⎪⎭

∝ exp

⎧⎪⎪
⎨
⎪⎪⎩

−
⎛
⎜
⎝
θ −

⎞
⎟
⎠

2⎫⎪⎪
⎬
⎪⎪⎭

n

2σ2

1

2σ2
0

n

2σ2

1

2σ2
0

θȳn

σ2

θμ0

σ2
0

1

2

n

σ2

1

σ2
0

n

σ2

1

σ2
0

1

2( + )
−1

n

σ2

1

σ2
0

ȳ + μ0
n

σ2

1

σ2
0

+n

σ2

1

σ2
0

1

2( + )
−1

n

σ2

1
σ2

0

ȳ + μ0
n

σ2

1
σ2

0

+n

σ2

1
σ2

0
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Posterior distribution (cont.)

posterior precision = prior precision + data precision
(precision=1/variance, data precision is precision of the ML estimator )
posterior mean is a weighted mean with precisions as weights

  or  

  if    or  ; in limit: 

   if    or  ; in limit 

if , the prior corresponds to one virtual observation with value 

If  for a fixed , or if  for fixed ,

Lastly,  as well as 

(but what the posterior is more concentrated around in the two cases?)

p(θ|y) ∝ exp(− (θ − μn)2)
1

2σ2
n

θ|y ∼ N(μn,σ2
n), where μn = and = +

μ0 + ȳ1
σ2

0

n

σ2

+1
σ2

0

n

σ2

1

σ2
n

1

σ2
0

n

σ2

ȳ

μn = μ0 + (ȳ − μ0)
σ2

0

σ2
0+σ2/n

μn = ȳ − (ȳ − μ0)
σ2/n

σ2
0+σ2/n

μn = μ0 ȳ = μ0 σ2
0 = 0 μn ⟶

σ0→0
μ0

μn = ȳ ȳ = μ0 σ2 = 0 μn ⟶
n→∞

ȳ

σ2
0 = σ2 μ0

σ0 → ∞ n n → ∞ σ0

p(θ|y) ≈ N(θ|ȳ ,σ2/n) i.e. posterior approximates the likelihood
σn ⟶

n→∞
0 σn ⟶

σ0→0
0
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Supponi che vuoi
indovinare quanto
sono alte 2 persone e
di una sei meno
certo che dell'altra

, ,
, 

Supponi di basare la
priori aui parametri
della popolazione
maschile in
Finlandia

,

La posteriori
combina priori e
osservazione, se
l'osservazione è più
precisa la priori
influenza meno,
viceversa...

μ1 = 175 μ2 = 185
σ1 = 4 σ2 = 2

μpop = 181
σpop = 6
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Parametrizzazione in termini della precisione
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Accumulazione della precisione nella a posteriori
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Media a posteriori
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Shrinkage toward the prior

La a posteriori è una sintesi della a priori e della verosimiglianza

Può essere vista come un aggiornamento della a priori alla luce dei dati
(così come riflessi nella verosimiglianza)

Può essere vista come un augmentation (aumento) delle informazioni
nei dati (così come riflesse nella verosimiglianza) grazie alle informazioni
nella a priori

In questo modo, la a posteriori non appare esattamente come la
verosimiglianza, viene "tirata" verso la a priori
La a posteriori mostra un shrinkage (contrazione) verso la a priori
La misura nella quale la a posteriori si restringe verso la a priori
dipende dalla quantità relativa di informazioni nella a priori e nei
dati
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Poca informazione nei dati (  piccolo )n
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Molta informazione nei dati (  grande )n
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Inferenza intervallare

In una distribuzione a posteriori normale (gaussiana) 

un % intervallo highest posterior (e central) è

dove  è il -esimo percentile di una normale standard (i.e,

 ).

p(μ|x) = N(μμ|x,σ2
μ|x

)

100(1–α)

μμ|x ± z1−α/2σμ|x

z1−α/2 100(1–α/2)
p(Z > z1−α/2) = α/2

p(μμ|x − 1.96σμ|x ≤ μ ≤ μμ|x + 1.96σμ|x) = 0.95
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Esempio

Supponiamo di avere un test con punteggio da 0-100
essere interessati alla distribuzione dei punteggi dei test per gli studenti
avere i punteggi dei test di  studenti
Sia  il punteggio del test per lo studente 
Postuliamo una distribuzione per i punteggi dei test degli studenti

