¢ Modelli multiparametrici

® marginalizzazione
Modello Normale con media e varianza non note

® a priori non-informativa

® a priori coniugata e semi-coniugata
Integrazione Monte Carlo (es per dati normali)
Modello Multinomiale con a priori coniugata Dirichlet
(Modello Normale multivariato con media non nota e
covarianza nota/non nota)

Applicazione: analisi di un esperimento biologico
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64,065

01 é il parametro d’interesse

0o € parametro di disturbo

Distribuzione congiunta dei parametri (Teorema di Bayes)

p(01,02 | y) o< p(y | 01,02)p(01,02)

Marginalizzazione della congiunta a posteriori per trovare la
distribuzione marginale a posteriori di 81 (averaging over 65)

p(6; | y) = / p(61,02 | v)dbo
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64,065

01 é il parametro d’interesse

0o € parametro di disturbo

Distribuzione congiunta dei parametri (Teorema di Bayes)

p(01,02 | y) o< p(y | 01,02)p(01,02)

Marginalizzazione della congiunta a posteriori per trovare la
distribuzione marginale a posteriori di 81 (averaging over 65)

p(6; | y) = / p(61,02 | v)dbo

® Una forma alternativa della fattorizzazione della
distribuzione congiunta

Py | y) = / p(6: | 62, y)p(62 | y)d6s

che mostra come la p(6 | y) sia una mistura di distribuzioni
condizionali a posteriori dato 6, dove p(62 | y) € una

funzione peso per i possibili valori di 6.
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e obiettivo é trovare la marginale a posteriori di una quantita
d’interesse

® un parametro del modello
® un evento futuro, ad es, la distribuzione predittiva a posteriori
che é ottenuta marginalizzando la distribuzione a posteriori

P | y) = / p(7.0| y)d6
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e obiettivo é trovare la marginale a posteriori di una quantita
d’interesse

® un parametro del modello
® un evento futuro, ad es, la distribuzione predittiva a posteriori
che é ottenuta marginalizzando la distribuzione a posteriori

P | y) = / p(7.0| y)d6

— / p(7 | 0)p(6 | y)do
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e Raramente gli integrali vengono calcolati esplicitamente.
¢ O siusa il metodo Monte Carlo
* (%) estrazioni da p(d | y) possono essere usate per
approssimare valori attesi (integrali)

S

1
Ena[6] = [ 0p(01y) = g >0

s=1

da cui anche I'approssimazione di valori attesi di funzioni

p(a(0)1)[9(0 ]—/g p(o|y)~ SZQ
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e Raramente gli integrali vengono calcolati esplicitamente.
¢ O siusa il metodo Monte Carlo
* (%) estrazioni da p(d | y) possono essere usate per
approssimare valori attesi (integrali)

Eqorl0] = / 0p(0 | y) ~ Ze“

da cui anche I'approssimazione di valori attesi di funzioni

p(a(0)1)[9(0 ]—/g p(o|y)~ SZQ

e come, ad es., 'approssimazione Monte Carlo della
distribuzione marginale

S
1
plos | y) ~ 5 > (01165 y),

s=1

dove 6 sono estrazioni da p(6; | y)
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e Raramente gli integrali vengono calcolati esplicitamente.
¢ O siusa il metodo Monte Carlo
* (%) estrazioni da p(d | y) possono essere usate per
approssimare valori attesi (integrali)

Eqorl0] = / 0p(0 | y) ~ Ze“

da cui anche I'approssimazione di valori attesi di funzioni

p(a(0)1)[9(0 ]—/Q p(o|y)~ SZQ

e come, ad es., 'approssimazione Monte Carlo della
distribuzione marginale

S
1
plos | y) ~ 5 > (011657 y).
s=1

dove 6 sono estrazioni da p(6; | y)
® oppure essa viene simulata procedendo in questo modo: 5,



e estrai 0 ~ p(02 | y)
e estrai 0 ~ p(61 | 0 %)
o o{™, Ggm) per m= 1,...,M
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-4 -2 0 2 4
e Notazione abbreviata

® y ~ N(u,o?) con varianza o2
(utile nelle derivazioni analitiche)
® y ~ N(u, o) con deviazione o

(utile per interpretare le scale a priori e a posteriori, usato in

Stan)
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Modello Normale / Gaussian 0

* Regressione lineare normale
connessione alla regressione least squares via (y — 11)?
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Modello Normale / Gaussia o —

* Regressione lineare normale
connessione alla regressione least squares via (y — 11)?

e Analisi di osservazioni a valori reali

¢ Talvolta approssimazione conveniente per osservazioni
discrete
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Modello Normale / Gaussia o —

* Regressione lineare normale
connessione alla regressione least squares via (y — 11)?

