
Modelli multiparametrici

• Modelli multiparametrici
• marginalizzazione

• Modello Normale con media e varianza non note
• a priori non-informativa
• a priori coniugata e semi-coniugata

• Integrazione Monte Carlo (es per dati normali)
• Modello Multinomiale con a priori coniugata Dirichlet
• (Modello Normale multivariato con media non nota e

covarianza nota/non nota)
• Applicazione: analisi di un esperimento biologico
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Modelli multiparametrici e marginalizzazione

• θ1, θ2
• θ1 é il parametro d’interesse
• θ2 é parametro di disturbo
• Distribuzione congiunta dei parametri (Teorema di Bayes)

p(θ1, θ2 | y) ∝ p(y | θ1, θ2)p(θ1, θ2)

• Marginalizzazione della congiunta a posteriori per trovare la
distribuzione marginale a posteriori di θ1 (averaging over θ2)

p(θ1 | y) =
∫

p(θ1, θ2 | y)dθ2

• Una forma alternativa della fattorizzazione della
distribuzione congiunta

p(θ1 | y) =
∫

p(θ1 | θ2, y)p(θ2 | y)dθ2

che mostra come la p(θ1 | y) sia una mistura di distribuzioni
condizionali a posteriori dato θ2 dove p(θ2 | y) é una
funzione peso per i possibili valori di θ2.
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Modelli multiparametrici e marginalizzazione

• L’obiettivo é trovare la marginale a posteriori di una quantitá
d’interesse

• un parametro del modello
• un evento futuro, ad es, la distribuzione predittiva a posteriori

che é ottenuta marginalizzando la distribuzione a posteriori

p(ỹ | y) =
∫

p(ỹ , θ | y)dθ

=

∫
p(ỹ | θ)p(θ | y)dθ
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Monte Carlo e estrazioni dall’a posteriori

• Raramente gli integrali vengono calcolati esplicitamente.
• O si usa il metodo Monte Carlo

• θ(s) estrazioni da p(θ | y) possono essere usate per
approssimare valori attesi (integrali)

Ep(θ|y)[θ] =

∫
θp(θ | y) ≈ 1

S

S∑
s=1

θ(s)

da cui anche l’approssimazione di valori attesi di funzioni

Ep(g(θ)|y)[g(θ)] =
∫

g(θ)p(θ | y) ≈ 1
S

S∑
s=1

g(θ(s))

• come, ad es., l’approssimazione Monte Carlo della
distribuzione marginale

p(θ1 | y) ≈ 1
S

S∑
s=1

p(θ1|θ
(s)
2 , y),

dove θ
(s)
2 sono estrazioni da p(θ2 | y)

• oppure essa viene simulata procedendo in questo modo:
• →
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Simulazioni dalla a posteriori

• estrai θ(m)
2 ∼ p(θ2 | y)

• estrai θ(m)
1 ∼ p(θ1 | θ(m)

2 , y)

• θ
(m)
1 , θ

(m)
2 per m = 1, . . . ,M
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Modello Normale / Gaussiano

p(y |µ) = 1√
2πσ

exp

(
− 1

2σ2 (y − µ)2
)

−4 −2 0 2 4

• Notazione abbreviata
• y ∼ N(µ, σ2) con varianza σ2

(utile nelle derivazioni analitiche)
• y ∼ N(µ, σ) con deviazione σ

(utile per interpretare le scale a priori e a posteriori, usato in
Stan)
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Modello Normale / Gaussiano

• Regressione lineare normale
connessione alla regressione least squares via (y − µ)2

• Analisi di osservazioni a valori reali
• Talvolta approssimazione conveniente per osservazioni

discrete
• Conveniente come distribuzione a priori
• Processi Gaussiani sono in pratica normali multivariate
• filtri di Kalman sono normali piú chain rule
• Come approssimazione della distribuzione a posteriori con

Laplace, inferenza variazionale, expectation propagation
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Modello Normale, µ e σ2 non noti

• µ é il parametro d’interesse
• σ2

2 é parametro di disturbo

p(µ, σ2 | y) ∝ p(y | µ, σ2)p(µ, σ2)

p(µ | y) =
∫

p(µ | σ2, y)p(σ2 | y)dσ2

p(µ | y) é una mistura di distribuzioni condizionali a
posteriori dato σ2 dove p(σ2 | y) é una funzione peso per i
possibili valori di σ2.
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Modello Normale, p(µ, σ2) ∝ 1
σ2

Iniziamo con una a priori non-informativa e poi passsiamo ad
una informativa.