: la media della popolazione dei punteggi
: la variabilità nella distribuzione dei punteggi

La varianza nota è 
, 

A priori per : 

n
xi i

xi|μ,σ2 ∼ N(μ,σ2)
μ
σ2

σ2 = 25
x = (91, 85, 72, 87, 71, 77, 88, 94, 84, 92) x̄ = 84.1

μ N(μμ,σ2
μ)

μμ = 75,σ2
μ = 50
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Esempio: distribuzione a posteriori
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Esempio: inferenza

Riassunto: distr a post , media

(anche mediana e moda) a post è , sd a post è , 95% HPDI

μ|x,σ2 ∼ N(μμ|x = 83.67,σ2
μ|x

= 2.38)

= 83.67 = 1.54
(80.64, 86.69) 26 / 88



Asintotiche & connessioni con l'inferenza frequentistaAsintotiche & connessioni con l'inferenza frequentista
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A posteriori asintotica
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( ) A uniform "distribution'' for the mean

Consider the inference for the mean in a Gaussian sample starting from a
prior  the posterior is

if  is big relative to  this is approximately

which is the same as we would obtain by assuming

improper priors

σ2
0 → ∞

θ ∼ N(μ0,σ2
0)

N ( , )
μ0σ

2 + ȳnσ2
0

σ2 + nσ2
0

σ2σ2
0

σ2 + nσ2
0

σ2
0 σ2/n

N (ȳ , )
σ2

n

p(θ) ∝ k
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Connessioni con l'inferenza frequentista
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Critiche e giustificazioni

Asintoticamente, la a priori diventa irrilevante

Principio di stima stabile
La critica al “ruolo dell'a priori” perde forza

“Vi garantiamo l'approccio bayesiano asintoticamente, la nostra denuncia
è per campioni finiti”

Ma l'approccio frequentista è giustificato solo in modo asintotico!

Stima dei parametri, errori standard, adattamento del modello di dati

L'approccio bayesiano non ha bisogno di invocare gli argomenti asintotici

E se li concedi al frequentista, non dovresti concederli al bayesiano?

The principle of stable estimation, or precise
measurement, specifies that when a likelihood
function is sharply peaked in an interval over
which a prior density is relatively flat, the posterior
density does not differ much from the normed
likelihood function.
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Riassunto del modello di distribuzione normale con media non nota

Scambiabilità comporta fattorizzazione
Sufficienza della media campionaria
A priori Normale come coniugata
Precisione come inversa della varianza

Questo è ciò che utilizzano alcuni software (BUGS, JAGS)
A posteriori come sintesi di a priori e dati

Shrinkage to the prior
Asintotiche e connessioni con l'approccio frequentista
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Modello normale: distribuzione predittiva

Spesso la distribuzione predittiva è più interessante della distribuzione a
posteriori. La distribuzione a posteriori descrive l'incertezza nei parametri
(come la proporzione di "orsetti" rossi nel sacchetto), mentre la distribuzione
predittiva descrive anche l'incertezza sull'evento futuro (come quale colore
viene scelto all'estrazione successiva).

Nel caso di distribuzione Gaussiana con varianza nota  il modello è

ove  descrive l'incertezza aleatoria.
Con l'a priori uniforme l'a posteriori è

dove  descrive l'incertezza epistemica connessa a , mentre la
distribuzione predittiva a posteriori per un nuovo  è

dove l'incertezza è la somma dell'incertezza aleatoria (  ) e dell'incertezza
epistemica (  ).