¢ Analisi di osservazioni a valori reali

¢ Talvolta approssimazione conveniente per osservazioni
discrete

e Conveniente come distribuzione a priori
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Modello Normale / Gaussia o —

* Regressione lineare normale
connessione alla regressione least squares via (y — 11)?

Analisi di osservazioni a valori reali

Talvolta approssimazione conveniente per osservazioni
discrete
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Processi Gaussiani sono in pratica normali multivariate
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Modello Normale / Gaussiano

® Regressione lineare normale
connessione alla regressione least squares via (y — 11)?

Analisi di osservazioni a valori reali

Talvolta approssimazione conveniente per osservazioni
discrete

e Conveniente come distribuzione a priori
Processi Gaussiani sono in pratica normali multivariate
filtri di Kalman sono normali pia chain rule
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Modello Normale / Gaussiano

® Regressione lineare normale
connessione alla regressione least squares via (y — 11)?

Analisi di osservazioni a valori reali

Talvolta approssimazione conveniente per osservazioni
discrete

e Conveniente come distribuzione a priori
Processi Gaussiani sono in pratica normali multivariate
filtri di Kalman sono normali pia chain rule

Come approssimazione della distribuzione a posteriori con
Laplace, inferenza variazionale, expectation propagation

7137



e ;. € il parametro d’'interesse
* o2 é parametro di disturbo

p(u.a? | y) o p(y | p,o®)p(p, o?)
Pt | y) = / p(st | 0. y)p(o? | y)do?

p(u | y) é una mistura di distribuzioni condizionali a
posteriori dato o2 dove p(c? | y) € una funzione peso per i
possibili valori di o2.
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Modello Normale, p(u, o%) e Gz

Iniziamo con una a priori non-informativa e poi passsiamo ad
una informativa.

Una a priori non-informativa convenzionale per p(y, 02) é -
assumendo indipendenza a priori tra . e o2 - uniforme su

(1, log o) ovvero
1

p(/h 02) X ?

a priori impropria.
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Modello Normale, p(u, o) o G

* Modello osservazionale
y = (y1,.-.,¥n), sSi assuma scambiabilita:

Yilu, 0® % N(u, 02),

: 1 ex _L(._ )2>
.yl \/2771_0_ p 20_2 yl :u’

e A priori non-informativa

p(u, 0%) oc o2
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Modello Normale, p(u, o) o G

* Modello osservazionale
y=(,...,¥n), Si assuma scambiabilita:

id
yi|lu’a o? ~ N(H) 02)7
1 1 2)
j ~ exp| —z=WVi—
Yi \/ZO’ P < 20_2 (yl :u)
¢ A priori non-informativa

p(p,0%) x 0~?
e Congiunta a posteriori

1?1 9) o 2exp (515 [0 1)+ n(y ] )

_ 1 1 < _
dove y = EZy,-. §¢ = ﬁZ(y/'*}’)z
i— =

(¥ e s? statistiche sufficienti)
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Modello Normale, p(x; %) o Gz

Per fattorizzare la distr congiunta a posteriori come visto sopra
deriviamo:

e distribuzione condizionale a posteriori per

Pl ] 0%, y) = N(u | §,02/m) o exp (- (7 )?)

che ricalca quanto ottenuto per I'a posteriori di ;1 quando o2
€ noto e I'a priori per i € uniforme.
e distribuzione marginale a posteriori per o2

p(o? | y) =1G((n—1)/2,8*(n—1)/2)
ove s2 é la varianza campionaria
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Calcolo della congiunta a posteriori

.0 ~ p(p,o | y)
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Calcolo della congiunta a posteriori