Una a priori non-informativa convenzionale per p(µ, σ2) é -
assumendo indipendenza a priori tra µ e σ2 - uniforme su
(µ, log σ) ovvero

p(µ, σ2) ∝ 1
σ2

a priori impropria.
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Modello Normale, p(µ, σ2) ∝ 1
σ2

• Modello osservazionale
y = (y1, . . . , yn), si assuma scambiabilitá:
yi |µ, σ2 iid∼ N(µ, σ2),

yi ∼
1√
2πσ

exp

(
− 1

2σ2 (yi − µ)2
)

• A priori non-informativa

p(µ, σ2) ∝ σ−2

• Congiunta a posteriori

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
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p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove ȳ =

1
n

n∑
i=1

yi , s2 =
1

n − 1

n∑
i=1

(yi − ȳ)2

(ȳ e s2 statistiche sufficienti)
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Modello Normale, p(µ, σ2) ∝ 1
σ2

Per fattorizzare la distr congiunta a posteriori come visto sopra
deriviamo:

• distribuzione condizionale a posteriori per µ

p(µ | σ2, y) = N(µ | ȳ , σ2/n) ∝ exp
(
− n

2σ2 (ȳ − µ)2
)

che ricalca quanto ottenuto per l’a posteriori di µ quando σ2

é noto e l’a priori per µ é uniforme.
• distribuzione marginale a posteriori per σ2

p(σ2 | y) = IG((n − 1)/2, s2(n − 1)/2)

ove s2 é la varianza campionaria
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Calcolo della congiunta a posteriori

µ(s), σ(s) ∼ p(µ, σ | y)

con p(µ, σ2) ∝ σ−2

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= σ−n−2 exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

dove ȳ =
1
n

n∑
i=1

yi

= σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove s2 =

1
n − 1

n∑
i=1

(yi − ȳ)2
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Calcolo della congiunta a posteriori

µ(s), σ(s) ∼ p(µ, σ | y)

con p(µ, σ2) ∝ σ−2

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= σ−n−2 exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

dove ȳ =
1
n

n∑
i=1

yi

= σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove s2 =

1
n − 1

n∑
i=1

(yi − ȳ)2

12 / 37
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Calcolo della congiunta a posteriori

µ(s), σ(s) ∼ p(µ, σ | y)

con p(µ, σ2) ∝ σ−2

con p(µ, σ) ∝ σ−1 (vedi BDA3 p. 21 cambio di variabile)

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= σ−n−2 exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

dove ȳ =
1
n

n∑
i=1

yi

= σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove s2 =

1
n − 1

n∑
i=1

(yi − ȳ)2

12 / 37
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Calcolo della congiunta a posteriori

µ(s), σ(s) ∼ p(µ, σ | y)

con p(µ, σ2) ∝ σ−2

p(µ, σ2 | y) ∝ σ−2
n∏

i=1

1√
2πσ

exp

(
− 1

2σ2 (yi − µ)2
)

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= σ−n−2 exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

dove ȳ =
1
n

n∑
i=1

yi

= σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove s2 =

1
n − 1

n∑
i=1

(yi − ȳ)2
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Calcolo della congiunta a posteriori

µ(s), σ(s) ∼ p(µ, σ | y)

con p(µ, σ2) ∝ σ−2

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= σ−n−2 exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

dove ȳ =
1
n

n∑
i=1

yi

= σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove s2 =

1
n − 1

n∑
i=1

(yi − ȳ)2
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Calcolo della congiunta a posteriori