σ2

y ∼ N(θ,σ2),

σ2

p(θ|y) ∼ N(θ|ȳ ,σ2/n),

σ2/n θ
~y

p(~y |y) ∼ N(~y |ȳ ,σ2 + σ2/n),

σ2

σ2/n 33 / 88



Modello normale: distribuzione predittiva - a priori coniugata per la
media

Nel caso di a priori normale, la distribuzione predittiva a posteriori è

Quindi,

(go to theorem)

Possiamo anche derivare i momenti di ordine primo e secondo come segue

Di nuovo, la varianza predittiva è = varianza del modello osservazionale  +
varianza a posteriori  (varianza sul modello).

p(~y |y) = ∫ p(~y |θ)p(θ|y)dθ

p(~y |y) ∝ ∫ exp(− (~y − θ)2) exp(− (θ − μn)2)dθ
1

2σ2

1

2σ2
n

~y |y ∼ N(μn,σ2 + σ2
n)

E(~y |y) = E(E(~y |y, θ)|y) = E(θ|y) = μn

V (~y |y) = E(V (~y |y, θ)|y) + V (E(~y |y, θ)|y)

= E(σ2|y) + V (θ|y) = σ2 + σ2
n

σ2

σ2
n 34 / 88



Model for a normal distribution with known mean and
unknown variance
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Likelihood

Although not a realistic situation, this is relevant both as

an example of inference for a scale parameter
a building block for the model on Gaussian data with both the mean and
the variance unknown

Let then  be known and

so the likelihood is

where the sufficient statistic is , which is the .

θ

y1, … , yn|σ2 ∼ N(yi|θ,σ2) iid

p(y|σ2) ∝
n

∏
i=1

( exp{− (yi − θ)2})

∝ (σ2)−n/2 exp{−
n

∑
i=1

(yi − θ)2}

∝ (σ2)−n/2 exp{− v}

1

√2πσ

1

2σ2

1

2σ2

n

2σ2

v = ∑n

i=1(yi − θ)21
n

σ̂2
MLE 36 / 88



Conjugate prior

The corresponding conjugate prior is the inverse-gamma (IG)

which is the same as saying that

with the same hyperparametrers  and .

Note that

 for ,

 for ,

σ2
∼ Inv-gamma(α,β)

p(σ2) ∝ (σ2)−(α+1)e−β/σ2

∼ Gamma(α,β)
1

σ2

α β

E(σ2) =
β

α−1
α > 1

V (σ2) =
β2

(α−1)2(α−2)
α > 2

Mode(σ2) =
β

α+1
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A priori gamma inversa per la varianza

, con , , 

L'integrale è finito se , la densità è finita se 

Non-informativa se 

p(σ2) = IG(α,β) σ2 ≥ 0 α > 0 β > 0

α > 0 α ≥ 1

α,β → 0
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Posterior

The posterior distribution is then

that is,

The posterior mean is 

The posterior mode is 

p(σ2|y) ∝ p(y|σ2)p(σ2)

p(σ2|y) ∝ (σ2)−n/2 exp{− v}(σ2)−α−1e−β/σ2

∝ (σ2)−n/2−α−1 exp{− [ v + β]}

n

2σ2

1

σ2

n

2

σ2|y ∼ Inv-gamma( + α, v + β)
n

2

n

2

E(σ2|y) =
2β+nv

2α+n−2

Mode(σ2|y) =
2β+nv

2α+n+2
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Reparametrization 1

It is convenient to reparametrize the model with the precision , so
the prior assumption is

the likelihood is

and the posterior is :

τ = 1/σ2

τ ∼ Gamma(α,β),

p(y|τ) ∝ (τ)n/2 exp{− τ}
nv

2

Gamma(n/2 + α,nv/2 + β)

p(τ|y) ∝ τ n/2 exp{− τ}τ α−1e−βτ

∝ τ n/2+α−1 exp{−τ [ + β]}

nv

2
nv

2
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Inference for 

Prior is an inverse gamma with parameters , sample variance
is 0.5, 

σ2

α = β = 10−3

n = 10
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Inference for 

Prior is a gamma with parameters , sample variance is 0.5,

τ = 1/σ2

α = β = 10−3

n = 10
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Inference for 

Prior is an inverse gamma with parameters , sample variance is
0.5, 

σ2

α = β = 1
n = 10
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Inference for 

Prior is a gamma with parameters , sample variance is 0.5, 

τ = 1/σ2

α = β = 1 n = 10
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Reparametrization 2 with : prior

Another convenient parametrization is to write

following Gelman we call this  (inverse-scaled ).