9,0~ p(p,o | y)
con p(p, 0?) x o2
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Calcolo della congiunta a posteriori

1), o)~ p(, o | y)
con p(p, 0%) < o2

con p(p,0) < o~ (vedi BDA3 p. 21 cambio di variabile)

12/37



Calcolo della congiunta a posteriori

.0 ~ p(p,o | y)

con p(p, 0?) x o2
n

1
2 -2
P, 02 | y) x o ,nge“(
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Calcolo della congiunta a posteriori

) ol ~ p(p,o | y)
con p(p, 0?) x o2

o 1
P, 0® [ y) cxo " Pexp | 5
g
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Calcolo della congiunta a posteriori

9,0~ p(p,o | y)
con p(p, 0?) x o2

P, 0? | y) oc o™ " P exp (—

1
e <_%2 [i

I G
dovey:EZy,-
i—1
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Calcolo della congiunta a posteriori

9,0~ p(p,o | y)
con p(p, 0?) x o2
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n

> i —w?

i=1



> P -2y + 1?)
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> P -2y + 1?)
i=1
n
> E —2yin+ 1P — 7P+ 7P - 28y + 2y,7)
i=1
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> F -2y + )
i=1
n
> E —2yin+ 1P — 7P+ 7P - 28y + 2y,7)
i=1
n n
S -2vy+ 7+ > (12 —2yin— P +2yy)

i=1 i=1
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> F -2y + )
i=1
n
> E —2yin+ 1P — 7P+ 7P - 28y + 2y,7)
i=1
n n
S -2vy+ 7+ > (12 —2yin— P +2yy)
i=1 i=1
n
> i— 72+ n(u® - 2y — y* + 27)
i=1
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> F -2y + )
i=1
n
> E —2yin+ 1P — 7P+ 7P - 28y + 2y,7)
i=1
n n
S -2vy+ 7+ > (12 —2yin— P +2yy)
i=1 i=1
n
> i— 72+ n(u® - 2y — y* + 27)
i=1
n
S i— )P+ n(y — p)?

i=1
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Joint posterior

+ Samples=—Exact contour

19,0 ~ p(u,0 | y)
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Joint posterior

+ Samples=—Exact contour

Marginal of mu

Emplca w0~ p(u,o | y)
T Exact marginali

100 120 140

Pl y) = / p(u.o | y)do
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Joint posterior Marginal of sigma

60
+ Samples=—Exact contour
Empirical

— Exact

40

20

Marginal of mu
(8) 5(8) ~
Empirical H o p('u" o ’ -y)
T Exact marginali

Pl y) = / p(u.o | y)do

plo | y) = / P | y)du

100 120 140

14/37



Media nota

0% |y ~ Inv-x?(n, v)
ove v—li( ;— 6)?
=52l

Media non nota

o2 |y ~Inv-x3(n—1,8%)

1 < _
ove §°=_——=> (¥i—J)
i=1
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po?|y) / P02 | y)du
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po?|y) / P02 | y)du

oc /a—"—2 exp (-2%2 [(n )2+ n(y — “)ZD du
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po?|y) / P02 | y)du
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p(e®|y) o / pu, 0® | y)dp
—n—-2 1 1 2
x o exp —@(n— )s< | -

n - 2
/exp (—W(Y— 1) ) du
o 1 2\
.)/' ;27TCT P (i__zz(fzz(J/ B H) :> Cje B 1
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po?|y) / P02 | y)du

x o "Zexp (—%(n— 1)32> :
n  _
/exp <—ﬁ(y - N)z) du
B 1 > B
/ s exp (—20_2(}/ —6) > do =1

1
x o " Zexp (—@(n - 1)32> 2no2/n
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p(o?|y) /p(Mz )

ox 0_”—2exp (-2;2(,7_ 1)32> )
n _
/eXp (‘T‘g(y - M)z) du

S 1 2 7
‘/,ZmeXP (202(}/9) >d91

o (n— 1)32> 2102 /n

x o exp<_

202

o (02)"(M1)/2 gy (_(n—1)32>
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p?1y) [ pluo? [ y)a
x /0_”_2 exp <_21‘2 (1) 4+ n(y - “)ZD dy
x o "2exp (—2(172(n — 1)32> :
[ oo (- 527~ 12) d