µ(s), σ(s) ∼ p(µ, σ | y)

con p(µ, σ2) ∝ σ−2

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= σ−n−2 exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

dove ȳ =
1
n

n∑
i=1

yi

= σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove s2 =

1
n − 1

n∑
i=1

(yi − ȳ)2
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Calcolo della congiunta a posteriori

µ(s), σ(s) ∼ p(µ, σ | y)

con p(µ, σ2) ∝ σ−2

p(µ, σ2 | y) ∝ σ−n−2 exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

= σ−n−2 exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

dove ȳ =
1
n

n∑
i=1

yi

= σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dove s2 =

1
n − 1

n∑
i=1

(yi − ȳ)2
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Come esprimere in termini delle statistiche sufficienti

n∑
i=1

(yi − µ)2

n∑
i=1

(y2
i − 2yiµ+ µ2)

n∑
i=1

(y2
i − 2yiµ+ µ2 − ȳ2 + ȳ2 − 2yi ȳ + 2yi ȳ)

n∑
i=1

(y2
i − 2yi ȳ + ȳ2) +

n∑
i=1

(µ2 − 2yiµ− ȳ2 + 2yi ȳ)

n∑
i=1

(yi − ȳ)2 + n(µ2 − 2ȳµ− ȳ2 + 2ȳ ȳ)

n∑
i=1

(yi − ȳ)2 + n(ȳ − µ)2
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n∑
i=1
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● Samples Exact contour

Joint posterior

20

40

60

Empirical
Exact

Marginal of sigma

100 120 140

Empirical
Exact

Marginal of mu

µ(s), σ(s) ∼ p(µ, σ | y)

marginali

p(µ | y) =
∫

p(µ, σ | y)dσ

p(σ | y) =
∫

p(µ, σ | y)dµ
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Normale - a priori non-informativa

Media nota

σ2 | y ∼ Inv-χ2(n, v)

ove v =
1
n

n∑
i=1

(yi − θ)2

Media non nota

σ2 | y ∼ Inv-χ2(n − 1, s2)

ove s2 =
1

n − 1

n∑
i=1

(yi − ȳ)2
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Marginale a posteriori p(σ2 | y) (piú facile per σ2 che per σ)

p(σ2 | y) ∝
∫

p(µ, σ2 | y)dµ

∝
∫

σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dµ

∝ σ−n−2 exp

(
− 1

2σ2 (n − 1)s2
)
·∫

exp
(
− n

2σ2 (ȳ − µ)2
)

dµ∫
1√
2πσ

exp

(
− 1

2σ2 (y − θ)2
)

dθ = 1

∝ σ−n−2 exp

(
− 1

2σ2 (n − 1)s2
)√

2πσ2/n

∝ (σ2)−(n+1)/2 exp

(
−(n − 1)s2

2σ2

)
p(σ2 | y) = Inv-χ2(σ2 | n − 1, s2) = IG((n − 1)/2, s2(n − 1)/2)
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2σ2 (ȳ − µ)2
)

dµ∫
1√
2πσ

exp

(
− 1

2σ2 (y − θ)2
)

dθ = 1

∝ σ−n−2 exp

(
− 1

2σ2 (n − 1)s2
)√

2πσ2/n

∝ (σ2)−(n+1)/2 exp

(
−(n − 1)s2

2σ2

)
p(σ2 | y) = Inv-χ2(σ2 | n − 1, s2) = IG((n − 1)/2, s2(n − 1)/2)

16 / 37



Marginale a posteriori p(σ2 | y) (piú facile per σ2 che per σ)

p(σ2 | y) ∝
∫

p(µ, σ2 | y)dµ

∝
∫

σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2
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Normale - a priori non-informativa

Possiamo quindi facilmente campionare dalla distr cong a post:
prima estraiamo σ2 dalla marg a post, quindi estraiamo µ dalla
condiz a post ...
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Normale - a priori non-informativa

Possiamo anche derivare la marginale a posteriori per µ come
media delle condizionali ...
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N(µ | ȳ , (σ2)(s)/n)