This corresponds to  and , or, in other terms, implies that

, the density is

Note that

Inv-χ2

σ2 =d , X ∼ χ2
ν0

σ2
0ν0

X

Inv-χ2(ν0,σ2
0) χ2

ν0 = 2α σ2
0 = β/α

σ2
∼ Inv-gamma(ν0/2, (ν0/2)σ2

0)

p(σ2) = (σ2)−ν0/2−1 exp{−(ν0σ
2
0)/(2σ2)}

((ν0σ
2
0)/2)ν0/2

Γ(ν0/2)

E(σ2) = , ν0 > 2; Mode(σ2) =
ν0σ

2
0

ν0 − 2

ν0σ
2
0

ν0 + 2

V (σ2) = , ν0 > 2
(ν0σ

2
0)2

(ν0 − 2)2(ν0 − 1)
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Reparametrization 2 with : posterior

The posterior is then

the scale parameter being a weighted average of the prior variance  and the

MLE with weight given by  and .

Then

The priori can then be interpreted as information equivalent to 
observations with variance  (a non-informative prior corresponds to

).

Inv-χ2

σ2|y ∼ Inv-χ2(ν0 + n, )
ν0σ

2
0 + nσ̂2

MLE

ν0 + n

σ2
0

ν0 n

E(σ2|y) =
ν0σ

2
0 + nσ̂2

MLE

ν0 + n − 2

Mode(σ2|y) =
ν0σ

2
0 + nσ̂2

MLE

ν0 + n + 2

ν0

σ2
0

ν0 = 0
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Summary of priors for the variance
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Una a priori per la varianza

Molti approcci per specificare una a priori per la varianza

Quale parametro?

Varianza 
Deviazione standard 
Precisione 

Quale distribuzione?

Uniforme, Gamma inversa, Gamma, Esponenziale, semi-Cauchy,
half-$t$, half-normale

Si tende a scriverlo in termini di varianza (  )
Il software Stan utilizza la deviazione standard (  )
Altri software (eg BUGS) utilizzano la precisione (  )

σ2

σ
τ = σ−2

σ2

σ
τ
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A priori esponenziale per la Deviazione Standard

, , con , 

 -> si può pensare che la stima migliore per  sia 

E' una Gamma con 

p(σ) = exp(λ) f(σ|λ) = λe−λσ σ ≥ 0 λ > 0

E(σ) = 1/λ σ 1/λ

α = 1
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A priori diffusa per la variabilità

Campo di ricerca in continua espansione su come rappresentare un'a priori
diffusa per la variabilità

Considera diverse a priori per varianza, precisione, deviazione standard

 per la varianza, equivalentemente  per la
precisione, con  (eg., .001), usate perchè si sosteneva che
garantissero un'adeguata diffusione a priori

La ricerca metodologica ha contestato ciò

Si suggeriscono altre distribuzioni come esponenziale, half-normal, half-
Cauchy, uniforme e altre

IG(α,β) Gamma(α,β)
α = β ≈ 0
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Standard distributions

Binomiale: conteggio di risultati indipendenti ("scambiabili")

Normale: , N grande,  indipendenti ("scambiabili")
Poisson: conteggio di occorrenze
Esponenziale: tempi di attesa per eventi che accadono indipendentemente
- dato un tasso costante di occorrenza - ("scambiabilmente") in un dato
intervallo di tempo.

Per tutti questi casi, la costante di normalizzazione  è calcolabile e quindi
l'a posteriori  ha forma chiusa.

X = ∑N

i=1 Zi Zi

p(y)
p(θ|y)
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Poisson Model
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Count data: Poisson likelihhod

Assume that  is a count (e.g., a disease incidence) modelled as a Poisson
variate and that  are observed and

then, if we let , the likelihood is

where  is the sufficient statistics.

The likelihood

belongs to an exponential family with natural parameter .

yi
y = (y1, … , yn)

y1, … , yn|θ ∼ Poisson(yi|θ) iid

t(y) = ∑n

i=1 yi

p(y|θ) =
n

∏
i=1

∝ θt(y)e−nθ

θyie−θ

yi!

t(y)

p(y|θ) ∝ (e−θ)net(y) log θ

ϕ(θ) = log θ
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Conjugate prior to Poisson likelihood

The conjugate prior has to be

which is equivalent to a total count of  in  prior observations.

