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Motivi per utilizzare la distribuzione normale

« Ampiamente usato nella modellazione statistica

« Fondamentale in quanto molti modelli e paradigmi di analisi avanzati si
basano su o coinvolgono distribuzioni normali

 Distribuzione normale spesso giustificata in base al teorema del limite
centrale

« Piu spesso utilizzata per convenienza computazionale o per tradizione
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Teorema del limite centrale

De Moivre, Laplace, Gauss, Chebysev, Liapounov, Markov, et al.

A determinate condizioni la somma (e la media) di variabili casuali si
approssima alla distribuzione gaussiana al tendere di n — 00

I problemi

e non vale per tutte le distribuzioni, ad esempio, Cauchy

 potrebbe richiedere n grandi, per esempio con la Binomiale quando 8 si
avvicinaaOol

e non vale se una delle variabili ha scala molto maggiore
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Modello per una distribuzione normale con media non
nota e varianza nota
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Distribuzione normale (pill osservazioni) con media non nota e
varianza nota

Assume that observations y = (y1, .. ., ¥,) are normal (with unknown mean
and known variance)

The joint distribution p(y) = p(y1, . - - , Y») (multivariate distribution) is
often (quite) difficult to specify directly

Then, it is easier to consider the joint conditional distribution p(y|)

A common assumption is that of exchangeability (beyond that of normality),
i.e.,

Yi, .+, Ynl0 ~ N(y;|0,0?) iid
or

p(ylf) = H p(yi|0)

[
N(yz|07 02)
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Note su scambiabilita

Non é necessario comprendere o utilizzare il termine scambiabilita prima del
capitolo sui modelli gerarchici (capitolo 3).
A questo punto é sufficiente sapere che assumere scambiabilita

« riflette una convinzione, vale a dire che si ha un'opinione simile su ogni
soggetto

« versione piu debole di 2¢d (¢2d & un caso speciale), (quindi)

o l'indipendenza implica la scambiabilita,
o la scambiabilita non implica indipendenza.

e Implica che possiamo modellare ogni x; separatamente
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De Finetti

Diffidente nei confronti delle facili ipotesi di indipendenza, per lo
piu assunte da default, de Finetti avanzo I’idea che per la
dipendenza stocastica (condizionata o meno) si potesse parlare di
dipendenza in senso diretto e in senso indiretto

— diretto quando un evento modifica (in modo significativo ai fini
delle valutazioni di probabilita) le circostanze in cui si verifica un
altro evento;

- indiretto quando si manifesta un fatto H che influisce su tutta
una collezione di eventi “separati” ( B, Es, ..., E};).

Per quest’ultimo, tipico e il caso (ben noto agli attuari) di un inverno rigido

che influisce sulla probabilita di morte di soggetti che non hanno tra loro ne
relazioni ne vicinanze.
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Likelihood

The likelihood is given by

p(yl0) = H (\/2170 exp{—%ﬂ(yi - 9)2})

It is well known that

p(u16) x exp{ 51 (7~ 0}

where y = % Z?:l Y; 1s the sample mean.
Data (y) influence through the sample mean y

« The sample mean is a sufficient statistic for 6 (1 )
e 0% /n is the variance of the sample mean
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The natural conjugate prior of an exponential distribution
The Gaussian distribution in exponential form is, for a single observation,

1w\ 2 .,
p(yi ‘9) = e 22 | e 22e2Y
\2mo

the likelihood is then, letting j = £ "

62

O LA . ’
p(y]0) oxx e M ear™ = g(g)ne?® V)

and the conjugate prior is
_pt 6, 1%
p(6) o g(6)7e?O” = ¢ Ta e = exp{‘i (92 B H) }

that is, the conjugate family is the Gaussian family:

0 ~ N(l'l'()’O-(z])
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Distribuzione normale con media non nota
A priori coniugata per 6

Si assuma noto o2, la distribuzione normale ¢ la famiglia coniugata per la
media non nota di una distribuzione normale

Likelihood p(y|f) o exp (—%(g - 9)2)
o

Prior p(0) o< exp (212(0 ; MO)2>
99
exp(a) exp(b) = exp(a + b)
Posterior p(0ly) o< exp (1 [@9)2 " - 50)2 ] )

2|1 o?%/n o}

N —

202
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Calcula

p(6ly) o p(y/0)m(60) o exp{

X eXP <

X eXP 4

X exP <

X exp

n

202

(7 — 9)2} eXp{ o

0

(9 - M0)2}

,

_L92_L92+9yl 2]
\ 202 20(2) o2 ag
(1 n 1 n 1))
| =+ 92+0<—g+—uo)
2 2 2
\ 2(" "0> g % ,}
4 . \
1 , Utk
— — 6° — 20 o >
n 1 — —
( ~ 1 2\
1 =Y+ 5 Ho
o 9_ o 0'0 >
n 1 -1 £‘|‘i
\ 2<§+0—§> o2 52 /
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Posterior distribution (cont.)