1 1 > B
/ = 2W(Texp (20_2(}/0) >d91

1
x o "2exp|—=—5(n—1)s?)\/2702/n
202

o (02)"(M1)/2 gy <_(n—1)32>

p(c®|y) = Invx?(c? | n—1,8%)=IG((n—1)/2,82(n—1)/2)
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Possiamo quindi facilmente campionare dalla distr cong a post:
prima estraiamo o2 dalla marg a post, quindi estraiamo  dalla
condiz a post ...
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40
20 20
Factorization

p(p,o? | y) =p(u| % y)p(o® | y)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40
20 20
Factorization

p(u,0® | y) = p(u | o2 y)p(a? | y)
p(o? | y) = Inv-x?(c? | n—1,§%)

(02 ~ p(a? | y)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40
20 20
Factorization

p(u,0® | y) = p(u | o2 y)p(a? | y)
p(o? | y) = Inv-x?(c? | n—1,§%)

(02 ~ p(a? | y)
p(u | o® y) =N(u|y,0%/n)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40
20 20
Factorization

p(u,0® | y) = p(u | o2 y)p(a? | y)
p(o? | y) = Inv-x?(c? | n—1,§%)

(0®)©) ~ p(o? | y)
p(u | o®y) =N(u|y,0%/n)ocexp (— 5% (7 — 1)?)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40
20 20
Factorization

p(u,0® | y) = p(u| % y)p(a® | y)
,O(a2 ly) = Inv—Xz(a2 | n— 1,32)
(0*)) ~ p(o? | y)
p(p| 0% y) =N(u|y,0%/n)
1~ p(p | o®,y)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40
20 20
Factorization

p(u,0® | y) = p(u| % y)p(a® | y)
,O(a2 ly) = Inv—Xz(a2 | n— 1,32)
(0*)) ~ p(o? | y)
p(u | az,y) = N(u | ¥,0%/n)
~p(u | 0?,y)
) o)~ p(p, o | y)
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Possiamo anche derivare la marginale a posteriori per ;. come
media delle condizionali ...
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40

20

Factorization

p(u, 0 | y) = p(u | 0% y)p(a® | y)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40

20

Factorization

p(u, 0 | y) = p(u | 0% y)p(a® | y)
(03 ~ p(o? | y)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40

20

Factorization

p(u, 0 | y) = p(u | 0% y)p(a® | y)
(03 ~ p(o? | y)
p(i | (62)9,y) =N(u | 7, (*)®) /n)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40

20

Cond distr of mu for 25 draws  Factorization
p(u, 0 | y) = p(u | 0% y)p(a® | y)
(03 ~ p(o® | y)
p(i| (0*)S)y) =N(u | y,(0?)/n)

'y
S
g
::‘.’:\\\“’»f’"
100 120 140
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Marginal of sigma

Joint posterior
60

60
— Cond. distribution of mt

-Exact contour plot
Sample from joint post. — Sample from the marg.

40 40
20 20
Cond distr of mu for 25 draws  Factorization
p(p,0? | y) = pli| o2 y)p(o® | y)
A
£ (%) ~ p(o® | y)
[ _
22 Pl | (6%)9).y) = NGt | 7. (%) /)
A pu|y) ~
A by
e :;*/"ll;;' “‘Q}\\\\
P S e -~
120 140
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40
20 20
Cond. distr of mu Factorization

avg of sampled con p(M702 | y) = p(:u ‘ 027y)p(0_2 | ,V)
—exact marginal of m (02)(5) - p(0'2 | y)

Pl | (0%),y) = N(u | ¥. (%) /)

p(u|y) ~

100 120 140
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Marginale a posteriori p(x | y)

PG| y) = /0 " b, 0% | y)do?
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Marginale a posteriori p(x | y)

PG| y) = /0 " b, 0% | y)do?

o /OOO o "2 exp <—21‘2 [(n— 1)s2 + n(y — ”)ZD do®
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Marginale a posteriori p(x | y)

PG| y) = /0 " b, 0% | y)do?

x / o "2 exp <—12 [(n —- 1?4+ n(y — ,u)ﬂ) do?
0 20’
Per sostituzione

A=(n—1)$2 + n(u— 7)?
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Marginale a posteriori p(x | y)

PG| y) = /0 " b, 0% | y)do?

x /OOO o " 2exp <—21‘2 [(n ~1)s® +n(y — “)ZD do?