The posterior is then

The posterior mean being

p(θ) ∝ θα−1e−βθ ∝ Gamma(α,β)

α − 1 β

p(θ|y) = Gamma(α +∑ yi,β + n)

E(θ|y) =
α + nȳ

β + n
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Distribution of  is Negative Binomial

Prior predictive distribution of a Poisson model has a negative binomial
distribution.

Note that , then, for a single poisson observation ,

which reduces to

known as negative binomial

The negative binomial distribution describes the number of failures that
occur until a predefined number of successes  occurs in a Bernoulli process
with parameter .

y

p(y) =
p(y|θ)p(θ)

p(θ|y)
y

p(y) =
Poisson(y|θ)Gamma(θ|α,β)

Gamma(θ|α + y,β + 1)

p(y) = ( )( )
α

( )
y

α + y − 1

y

β

β + 1

1

β + 1

y ∼ Neg-Bin(α,β)

α
β/(β + 1)
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Negative Binomial is a mixture of Poisson

The above derivation shows how the negative binomial distribution is a
mixture of Poisson distributions with  rates following a Gamma distribution.θ

Neg-Bin(α,β) = ∫ Poisson(y|θ)Gamma(θ|α,β)dθ
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Poisson model with exposure

Assume we know for each observation  the value of an explanatory variable
 ( ), e.g.

 is the incidence of a desease in unit 
 is the exposure in unit 

 is the incidence rate

Note: model non exchangeable in 's but exchangeable in couples .

yi
xi > 0

yi i
xi i
θ

yi|θ ∼ Poisson(θxi)

θ ∼ Gamma(α,β)

p(y|θ) ∝ θ∑i yie−θ∑i xi

p(θ|y) ∼ Gamma(α +∑
i

yi,β +∑
i

xi)

yi (x, y)i
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Example: estimate of incidence rate from count data

In a given year, in a US city of 200,000 inhabitants, we observed 
deaths for asthma

Let  be the underlying long-term asthma mortality rate (measured in
cases per 100,000 persons per year)

The exposure is then 

Then, 

(prior elicitation) If we assume  (assuming that the city
and year are exchangeable with other years and cities from which we get
information about )

Then, 

Do you notice a shrinkage toward the prior compared to the "raw"
mortality rate?

Imagine that we have more data:  in the following  years (in the
same city, with a constant population of 200,000). How does the posterior
change?

y = 3

θ

x = 2

y|θ ∼ Pois(2θ)

θ ∼ Gamma(3, 5)

θ

θ|y ∼ Gamma(6, 7)

y = 30 10
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Prior elicitation

We want to choose a prior within the conjugate family, so

In order to assess appropriate hyperparameters  and  we use the fact that
according to epidemiological literature

(1) rates above 1.5 per  are rare
(2) typical mortality rate is around 0.6 per 

Fact (2) suggests

Fact (1) suggests that we should keep , for example

leads to .

p(θ) = Gamma(α,β)

α β

100 000
100 000

E(θ) = = 0.6
α

β

P(θ < 1.5)

α = 3; β = 5

P(θ < 1.44) = 0.975
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Shrinkage to the prior

Starting from a prior  the observation  with
exposure  leads to the posterior

whose mean is 0.86

The posterior mean is shrunken towards the prior mean  away from the
observed mortality rate .

p(θ) = Gamma(3, 5) y = 3
x = 2

θ|y ∼ Gamma(3 + 3, 5 + 2)

0.6
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More (exchangeable) observations

With a constant population of 200,000 and assuming that the ten-year results
are independent with a constant long-run rate  the posterior distribution of

 is then

whose mean is 1.32.

θ,
θ

θ|y ∼ Gamma(33, 25)
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Exponential Model
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Exponential Model

 continuous variable, , real-valued, e.g. a waiting time
property: memoryless

Sampling model 

,  is called the rate

If  observations, the likelihood is 

Prior 

From the likelihood prior parameters can be interpreted as 
exponential observations with total waiting time 

Posterior 

y y ≥ 0

P(y > t + s|y > s, θ) = P(t > t|θ) ∀ t, s

Exp(y|θ)

p(y|θ) = θ exp (−θy) for y ≥ 0, θ > 0

E(y) = 1/θ θ = 1/E(y|θ)

Exp(θ) = Gamma(α = 1,β = θ)

n p(y|θ) = θn exp (−θ∑i yi)

p(θ) = Gamma(α,β) ∝ θα−1e−βθ

α − 1
β

p(θ|y) = Gamma(α + 1,β + y)
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Prior distribution
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Prior distribution

The prior distribution is a novelty in Bayesian statistics with respect to
classical statistics.