2o (0= m)?)

n

p(0ly) o exp(—

) gt Y 1 1
Oly ~ N(un,0r), where pu, = and = +

e posterior precision = prior precision + data precision
(precision=1/variance, data precision is precision of the ML estimator %)
e posterior mean is a weighted mean with precisions as weights

_ o2 _ _ o?/n
° Uy = Mo+ (y - :U’O) o2+o2/n or P =Y — (y — ,U/O) Y
o Ly = o if y=py or 03 = 0; in limit: p,, — Ko
0‘0%0
U, =74 if §=py or o?=0;inlimitpu, — ¥
n—oo

o if 03 — o2, the prior corresponds to one virtual observation with value o

e If o9 — oo for a fixed n, or if n — oo for fixed oy,
p(0ly) =~ N(6|y,0%/n) i.e. posterior approximates the likelihood

e Lastly, 0, — Oaswellaso, — 0O
n—00 oo—0

(but what the posterior is more concentrated around in the two cases?)
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Supponi che vuoi
indovinare quanto
sono alte 2 persone e
di una sei meno
certo che dell'altra
w1 = 175, uy = 185,

o1 =4,09 =2

Supponi di basare la
priori aui parametri
della popolazione
maschile in

Finlandia
Mpop = 181,
O-pop — 6

La posteriori
combina priori e
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precisa la priori
influenza meno,
viceversa...



Parametrizzazione in termini della precisione

* Precision T —1/c* as the inverse of the variance

X|#, JZNN(;“: 52)9x|ﬂ:TMN(ﬂn T)

X |t~ N(u,t

Precision of the prior]

Prior distribution

Conditional probability of the data f/{ Precision of the data ]

}LI' ‘ .’L{p? Tﬁ; - i:\lr(lL{Hﬂ z-..u)

Precision of
the posterior

Posterior distribution

HIX, T~ Ny, Ty )

17/ 88



Accumulazione della precisione nella a posteriori

Prior: Ny, )

Likelithood: N(x
N(x

U, 7)

U, nNT)

Posterior:  N(u,x, 7,1

Ty =0, +NT

N
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Media a posteriori

Prior: Nu,. 1)

Likelihood: N(x |, 1)

N(x | 1, nt)

Posterior: N5, T,5)

7, nt
My =—H, +—
Tﬁ‘l‘??f T#+r?r
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Shrinkage toward the prior

« La a posteriori e una sintesi della a priori e della verosimiglianza

e Puo0 essere vista come un aggiornamento della a priori alla luce dei dati
(cosi come riflessi nella verosimiglianza)

e Puo essere vista come un augmentation (aumento) delle informazioni
nei dati (cosi come riflesse nella verosimiglianza) grazie alle informazioni
nella a priori

o In questo modo, la a posteriori non appare esattamente come la
verosimiglianza, viene "tirata" verso la a priori

o La a posteriori mostra un shrinkage (contrazione) verso la a priori

o La misura nella quale la a posteriori si restringe verso la a priori
dipende dalla quantita relativa di informazioni nella a priori e nei
dati
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Poca informazione nei dati ( 72 piccolo )

Prior: NMu,. 7))

Likelihood: N(x | u, 1)

N(x | 1, nt)

Posterior: N, Ty5)

7, nt o _
My =M, +——X
T,+nt
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Molta informazione nei dati ( n grande )

Prior: N(u,, 1))

Likelihood: N(Xx |, 1)

N(x | i, n1)

Posterior: N, T,5)

T, nr

L a
T, +nt T, +nt j

/L {ulx -
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Inferenza intervallare

In una distribuzione a posteriori normale (gaussiana) p(p|x) = N (g,,/x, ailx)
un 100(1- )% intervallo highest posterior (e central) &

Fou|x + R1—a/20 u|x

dove 2;_4/9 € i1 100(1—ct/2)-esimo percentile di una normale standard (i.e,
P(Z > 21 o) = a/2).