Per sostituzione
A
—(n—1)g? _ )2 _
A=(n—-1)s"+np—y) e z 52
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Marginale a posteriori p(x | y)

PG| y) = /0 " b, 0% | y)do?

x /OOO o " 2exp <—21‘2 [(n ~1)s® +n(y — “)ZD do?

Per sostituzione

A
—\2 .
A=(n-1+n(u-y)>® e z2=55

P |y) ox A2 [ 7222 exp(—2)dz
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Marginale a posteriori p(x | y)
Pl = [ plino? | pdo?

o /OOO o "2 exp <—21‘2 [(n— 1)s2 + n(y — ”)ZD do®

Per sostituzione

A
A=(n—-1)s"+np—y) e z 252

Pl |y) ox A2 [ 2022 exp( )z

E riconoscendo un integrale gamma non-normalizzato.
00y u—1
F(u) = [o~ x“" T exp(—x)dx
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Marginale a posteriori p(x | y)

PG| y) = /0 " b, 0% | y)do?

o /OOO o "2 exp <—21‘2 [(n— 1)s2 + n(y — ”)ZD do®

Per sostituzione
A
A = — 1 2 —V 2 = ——F=
(n )sc+n(p—y)F e z 552

Pl ) x A2 [ 2002 exp( - 2)oz
0
E riconoscendo un integrale gamma non-normalizzato.
M(u) = [o° xU= T exp(—x)dx

o [(n—=1)8 + n(p — §)?] "2
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Marginale a posteriori p(x | y)

pwrnziémpwﬁﬁrmdﬁ

o /OOO o "2 exp <—21‘2 [(n— 1)s2 + n(y — M)ﬂ) do®

Per sostituzione
A
A = — 1 2 —V 2 = ——F=
(n )sc+n(p—y)F e z 552

Pl |y) ox A2 [ 2022 exp( )

E riconoscendo un integrale gamma non-normalizzato.
M(u) = [o° xU= T exp(—x)dx

x [(n—1)s? + n(u — y)?] "2
n(u—y)?] "
P*%n—wﬁ}
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Marginale a posteriori p(x | y)

PG| y) = /0 " b, 0% | y)do?

o /OOO o "2 exp <—212 [(n— 1)s2 + n(y — M)ﬂ) do®

Per sostituzione

A
A=(n—-1)s"+np—y) e z 252

Pl ) o A2 [ 2002 exp( - 2)oz
0
E riconoscendo un integrale gamma non-normalizzato.
M(u) = [o° xU= T exp(—x)dx

o [(n—=1)8% + n(p — §)?] "2

n(u—y)?] "
(n—1)s?
p(,u | y) = lp_1 (N | V. 32/n) Student’s t 21/37
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Marginale a posteriori p(p | y)

p(u | y) =ta1(u | y,%/n)

Notiamo che:

1. :%‘y ~ fn—1

2' ;;:;%’/1,672 ~ nﬁ—f

(1) la distr a post della quantité pivotale non dipende dai dati y, e
(2) la distr campionaria della quantit4 pivotale non dipende dai
parametri ;. e 62

In generale, una quantita pivotale per il parametro da stimare si
definisce come una funzione non banale dei dati e del parametro
da stimare la cui distr campionaria € indipendente da tutti i
parametri e dai dati.
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Normale - a priori non-infor e

Teniamo a mente che la

* marginale a posteriori p(u | y)

Pt | y) = /O o | o2,y )p(o? | y)do?

e ¢ una mistura di distribuzioni normali dove la densita
mixante é la marginale a posteriori di o2

per derivare la distr pred a post analiticamente.

Prima la otteniamo via simulazione, poi analiticamente. —
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40

20

Distribuzione predittiva per un
nuovo y

(| y) = / P | 1. 0)p(is | y)duo
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40

20

Distribuzione predittiva per un
nuovo y

(| y) = / P | 1. 0)p(is | y)duo

19,69 ~ p(p,o | y)
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post. — Sample from the marg.