It is

an opportunity, since we can formally include information other than
observations in inference
a problem, since we must include in inference informations which do not
come from the experiment (observations).

From what we already discussed we know that

Attitude toward subjective priors are the most various, from essential to
unacceptable.
(Reasonably specified) prior information vanishes as the sample size
tends to infinity. This helps but is not a panacea, we have finite samples,
so in practice our inference will be affected by the prior.
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Sensitivity of results to prior's choice

The following example, due to Berger, shows that the same experimental
result may lead to different conclusions depending on the prior distribution.

Let us fix the quartiles of the prior distribution:

There are infinite probability distribution coherent with the above values, let
us consider

Gaussian: 
Laplace: 
Cauchy: 

Y1, … ,Yn iid(N (θ, 1)) hence L(θ) ∝ exp(− (ȳ − θ)2)
n

2

IQ = −1 ; Me = 0 ; IIIQ = 1

θ ∼ N (0, 2.19)
θ ∼ La(1.384)
θ ∼ Ca(0, 1)
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Laplace

Cauchy

Gaussian

Sensitivity of results to prior's choice (cont.)

p(θ) = exp(−λ|θ|)λ
2

p(θ) = 1
π(1+θ2)

p(θ) = exp(− θ2)1
√2πτ

1
2τ 2
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Sensitivity of results to prior's choice (cont.)

Assume , consider three different samples

Caution: relatively similar prior could lead to different posterior.

n = 1

y = 0 y = 2 y = 5
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How do we choose a prior?

Any probability distribution (and not only) can be a prior for

A reasonable requirement is that 
(note that the support of the posterior distribution is, whatever the likelihood,
a subset of the support of the prior distribution).

Typical choices are

conjugate distributions;

noninformative (reference) priors

uniform prior
Jeffreys prior
improper prior

weakly informative distributions

θ ∈ Θ

supp(p(θ)) = Θ
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Conjugate priors: pros and cons

A family of distributions  is a natural conjugate for the likelihood 
if, assuming  the posterior distribution is in the same family,
that is  for some .

 the main advantage is that solutions are available in closed form and are
easily obtained;

 restricting the choice to the conjugate family may be too restrictive;

 conjugate families are less relevant today due to the use of MCMC and
similar method to explore posterior distribution (closed forms are not needed
anymore).

Conjugate priors examples

Beta + Binomial;
Gaussian + Gaussian (for the mean, variance known);
Gamma + Poisson.

f(θ; ν) L(θ)
p(θ) = f(θ; ν)

p(θ|y) = f(θ; ν1) ν1

+

−

×
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Noninformative (reference) priors

Abandon the idea that the prior distribution is meant to reflect the opinion of
the researcher prior to observing any data.

Rather, we want to model the absence of any opinion (whether this is realistic
is disputable).

This is a relevant issue also as a possible answer to the objection which are
put forward by those who do not like the results of inference to depend on
subjective opinions: the rationale is to let the data speak for themselves.

These kind of priors have been called noninformative or reference priors and
are sometimes associated to adjectives such as vague, flat or diffuse.

Reference analysis produces objective Bayesian inference, in the
sense that inferential statements depend only on the assumed
model and the available data, and the prior distribution used to
make an inference is least informative in a certain information-
theoretic sense. (Berger et al, 2009)

The problem is that it is not so obvious what "noninformative" means.
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Non informative priors: uniform

An intuitive solution is to assume

so that no values of  are privileged (principle of insufficient reason).

There are two difficulties

What if the parameter space is not limited?

If the parameter space is not limited a constant has an infinite
integral and so is not a probability distribution.