P(pyx — 1.960,x < p < pyx +1.960,x) = 0.95

23 /88



Esempio

Supponiamo di avere un test con punteggio da 0-100
essere interessati alla distribuzione dei punteggi dei test per gli studenti
avere 1 punteggi dei test di n studenti
Sia x; il punteggio del test per lo studente 2
Postuliamo una distribuzione per i punteggi dei test degli studenti
wz":ua 0% ~ N(/J'7 02)
o (:1a media della popolazione dei punteggi
o ¢2:la variabilita nella distribuzione dei punteggi
La varianza nota & 02 = 25
x = (91,85,72,87,71,77,88,94,84,92), T
A priori per pu: N(u,,07)
py, = 795, aﬁ = 50

84.1
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Esempio: distribuzione a posteriori
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Esempio: inferenza

50 60 70 80 90
mu

P(mu)
0.00 0.04
I |

I
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L
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L T I I i I I
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mu
B
=S
=
_— _
= i i i i i i
50 60 70 80 90 100

mmn

Riassunto: distr a post p|x, 0% ~ N (pux = 83.67, ai

~ N, =75, 5,2 = 50)

L(u|x.0*)=p(x | u o)
=1L p(x; | 1, 02)

— TT. N(» 2 — 95
=1L N(x, | u, 0> = 25)

Hlx 0%~ N, 057 )

2=7 38)

1|x

~ N = 83.67. g,

= 2.38), media

|x

(anche mediana e moda) a post € = 83.67, sd a post &€ = 1.54, 95% HPDI

(80.64, 86.69)
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Asintotiche & connessioni con l'inferenza frequentista



A posteriori asintotica
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(03 — 00) A uniform "distribution' for the mean

Consider the inference for the mean in a Gaussian sample starting from a
prior 6 ~ N (po, 03) the posterior is

2

2 | =2 2 2
Moo~ 1 Yno, o o,
bl
o2+ nag % + nog

if 0[2) is big relative to o2 /m this is approximately

_o?
N Yy, —
n
which is the same as we would obtain by assuming
p(0) x k

improper priors
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Connessioni con l'inferenza frequentista

Bayes, as n = wor o'yz = «  Frequentist, n = «

2 2
. . . _ g e (o3
Distribution plulx)— N( 1—) p(X)— N[;f,w)
n
Point estimate ~ f,, > X X
o c o
Variability O —> T Ge—>—=
n n
o} o
Interval XtZ ,— x+Z ,—
% 4

Asn => worog,? > o, will be similar
numerically, but very different conceptually
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Critiche e giustificazioni

« Asintoticamente, la a priori diventa irrilevante

o Principio di stima stabile
o La critica al “ruolo dell'a priori” perde forza

« “Vigarantiamo l'approccio bayesiano asintoticamente, la nostra denuncia
é per campioni finiti”

« Ma l'approccio frequentista e giustificato solo in modo asintotico!
o Stima dei parametri, errori standard, adattamento del modello di dati
« L'approccio bayesiano non ha bisogno di invocare gli argomenti asintotici

o E seli concedi al frequentista, non dovresti concederli al bayesiano?

The principle of stable estimation, or precise
measurement, specifies that when a likelihood
function is sharply peaked in an interval over
which a prior density is relatively flat, the posterior
density does not differ much from the normed
likelihood function.
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Riassunto del modello di distribuzione normale con media non nota

« Scambiabilita comporta fattorizzazione
Sufficienza della media campionaria
A priori Normale come coniugata
Precisione come inversa della varianza
o Questo e cio che utilizzano alcuni software (BUGS, JAGS)
A posteriori come sintesi di a priori e dati
o Shrinkage to the prior
Asintotiche e connessioni con l'approccio frequentista
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Modello normale: distribuzione predittiva

Spesso la distribuzione predittiva e piu interessante della distribuzione a
posteriori. La distribuzione a posteriori descrive l'incertezza nei parametri
(come la proporzione di "orsetti" rossi nel sacchetto), mentre la distribuzione
predittiva descrive anche l'incertezza sull'evento futuro (come quale colore
viene scelto all'estrazione successiva).

Nel caso di distribuzione Gaussiana con varianza nota o2 il modello &
2
y~ N(0,0°),

ove o2 descrive l'incertezza aleatoria.
Con I'a priori uniforme 1'a posteriori e

p(8ly) ~ N(6]g,0* /n),

dove o2 / n descrive l'incertezza epistemica connessa a 6, mentre la
distribuzione predittiva a posteriori per un nuovo ¥y e

p(ily) ~ N(7lg, 0" + o*/n),

dove l'incertezza e la somma dell'incertezza aleatoria ( o2 ) e dell'incertezza
epistemica (o2 /n ).
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Modello normale: distribuzione predittiva - a priori coniugata per la
media

Nel caso di a priori normale, la distribuzione predittiva a posteriori e
p(ily) = [ p(alo)p(6)as
_ 1 1 2
p(ly) o [ exp| =25 (5 —0)" ) exp( —— (0 — )" |dO

o 202
Quindji,
7y ~ N(pn, 0* + o7)
(go to theorem)

Possiamo anche derivare i momenti di ordine primo e secondo come segue

E(jly) = E(E(§|y,0)ly) = E(0|y) = tn
V(gly) = E(V(§ly,0)|y) + V(E(F|y, 0)|y)
= E(o*|ly) + V(0ly) = o* + o2