40 40

20 20
Distribuzione predittiva per un Posterior predictive distribution
nuovo y - Sample from the predictive distribution

Predictive distribution given the posterior samg

P | y) = /pym,a)p(u,o—w)dua

), ol NP(M,UIJ’)
7O ~p(y | n,01)

50 100 150 200
24/37
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Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post.— Sample from the marg.

40 40

20 20
Distribuzione predittiva per un Posterior predictive distribution
nuovo y - Sample from the predictive distribution

— Predictive distribution given the posterior samg

mmn:/mmm@mmewc

19,0 ~ p(u,o | y)
7~ pl7 | 9, )

50 100 150 200
v 24/37



Joint posterior Marginal of sigma

60 60
-Exact contour plot — Cond. distribution of mt
Sample from joint post.— Sample from the marg.

40 40

20 20
Distribuzione predittiva per un Posterior predictive distribution
nuovo y - Sample from the predictive distribution

— Predictive distribution given the posterior samg
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Joint posterior

60
-Exact contour plot — Cond. distribution of mt
Sample from joint post.— Sample from the marg.

40

Distribuzione predittiva per un
nuovo y

Marginal of sigma
60

40

20

Posterior predictive distribution

+ Sample from the predictive distribution
—Predictive distribution given the posterior samg

,O(}7 y) — /p(j', | i, 0)'0(”70. | y)dMO.Exact predictive distribution

1), o)~ p(, o | y)
7~ pl7 | 9, )
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Normale - distribuzione predittiva a posteriori
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Normale - distribuzione predittiva a posteriori

Distribuzione predittiva a posteriori quando la varianza é nota
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Normale - distribuzione predittiva a posteriori

Distribuzione predittiva a posteriori quando la varianza é nota

P | o2.y) = / P | 1, 02)p(st | 02 y)dlp
- / NG | 1. 02)N(t | 7,02/ m)dp
NG 1 7.(1 + 1)o?)

se come per p(u | 02, y) consideriamo la mistura con
distribuzione mixante la marginale a posteriori per o2

Py | y)=tra(§17.(1+3)8°)
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Esperimento di Simon Newcomb (1882): velocita della luce

Newcomb misuré (n = 66) il tempo necessario alla luce per viaggiare
dal suo laboratorio sul flume Potomac a uno specchio alla base del
Washington Monument e ritorno, una distanza totale di 7422 metri.

Newcomb's measurements

count

-25

o

25
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Esperimento di Simon Newcomb (1882): velocita della luce

Newcomb misuré (n = 66) il tempo necessario alla luce per viaggiare
dal suo laboratorio sul flume Potomac a uno specchio alla base del
Washington Monument e ritorno, una distanza totale di 7422 metri.

count

Newcomb's measurements

(] ]
=25
Normal model y

o

25

Modern estimate i
Posterior of mu giveny >0

Posterior of mu

-25 0 25
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Normale - a priori coniugata

- La priori conjugata deve avere la forma p(o?)p(u | o2)
(si veda la forma della verosimiglianza nella sez precedente)
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- La priori conjugata deve avere la forma p(o?)p(u | o2)
(si veda la forma della verosimiglianza nella sez precedente)

- Una conveniente parametrizzazione é

p| 0% ~N(uo, 0% /o)
0% ~ Inv-x%(rp, 03)

che puo6 essere scritta come
p(u, 0%) = N-Inv-x* (10, 05 / Ko; 10, 05)

- 11 e o sono dipendenti a priori
- se o2 is grande, allora ; ha una a priori estesa

- Marginalmente, p(u) = t,, (1o, Jc2>/f<¢o)
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Normale - a priori coniugata

Congiunta a posteriori
p(1t, 0% | y) = N-lnv-x> (1, 05/ Kin; v, 05)

dove
Ko n _
Mn:n0+n”0+/€o+ny
Kn=~kKo+ N
vn=19+nN

K _
l/nO'% = Voag +(n— 1)S2 + L(y — ,uo)2
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Normale - a priori coniugata