Is it really non informative?

p(θ) ∝ k

θ
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Improper priors

If we apply (the algebra of) Bayes theorem

with a function  which is not a valid probability distribution, then

 is not necessarily a valid distribution (and if it is not then it is not
useful)
if  is a valid distribution then it is reasonable to interpret it as a
posterior distribution

See examples of uniform prior for the mean of a normal and of improper prior for
the variance of a normal

In practice: the uniform prior may work even if the parameter space is not
limited (on a case by case basis).

p(θ|y) ∝ p(y|θ)p(θ)

p(θ)

p(θ|y)

p(θ|y)
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( ) An improper prior for the variance

Esempio con una Normale di media nota e varianza non nota

Se , ovvero  per la chi-quadro inversa scalata equivalente,
allora

si noti che  è impropria avendo integrale infinito nel range 

A priori improprie possono portare ad a posteriori proprie, da valutare caso
per caso.

improper priors

ν0 = 0

y|σ2 ∼ N(θ,σ2)

σ2 ∼ IG(α,β)

α = β = 0 ν0 = 0

p(σ2) ∝

⇒ σ2|y ≈ Inv−χ2(n, v = ∑
i

(yi − μ)2/n)

1

σ2

p(σ2) ∝ 1
σ2 (0, ∞)
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"Informativeness" of the uniform distribution

The non informative nature of the uniform distribution in general is
disputable.

Let

consider the reparametrization , then

which is not uniform in general.

That is, assuming that uniform means non informative, by specifying a
uniform distribution for the parameter , we are specifying an informative
prior on its transform .

p(θ) ∝ k

ψ = ψ(θ)

p(ψ) = p(θ(ψ))
∣
∣
∣

∣
∣
∣

dθ

dψ

θ
ψ = ψ(θ)
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Principio di invarianza di Jeffreys

Il problema appena evidenziato può essere risolto dalle distribuzioni a priori
(noninformative) introdotte da Jeffreys il cui principio base è quello di
invarianza rispetto a trasformazioni uno-a-uno del parametro: .

Il principio generale di Jeffreys è che qualsiasi regola per determinare la
densità a priori  dovrebbe comportare un risultato equivalente se
applicato al parametro trasformato ; cioè,  calcolato determinando
prima  e applicando poi il teorema del cambio di variabile, i.e.,

dovrebbe corrispondere alla distribuzione  ottenuta utilizzando la
"regola" direttamente sul modello trasformato, .

equivalent, in terms of expressing the same beliefs

N.B. Nel caso multivariato  è il determinante dello Jacobiano  della
trasformazione inversa , dove  è la matrice (quadrata) delle
derivate parziali con elemento  uguale a .

ϕ = h(θ)

p(θ)
ϕ p(ϕ)

p(θ)

pϕ(ϕ) = pθ(h
−1(ϕ)) |J| = pθ(θ)

∣
∣
∣

∣
∣
∣

dθ

dϕ

p(ϕ)
p(y,ϕ) = p(ϕ)p(y|ϕ)

|J| J

θ = h−1(ϕ) J
(i, j) ∂θi/∂ϕj
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Jeffreys' prior

Jeffreys’ principle leads to defining the noninformative prior density as

where  is the Fisher information, that is

with this, for any parametrization , it is easy to derive that,
evaluating  in ,

whence , that is what we wanted to prove:

p(θ) ∝ √I(θ)

I

[I(θ)] = E(( )
2

|θ) = −E( |θ)
∂ log p(y|θ)

∂θ

∂2 log p(y|θ)

∂θ2

ϕ = h(θ)
I(ϕ) θ = h−1(ϕ)

I(ϕ) = I(θ)
∣
∣
∣

∣
∣
∣

2
dθ

dϕ

I(ϕ)1/2 = I(θ)1/2 ∣
∣

∣
∣

dθ
dϕ

p(ϕ) ∝ √I(ϕ) = √I(θ)
∣
∣
∣

∣
∣
∣

dθ

dϕ
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Jeffreys' prior: example

Consider a Binomial experiment, so the log-likelihood is

then

the prior is then a 

log p(y|θ) = y log θ + (n − y) log(1 − θ)

[I(θ)] = −E( log p(y|θ)) =
d2

dθ2

n

θ(1 − θ)

Beta(1/2, 1/2)

p(θ) ∝ θ−1/2(1 − θ)−1/2
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Binomial, reparametrization

Consider the reparametrization

If we assumed a uniform prior on  then

If the Jeffrey's prior is chosen then it implies

which is also equal to

ψ = log( ) ∈ R
θ

1 − θ

θ

p(ψ) = p(θ−1(ψ))
∣
∣
∣

∣
∣
∣

=
dθ

dψ

eψ

(1 + eψ)2

p(ψ) =
eψ/2

1 + eψ

√I(ψ)
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Binomial, reparametrization (cont.)