Di nuovo, la varianza predittiva e = varianza del modello osservazionale o?+
varianza a posteriori o2 (varianza sul modello). 34/ 88



Model for a normal distribution with known mean and
unknown variance
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Likelihood

Although not a realistic situation, this is relevant both as

e an example of inference for a scale parameter
e a building block for the model on Gaussian data with both the mean and
the variance unknown

Let then @ be known and

Yiy--- 7yn’0-2 ~ N(yz\ﬁ, 0'2) iid

so the likelihood is
pl0lo”) o [T (o] 550~ 97}
1 \V27o 202
_n 1 &
x (o%) /2exp{22 <yze>2}
o =1
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Conjugate prior

The corresponding conjugate prior is the inverse-gamma (IG)

o? ~ Inv-gamma(a, 3)
p(O_Z) - (0_2)—(oz—|—1)e—ﬂ/a2

which is the same as saying that

1
Pl Gamma(a, §)

with the same hyperparametrers o and 3.

Note that

E(c?) = % fora > 1,
V(c?) = (a—l)ﬁ;( —y fora>2,
Mode(o?) = 0%1
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A priori gamma inversa per la varianza

p(c?) =1G(a, B),cono? > 0, > 0,8>0
\ - o mm womm o

/
Il Il I I N S S . ;
I Im -Gamma(3, ?) I ] I ITnv-Gamma(l5, 13)
- Py e el
e
' \
P

A~ !
\
I Inv-Gamma(.01,.01) _I b Y g ~
RN { Inv-Gamma(3.6) §
1 .’ 3’;‘-- - /
: -l ‘ "\ ~ -~ el -
(! N S~ Voon..
i | T T
0 1 2 3 1

integrale e finito se a > 0, la densita e finitase a > 1

Non-informativa se o, 8 — 0
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Posterior

The posterior distribution is then

p(o’ly) o p(y|o?)p(c?)

that is,

0’|y ~ Inv-gamma (% + o, %'v + B)
The posterior mean is E(o?|y) = 215;71_1)2
The posterior mode is Mode(o?|y) = ;.i%
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Reparametrization 1

It is convenient to reparametrize the model with the precision 7 = 1/02, so
the prior assumption is

T ~ Gammal(a, ),

the likelihood is
nv
p(ylr) o< ()" exp{ -7}
and the posterior is Gamma(n/2 + o, nv/2 + B):

nv
p(rly) o 772 eXp{_TT}Ta—le—ﬁf

o[
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Inference for o2

Prior is an inverse gamma with parameters o = 3 = 10~°, sample variance
is 0.5,n = 10

<
N

1.5

1.0

0.5

0.0
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Inference for 7 = 1/0?

Prior is a gamma with parameters o = 8 = 103, sample variance is 0.5,
n = 10

02 03 04 05

0.0 0.1
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Inference for o2

Prior is an inverse gamma with parameters o = 8 = 1, sample variance is
0.5,n =10

1.5

1.0

0.5

0.0
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Inference for 7 = 1/0?

Prior is a gamma with parameters &« = 8 = 1, sample variance is 0.5, n = 10

0.4

0.2

0.0
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Reparametrization 2 with Inv—x2: prior

Another convenient parametrization is to write

2

o :d X Y X ~ X12/0

following Gelman we call this Inv-x? (v, o7 ) (inverse-scaled x?).

This corresponds to vy = 2a and 03 =5 / a, or, in other terms, implies that
o? ~ Inv-gamma(vy/2, (1y/2)0;), the density is

((moog)/2)%
plo) =~ () exp (- (e} (207}
Note that
9 1/00‘2 9 I/()O'g
E(o%) = 1 vy > 2; Mode(c?) = B
oo2)2
V(02) = (v09) , vy > 2

(vo —2)*(v0 — 1)
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Reparametrization 2 with Inv—x2: posterior
The posterior is then

~2
1/00(2) + NoyLE

)+ 1N

o’y ~ Inv-x* | vy + n,

the scale parameter being a weighted average of the prior variance 03 and the
MLE with weight given by v and n.