Congiunta a posteriori

P, 02 | y) = N-lnv-x?(pin, 02/ kip; vn, 02)

dove
. Ko + —
Mn—ﬁo_i_n,uo /{O_‘_ny
ffn:/€0+n
vn=19+nN
2 2 2 Ko _ 2
= n—1)s —(y —
vpop = vog + ( ) +m0+n(y 1o)
Si noti che

vno? 1/000 +(n—1)s? + 2 (y — MO)

2 _ _ Ko +n
E(o |y)_un—2_ vg+n-—2
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Normale - a priori coniugata

e Condizionale p(u | 02,}’)

w02,y ~N(un, 02 /kn)

N
~—

N Kopo + Ny o
- //1,‘0—|—n ’KO“‘n

 Marginale p(c? | y)
0’2 ’ y ~ |nv—X2(Vn, O—%)
e Marginale p(v | y)

" | Yy~ tyn(u ‘ anar%/’in)
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Normale - a priori semiconiUg

* 1. e o2 sono indipendenti a priori
p | 0% ~N(uo,75)
02 ~ Inv-x3 (0, 0(2))

e a priori noninformativa per o2 se 1, = 0 (che corrisponde a
p(o?) < %)
e Condizionale p(u | o2, y)

2 2
2 | g vyNN(:uann)
ove

1 -

Lo +

75 d e 7'2— 1
1 n =
7T

Mn =

Uz SR

1 n
Tg+02

e Marginale p(c? | y) non in forma chiusa
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- BDA3 p. 69

Estensione di binomiale

yj numero di osservazioni della categoria j-esima
-y =Un,...,yk) vettore dei conteggi del numero di
osservazi_oni per ogr_1i categoria, con )y, =n
Modello di osservazione

K
py | 0) o [T 07,
j=1
con) 6 =1
- (Come per la binomiale, si assume che la distribuzione sia
condizionata al numero n delle osservazioni.)
- A priori coniugata A" la Dirichlet

1

k
p(O ) []6" xD(a)
j=1
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- La Dirichlet, D(«), € un’estensione multivariata della Beta.

- 1 6; sono nonnegativi e con somma 1. More formally, the
support of a k-dimensional Dirichlet is the (k — 1-)simplex of
Rk

k
0eRK:6;,>0, > =1
j=1

- D(a) é definita per o > 0 e se ap = 3 _; o), E(6)) = aj/ap

- La priori Dirichlet contiene un informazione equivalente a
>_j(aj — 1) osservazioni con «; — 1 osservazioni della
categoria j-esima

- ag = )_; o determines the concentration of a Dirichlet, that
is, how much the distribution is dense (high o) or sparse
(low ayp)
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- A posteriori

k
p(0 | a, y) o [[6/™ " x Dy +a)
j=1

¢ Sinoti che le medie a posteriori delle probabilita

multinomiali sono

_Yity Y0 9. Y
n—+ og n n+ayg o N+ op

E(9ly)

che esprime ...
- Ci sono varie noninformative plausibili:
® a priori uniforme: a; = 1Vj
® a priori impropria: a; = 0Vj, i.e., uniforme su log(6;)
® a posteriori propria se ¢’é almeno un’osservazione in ogni
categoria cosi che ogni componente di y sia positiva.
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The support Q is the space of all the probability vectors of k
probabilities that sum to 1.

Because of the constraint on the components of a probability
vector, Q is k — 1 dimensional and is the standard or
probability K — 1-simplex.

For k = 3 the support is the triangle with vertices (1,0, 0),
(0,1,0), (0,0,1)

1
(0,0,1)

Example: (13 is a 2-dimensional
equilateral triangle.

(0,1,0)
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3-dimensional Dirichlet distribution on a 2-simplex for different
values of a.

(0.85, @.85, 0.85) (1, 1, 1) (5, 5, 5)

A

A

(1, 2, 3) (58, 50, 50)

A AA

Properties: Symmetric, flat Dirichlet; concentration par. >, a.
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Normale multivariata

y € un vettore di d componenti

y|“> zNNd(y|M> z)
Modello di osservazione

Uy [1:7) 5 |72 e (0 =) Z Ty - ).

Multivariate normal with known variance p. 70-71
Multivariate normal with unknown mean and variance p.
72-73

The two cases follow the development seen in the univariate
context but with matrix expressions since the distributions
are here multivariate
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