In fact

√I(ψ) =√−E( )

=√−E( (yψ − log(1 + eψ)))

=√E( )

=√

=

d2 log p(y|ψ)

dψ2

d2

dψ2

eψ

(1 + eψ)2

eψ

(1 + eψ)2

eψ/2

1 + eψ
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Riassunto: Varie a priori non-informative per il parametro della
Binomiale

 da cui la a priori di Jeffrey

A priori Bayes-Laplace è l'uniforme

A priori uniforme per il 

corrisponde ad una  per , ed è impropria

ATTENZIONE: se l'a priori è  e  o  allora l'a posteriori è
impropria!

y|θ ∼ Bin(y|θ,n)
I(θ) = n

θ(1−θ)

p(θ) ∝ θ−1/2(1 − θ)−1/2 ∝ Beta(1/2, 1/2)

p(θ) ∼ Beta(1, 1)

logit(θ)

p(logit(θ)) ∝ constant

Beta(0, 0) θ

Beta(0, 0) y = 0 y = n
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Sensitivity to the prior choice: Jeffrey's v. uniform

Samples imply , .θ̂ = 0.75 n = 4, 8, 12, 16
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Sensitivity to the prior choice

Consider a Beta-Binomial model where  successes are observed on 
trials, so that the ML estimate is , consider as a prior a  with

 (so ), compare below the effect of different choices on the
posterior means and variances

4 n = 10
0.4 Beta(α,β)

α = β E(θ) = 0.5
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Note su a priori non-informative

Se la verosimiglianza è veramente dominante, allora la scelta nella
gamma di a priori relativamente piatte è sostanzialmente indifferente

Una densità piatta per una data parametrizzazione può non essere piatta
in un'altra, e.g.,  ma 

Vantaggio: non sembra valga la pena esprimere la reale conoscenza a
priori come una distr di prob propria se si controlla che la distr a post sia
propria e si effettui l'analisi di sensitività

p(logσ2) = 1 p(σ2) = 1/σ2
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Weakly informative prior

The rationale is that we usually do not really need to start from complete
ignorance (which is what reference priors try to describe).

On the contrary there usually is some information

for the probability of a female birth we are pretty sure it is not 0.1 or 0.9,

The idea is than to use a prior conveying less information than what we
actually have

for the probability of a female birth we may use , or

for the inference on the mean  with  large (where what
large means depends on the problem)

p(θ) ∼ N(0.5, 0.12)
p(θ) ∼ Beta(20, 20)

p(θ) ∼ N(0,A2) A
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Prior distribution, in brief

There are some situations in which it is sensible to put relevant information
into the prior distribution (especially with few data).

In general, even if we had information, it may be deemed inconvenient to
include it wholly in the model (prior), possible reasons include

difficulties to elicit the prior
mathematical simplicity

In this case we have a number of options

uniform / improper priors
non informative priors (Jeffrey's priors)
weakly informative priors (possibly conjugate)

These are all valid options none of which is clearly superior, in fact, if we have
enough data to rely exclusively on them, then the choice among relatively flat
priors should not matter.

On the contrary it is advisable to avoid automatic use of a particular
specification and do some sensitivity analysis.
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Theorem: Mixture of Normals

Theorem

If  and  then

This is easily seen, let

then 

 is a sum of normal r.v. so it is normal,

since 

Back to normal predictive

Y |θ ∼ N(θ, σ2) θ ∼ N(μ, τ 2)

Y ∼ N(μ, σ2 + τ 2).

Z = Y − θ; then Z ∼ N(0, σ2) ∀θ

Y = Z + θ

Y
E(Y ) = E(Z) + E(θ) = 0 + μ = μ

V (Y ) = V (Z) + V (θ) + 2Cov(Z, θ) = σ2 + τ 2 + 2Cov(Z, θ) = σ2 + τ 2

Cov(Z, θ) = E(Zθ) = E(E(Zθ|θ)) = E(E((Y − θ)θ|θ)) = 0
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