Then
2 A2
E(c?|y) =
(c%ly) e
9 ~2
Voo, + no
Mode(c?|y) = 0 MLE

Vo +n+ 2

The priori can then be interpreted as information equivalent to 1
observations with variance 0[2) (a non-informative prior corresponds to

Vg = 0)
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Summary of priors for the variance

Distribution Density Mean Mode
z ~ Gamma(a, ) r*?a}za_le_-sz 5 eda>1
. e 1 . .
z ~ inv-Gamma(a, 3) r’fa]z a-lg=h/z L a>1 T
. 2 (vo/2)/2) —vf2-1_—va/(22) ve 2 va
Z ~ 1nv-x (‘UU G-) Mw/2) z € =27 v > L2

z ~inv-Gamma(v/2,vo/2)
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Una a priori per la varianza

Molti approcci per specificare una a priori per la varianza

e Quale parametro?

o Varianza o2

o Deviazione standard o
o Precisione 7 = o2

e Quale distribuzione?

o Uniforme, Gamma inversa, Gamma, Esponenziale, semi-Cauchy,
half-$t$, half-normale

Si tende a scriverlo in termini di varianza ( o2 )
Il software Stan utilizza la deviazione standard ( o)
Altri software (eg BUGS) utilizzano la precisione ( 7)
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A priori esponenziale per la Deviazione Standard

p(o) = exp(A), f(o|\) = Ae™*?, cono > 0, A > 0

0 = Exponential(1)
" — — Exponential(0.5)
& ===+ Exponential(1.5)

E(o) = 1/)X ->si puo pensare che la stima migliore per o sia 1/

E'una Gammacona =1
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A priori diffusa per la variabilita

Campo di ricerca in continua espansione su come rappresentare un'a priori
diffusa per la variabilita

Considera diverse a priori per varianza, precisione, deviazione standard

IG(a, B) per la varianza, equivalentemente Gamma(c, ) per la
precisione, con a = 3 =~ 0 (eg., .001), usate perche si sosteneva che
garantissero un'adeguata diffusione a priori

La ricerca metodologica ha contestato cio

Si suggeriscono altre distribuzioni come esponenziale, half-normal, half-
Cauchy, uniforme e altre
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Standard distributions

e Binomiale: conteggio di risultati indipendenti ("scambiabili”)

e Normale: X = Zf\il Z;, N grande, Z; indipendenti ("scambiabili")

» Poisson: conteggio di occorrenze

« Esponenziale: tempi di attesa per eventi che accadono indipendentemente

- dato un tasso costante di occorrenza - ("scambiabilmente") in un dato
intervallo di tempo.

Per tutti questi casi, la costante di normalizzazione p(y) & calcolabile e quindi
I'a posteriori p(6|y) ha forma chiusa.
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Poisson Model
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Count data: Poisson likelihhod

Assume that y; is a count (e.g., a disease incidence) modelled as a Poisson

variate and that y = (yq, . .., y,) are observed and
Y1,---,Yn|0 ~ Poisson(y;|0) iid
then, if we let ¢(y) = .., y;, the likelihood is

o vied
p(y6) =]

|
-1 I
x Ot g0

where t(y) is the sufficient statistics.
The likelihood
p(u]6) oc (e %)) 5"

belongs to an exponential family with natural parameter ¢(6) = log 6.
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Conjugate prior to Poisson likelihood

The conjugate prior has to be

p(8) x 6° e x Gammal(a, B)

which is equivalent to a total count of & — 1 in 3 prior observations.

The posterior is then
p(8ly) = Gamma(a + Y vi, B+ 7)

The posterior mean being

a -+ ny
B+n

E0ly) =
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Distribution of y is Negative Binomial

Prior predictive distribution of a Poisson model has a negative binomial
distribution.

p(y|0)p(0)
p(0ly)

Note that p(y) = , then, for a single poisson observation g,

() = Poisson(y|#) Gamma(6|a, 5)
PY= Gamma(f|la +y, 8+ 1)

which reduces to

a+y—1 B \/ 1 Y\?
p(y) = 207 ) \ a7
Y B+1 B+1
known as negative binomial

y ~ Neg-Bin(a, )

The negative binomial distribution describes the number of failures that
occur until a predefined number of successes « occurs in a Bernoulli process
with parameter 3/(8 + 1).
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Negative Binomial is a mixture of Poisson

The above derivation shows how the negative binomial distribution is a
mixture of Poisson distributions with 6 rates following a Gamma distribution.

Neg-Bin(a, §) :/Poisson(y|9)Gamma(9\a,ﬁ)d@
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Poisson model with exposure

Assume we know for each observation y; the value of an explanatory variable
x; (> 0), e.g.

 y; is the incidence of a desease in unit ¢

e x; is the exposure in unit 7
e @istheincidence rate

y;|0 ~ Poisson(6z;)
6 ~ Gamma(a, ()

p(y]6) oc 6% VeI

p(0ly) ~ Gamma(a + Z Yi, B+ Z ;)

Note: model non exchangeable in y;'s but exchangeable in couples (x, y);.
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Example: estimate of incidence rate from count data

In a given year, in a US city of 200,000 inhabitants, we observed y = 3
deaths for asthma

Let 6 be the underlying long-term asthma mortality rate (measured in
cases per 100,000 persons per year)

The exposure is then x = 2

Then, y|@ ~ Pois(26)

(prior elicitation) If we assume 6 ~ Gamma(3, 5) (assuming that the city

and year are exchangeable with other years and cities from which we get
information about 6)

Then, 8|y ~ Gamma(6, 7)

Do you notice a shrinkage toward the prior compared to the "raw"
mortality rate?