20 / 37



●

20

40

60
Exact contour plot
Sample from joint post.

Cond. distribution of mu
Sample from the marg. of sigma

Joint posterior

20

40

60

Marginal of sigma

100 120 140

Cond distr of mu for 25 draws Factorization

p(µ, σ2 | y) = p(µ | σ2, y)p(σ2 | y)

(σ2)(s) ∼ p(σ2 | y)

p(µ | (σ2)(s), y) = N(µ | ȳ , (σ2)(s)/n)
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Marginale a posteriori p(µ | y)

p(µ | y) =
∫ ∞

0
p(µ, σ2 | y)dσ2

∝
∫ ∞

0
σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2

])
dσ2

Per sostituzione

A = (n − 1)s2 + n(µ− ȳ)2 e z =
A

2σ2

p(µ | y) ∝ A−n/2
∫ ∞

0
z(n−2)/2 exp(−z)dz

E riconoscendo un integrale gamma non-normalizzato.
Γ(u) =

∫∞
0 xu−1 exp(−x)dx

∝ [(n − 1)s2 + n(µ− ȳ)2]−n/2

∝
[
1 +

n(µ− ȳ)2

(n − 1)s2

]−n/2

p(µ | y) = tn−1(µ | ȳ , s2/n) Student’s t
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p(µ | y) = tn−1(µ | ȳ , s2/n) Student’s t

21 / 37



Marginale a posteriori p(µ | y)

p(µ | y) =
∫ ∞

0
p(µ, σ2 | y)dσ2

∝
∫ ∞

0
σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2
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p(µ | y) = tn−1(µ | ȳ , s2/n) Student’s t

21 / 37



Marginale a posteriori p(µ | y)

p(µ | y) =
∫ ∞

0
p(µ, σ2 | y)dσ2

∝
∫ ∞

0
σ−n−2 exp

(
− 1

2σ2

[
(n − 1)s2 + n(ȳ − µ)2
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∝
[
1 +

n(µ− ȳ)2
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Marginale a posteriori p(µ | y)

p(µ | y) = tn−1(µ | ȳ , s2/n)

Notiamo che:

1. µ−ȳ
s/

√
n |y ∼ tn−1

2. ȳ−µ
s/

√
n |µ, σ

2 ∼ tn−1

(1) la distr a post della quantitá pivotale non dipende dai dati y , e
(2) la distr campionaria della quantitá pivotale non dipende dai
parametri µ e σ2

In generale, una quantitá pivotale per il parametro da stimare si
definisce come una funzione non banale dei dati e del parametro
da stimare la cui distr campionaria é indipendente da tutti i
parametri e dai dati.
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Normale - a priori non-informativa

Teniamo a mente che la

• marginale a posteriori p(µ | y)

p(µ | y) =
∫ ∞

0
p(µ | σ2, y)p(σ2 | y)dσ2

• é una mistura di distribuzioni normali dove la densitá
mixante é la marginale a posteriori di σ2

per derivare la distr pred a post analiticamente.

Prima la otteniamo via simulazione, poi analiticamente. →

23 / 37



●

20

40

60
Exact contour plot
Sample from joint post.

Cond. distribution of mu
Sample from the marg. of sigma

Joint posterior

20

40

60

Marginal of sigma

Distribuzione predittiva per un
nuovo ỹ
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Normale - distribuzione predittiva a posteriori

Distribuzione predittiva a posteriori quando la varianza é nota

p(ỹ | σ2, y) =
∫

p(ỹ | µ, σ2)p(µ | σ2, y)dµ

=

∫
N(ỹ | µ, σ2) N(µ | ȳ , σ2/n)dµ

= N(ỹ | ȳ , (1 + 1
n )σ

2)

se come per p(µ | σ2, y) consideriamo la mistura con
distribuzione mixante la marginale a posteriori per σ2

p(ỹ | y) = tn−1(ỹ | ȳ , (1 + 1
n )s

2)
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Esperimento di Simon Newcomb (1882): velocitá della luce