Imagine that we have more data: y = 30 in the following 10 years (in the

same city, with a constant population of 200,000). How does the posterior
change?
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Prior elicitation

We want to choose a prior within the conjugate family, so

p(#) = Gamma(a, 5)

In order to assess appropriate hyperparameters o and 3 we use the fact that

according to epidemiological literature

e (1) rates above 1.5 per 100 000 are rare
e (2) typical mortality rate is around 0.6 per 100 000

Fact (2) suggests

E@:%:M

Fact (1) suggests that we should keep P(6 < 1.5), for example
B=5

a = 3;

leads to P(6 < 1.44) = 0.975.
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Shrinkage to the prior

Starting from a prior p(#) = Gamma(3, 5) the observation y = 3 with
exposure £ = 2 leads to the posterior

0y ~ Gamma(3 + 3,5 + 2)

whose mean is 0.86

ol
—

1.0

0.5
|

*
LTI
-
++++++

0.0

The posterior mean is shrunken towards the prior mean 0.6 away from the
observed mortality rate 1.5.
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More (exchangeable) observations

With a constant population of 200,000 and assuming that the ten-year results
are independent with a constant long-run rate 6, the posterior distribution of

@ is then

0|y ~ Gamma/(33, 25)

whose mean is 1.32.

1.5

1.0

0.5
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Exponential Model
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Exponential Model

y continuous variable, y > 0, real-valued, e.g. a waiting time
property: memoryless

P(y>t+sly>s,0)=P(t>t0) Vt,s
Sampling model Exp(y|6)
p(ylf) = Oexp (—Oy) fory > 0,60 >0

E(y) =1/6,0 = 1/E(y|0) is called the rate

Exp(f) = Gamma(a = 1,8 = 0)

If n observations, the likelihood is p(y|0) = 0" exp (—0 ), v:)
Prior p(f) = Gamma(a, 8) o< 02 te=

From the likelihood prior parameters can be interpreted asa — 1
exponential observations with total waiting time 3

Posterior p(f|y) = Gamma(a + 1, 8 + y)
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Prior distribution
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Prior distribution

The prior distribution is a novelty in Bayesian statistics with respect to
classical statistics.

It is

e an opportunity, since we can formally include information other than
observations in inference

e a problem, since we must include in inference informations which do not
come from the experiment (observations).

From what we already discussed we know that

« Attitude toward subjective priors are the most various, from essential to
unacceptable.

» (Reasonably specified) prior information vanishes as the sample size
tends to infinity. This helps but is not a panacea, we have finite samples,
so in practice our inference will be affected by the prior.
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Sensitivity of results to prior's choice

The following example, due to Berger, shows that the same experimental
result may lead to different conclusions depending on the prior distribution.

n

Yi,...,Y, iid(N(6,1)) hence L(0) exp(—E(g —6)%)

Let us fix the quartiles of the prior distribution:
IQ=-1; Me=0; IIIQ=1

There are infinite probability distribution coherent with the above values, let
us consider

e Gaussian: 0 ~ N (0,2.19)
e Laplace: 6 ~ La(1.384)
e Cauchy: 6 ~ Ca(0,1)
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Sensitivity of results to prior's choice (cont.)

0.7 -
0.6 Laplace
0.5 - p(0) = Sexp(—X|6))
0.4 7 Cauchy
037 p(9) = w(11+92)
0.2 -
Gaussian
2; ] p(8) = ——exp(—756%)

I [
-6 -4 -2 0 2 4 6
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Sensitivity of results to prior's choice (cont.)

Assume n = 1, consider three different samples

s=0 s=2 s=5

0.8
0.8
|
0.8

0.4 0.6
0.6
|

0.2
0.2

0.2

0.0
|

0.0

0.0

Caution: relatively similar prior could lead to different posterior.
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How do we choose a prior?

Any probability distribution (and not only) can be a prior for

0 cO

A reasonable requirement is that supp(p(0)) = ©

(note that the support of the posterior distribution is, whatever the likelihood,
a subset of the support of the prior distribution).

Typical choices are
e conjugate distributions;
e noninformative (reference) priors
o uniform prior
o Jeffreys prior

o improper prior

« weakly informative distributions
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Conjugate priors: pros and cons

A family of distributions f(6; v) is a natural conjugate for the likelihood L(6)
if, assuming p(0) = f(0; v) the posterior distribution is in the same family,
that is p(@|y) = f(0; 1) for some v.

+ the main advantage is that solutions are available in closed form and are
easily obtained,;

— restricting the choice to the conjugate family may be too restrictive;

X conjugate families are less relevant today due to the use of MCMC and
similar method to explore posterior distribution (closed forms are not needed
anymore).

Conjugate priors examples
e Beta + Binomial;

e Gaussian + Gaussian (for the mean, variance known);
e Gamma + Poisson.
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Noninformative (reference) priors

Abandon the idea that the prior distribution is meant to reflect the opinion of
the researcher prior to observing any data.

Rather, we want to model the absence of any opinion (whether this is realistic
is disputable).

This is a relevant issue also as a possible answer to the objection which are
put forward by those who do not like the results of inference to depend on
subjective opinions: the rationale is to let the data speak for themselves.

These kind of priors have been called noninformative or reference priors and
are sometimes associated to adjectives such as vague, flat or diffuse.

Reference analysis produces objective Bayesian inference, in the
sense that inferential statements depend only on the assumed
model and the available data, and the prior distribution used to
make an inference is least informative in a certain information-
theoretic sense. (Berger et al, 2009)

The problem is that it is not so obvious what "noninformative" means.
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Non informative priors: uniform

An intuitive solution is to assume
p(0) x k
so that no values of @ are privileged (principle of insufficient reason).
There are two difficulties
« What if the parameter space is not limited?

o If the parameter space is not limited a constant has an infinite
integral and so is not a probability distribution.

 Isitreally non informative?
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Improper priors
If we apply (the algebra of) Bayes theorem

p(6ly) o< p(y|0)p(6)

with a function p(#) which is not a valid probability distribution, then

o p(0|y) is not necessarily a valid distribution (and if it is not then it is not
useful)

o if p(f|y) is a valid distribution then it is reasonable to interpret it as a
posterior distribution

See examples of uniform prior for the mean of a normal and of improper prior for
the variance of a normal

In practice: the uniform prior may work even if the parameter space is not
limited (on a case by case basis).
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(o = 0) An improper prior for the variance

Esempio con una Normale di media nota e varianza non nota
2 2
y|0 ~ N(O, o )
o? ~ IG(a, B)

Sea = B = 0, ovvero vy = 0 per la chi-quadro inversa scalata equivalente,
allora

1
p(c?) x —
o
= o’y ~ Inv—x*(n,v =Y (¥ — p)*/n)

1

si noti che p(az) X =3 é impropria avendo integrale infinito nel range (0, o)

A priori improprie possono portare ad a posteriori proprie, da valutare caso
per caso.

improper priors
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"Informativeness" of the uniform distribution

The non informative nature of the uniform distribution in general is
disputable.

Let
p(f) < k
consider the reparametrization ¥ = 1(0), then

do

p(¢) = p(0(¥)) @

which is not uniform in general.

That is, assuming that uniform means non informative, by specifying a
uniform distribution for the parameter 8, we are specifying an informative

prior on its transform v = ().

75/ 88



Principio di invarianza di Jeffreys

Il problema appena evidenziato puo essere risolto dalle distribuzioni a priori

(noninformative) introdotte da Jeffreys il cui principio base e quello di

invarianza rispetto a trasformazioni uno-a-uno del parametro: ¢ = h(6).

Il principio generale di Jeffreys é che qualsiasi regola per determinare la
densita a priori p(#) dovrebbe comportare un risultato equivalente se

applicato al parametro trasformato ¢; cioe, p(¢) calcolato determinando
prima p(0) e applicando poi il teorema del cambio di variabile, i.e.,

do

de

dovrebbe corrispondere alla distribuzione p(¢) ottenuta utilizzando la
"regola” direttamente sul modello trasformato, p(y, ¢) = p(¢)p(y|®).

Py(9) = po(h™"(9)) |J] = po(0)

equivalent, in terms of expressing the same beliefs

N.B. Nel caso multivariato |J| ¢ il determinante dello Jacobiano J della
trasformazione inversa # = h~1(¢), dove J & la matrice (quadrata) delle
derivate parziali con elemento (i, j) uguale a 96; /0¢;.
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Jeffreys prior
Jeffreys’ principle leads to defining the noninformative prior density as
p(6) o< /Z(0)

where 7 is the Fisher information, that is

10)] - B ((alogag(ym )29> 5 (62 ot 4310 |9>

with this, for any parametrization ¢ = h(0), it is easy to derive that,
evaluating I(¢) in 6§ = h~1(9),

do |2

¢

, that is what we wanted to prove:

Z(¢) = Z(9)

d¢

p(6) x /Z(6) = \/20) | 55

whence Z(¢)'/? = Z(9)'/2 ’d—g
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Jeffreys' prior: example
Consider a Binomial experiment, so the log-likelihood is

log p(y|0) = ylog 6+ (n — y) log(1 — 6)
then

d2

20) = -5 (S loepul0)) = 51

do?
the prior is then a Beta(1/2,1/2)
p(6) o< 6712 (1 — )12

prior Beta(0.5,05) ++«++ lik(y=4,n=5) —— posterior

2.5
2.0
1.5 1
1.0
0.5

0.0 -
00 02 04 06 08 1.0
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Binomial, reparametrization

Consider the reparametrization

Y = log(%) eR

If we assumed a uniform prior on € then

_ do e¥
p(8) =207 | 35| = oo
If the Jeffrey's prior is chosen then it implies
¥/2
e
which is also equal to
Z(¢)
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Binomial, reparametrization (cont.)

In fact

d2logp (y¥)
\/ T )

E — log(1 + e‘/’)))

B
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Riassunto: Varie a priori non-informative per il parametro della
Binomiale

» y|6 ~ Bin(y|6,n)

« I(0) = T - 57 da cuila a priori di Jeffrey

p(0) x 67Y2(1 — 0)"Y? x Beta(1/2,1/2)
« A priori Bayes-Laplace é I'uniforme
p(0) ~ Beta(1,1)
o A priori uniforme per il logit(6)
p(logit(6)) o< constant
corrisponde ad una Beta(0, 0) per 6, ed & impropria

ATTENZIONE: se I'a priori & Beta(0,0) e y = 0 o y = n allora l'a posteriori &
impropria!
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Sensitivity to the prior choice: Jeffrey's v. uniform

Samples implyé = 0.75,n =4,8,12,16.
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Sensitivity to the prior choice

Consider a Beta-Binomial model where 4 successes are observed on nn = 10
trials, so that the ML estimate is 0.4, consider as a prior a Beta(a, 8) with

a = B (so E(6) = 0.5), compare below the effect of different choices on the

posterior means and variances

a+ 3 V(0) E(@|y) V(Oy)

Jeffrey 1 0.1250 0.409 0.0201
Uniform 2 0.0833 0.417 0.0187
5 0.0417 0.433 0.0153

10 0.0227  0.450 0.0118

20 0.0119 0.467 0.0080

50 0.0049 0.483 0.0041

100 0.0025 0.491 0.0023
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Note su a priori non-informative

« Sela verosimiglianza é veramente dominante, allora la scelta nella
gamma di a priori relativamente piatte e sostanzialmente indifferente

e Una densita piatta per una data parametrizzazione puo non essere piatta
in un‘altra, e.g., p(log 0%) = 1 ma p(c?) = 1/0*

« Vantaggio: non sembra valga la pena esprimere la reale conoscenza a

priori come una distr di prob propria se si controlla che la distr a post sia
propria e si effettui I'analisi di sensitivita
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Weakly informative prior
The rationale is that we usually do not really need to start from complete
ignorance (which is what reference priors try to describe).
On the contrary there usually is some information
 for the probability of a female birth we are pretty sure it is not 0.1 or 0.9,

The idea is than to use a prior conveying less information than what we
actually have

. for the probability of a female birth we may use p(6) ~ N(0.5,0.1%), or
p(0) ~ Beta(20, 20)

« for the inference on the mean p(6) ~ N(0, A?) with A large (wWhere what
large means depends on the problem)
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Prior distribution, in brief

There are some situations in which it is sensible to put relevant information
into the prior distribution (especially with few data).

In general, even if we had information, it may be deemed inconvenient to
include it wholly in the model (prior), possible reasons include

o difficulties to elicit the prior
« mathematical simplicity

In this case we have a number of options
e uniform /improper priors
e non informative priors (Jeffrey's priors)
« weakly informative priors (possibly conjugate)

These are all valid options none of which is clearly superior, in fact, if we have
enough data to rely exclusively on them, then the choice among relatively flat
priors should not matter.

On the contrary it is advisable to avoid automatic use of a particular
specification and do some sensitivity analysis.

86 / 88



Appendix



Theorem: Mixture of Normals

Theorem
IfY|0 ~ N(0, 0%) and  ~ N(u, 72) then

Y ~ N(u, 0% +72).

This is easily seen, let

Z =Y —6; then Z~ N(0,c?) V6

thenY =2-+6

e Y is a sum of normal r.v. so it is normal,

« EY)=EZ)+E0)=0+p=p

« V(Y)=V(Z2)+V(0) +2Cov(Z,0) = 0® + 172+ 2Cov(Z,0) = 0% + 72
since Cov(Z, 0) = E(Z6) = E(E(Z8|6)) = E(E((Y — 6)8]8)) = 0

Back to normal predictive
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