Newcomb misuró (n = 66) il tempo necessario alla luce per viaggiare
dal suo laboratorio sul fiume Potomac a uno specchio alla base del
Washington Monument e ritorno, una distanza totale di 7422 metri.
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Normale - a priori coniugata

- L’a priori conjugata deve avere la forma p(σ2)p(µ | σ2)
(si veda la forma della verosimiglianza nella sez precedente)

- Una conveniente parametrizzazione é

µ | σ2 ∼ N(µ0, σ
2/κ0)

σ2 ∼ Inv-χ2(ν0, σ
2
0)

che puó essere scritta come

p(µ, σ2) = N-Inv-χ2(µ0, σ
2
0/κ0; ν0, σ

2
0)

- µ e σ2 sono dipendenti a priori
- se σ2 is grande, allora µ ha una a priori estesa

- Marginalmente, p(µ) = tν0(µ0, σ
2
0/κ0)
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Normale - a priori coniugata

Congiunta a posteriori

p(µ, σ2 | y) = N-Inv-χ2(µn, σ
2
n/κn; νn, σ

2
n)

dove

µn =
κ0

κ0 + n
µ0 +

n
κ0 + n

ȳ

κn = κ0 + n
νn = ν0 + n

νnσ
2
n = ν0σ

2
0 + (n − 1)s2 +

κ0n
κ0 + n

(ȳ − µ0)
2

Si noti che

E(σ2|y) = νnσ
2
n

νn − 2
=

ν0σ
2
0 + (n − 1)s2 + κ0n

κ0+n (ȳ − µ0)
2

ν0 + n − 2
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Normale - a priori coniugata

• Condizionale p(µ | σ2, y)

µ | σ2, y ∼ N(µn, σ
2/κn)

= N

(
κ0
σ2µ0 +

n
σ2 ȳ

κ0
σ2 + n

σ2

,
1

κ0
σ2 + n

σ2

)

= N
(
κ0µ0 + nȳ
κ0 + n

,
σ2

κ0 + n

)
• Marginale p(σ2 | y)

σ2 | y ∼ Inv-χ2(νn, σ
2
n)

• Marginale p(µ | y)

µ | y ∼ tνn(µ | µn, σ
2
n/κn)
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Normale - a priori semiconiugata

• µ e σ2 sono indipendenti a priori

µ | σ2 ∼ N(µ0, τ
2
0 )

σ2 ∼ Inv-χ2(ν0, σ
2
0)

• a priori noninformativa per σ2 se ν0 = 0 (che corrisponde a
p(σ2) ∝ 1

σ2 )
• Condizionale p(µ | σ2, y)

µ | σ2, y ∼ N(µn, τ
2
n )

ove

µn =

1
τ2

0
µ0 +

n
σ2 ȳ

1
τ2

0
+ n

σ2

e τ2
n =

1
1
τ2

0
+ n

σ2

• Marginale p(σ2 | y) non in forma chiusa
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Modello multinomiale per dati categoriali

- BDA3 p. 69

- Estensione di binomiale
- yj numero di osservazioni della categoria j-esima
- y = (y1, . . . , yk ) vettore dei conteggi del numero di

osservazioni per ogni categoria, con
∑

yj = n
- Modello di osservazione

p(y | θ) ∝
k∏

j=1

θ
yj
j ,

con
∑

θj = 1
- (Come per la binomiale, si assume che la distribuzione sia

condizionata al numero n delle osservazioni.)
- A priori coniugata Ã¨ la Dirichlet

p(θ | α) ∝
k∏

j=1

θ
αj−1
j ∝ D(α)
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Modello multinomiale per dati categoriali

- La Dirichlet, D(α), é un’estensione multivariata della Beta.
- I θj sono nonnegativi e con somma 1. More formally, the

support of a k-dimensional Dirichlet is the (k − 1-)simplex of
Rk θ ∈ Rk : θj > 0,

k∑
j=1

θj = 1


- D(α) é definita per αj > 0 e se α0 =

∑
j αj , E(θj) = αj/α0

- L’a priori Dirichlet contiene un informazione equivalente a∑
j(αj − 1) osservazioni con αj − 1 osservazioni della

categoria j-esima
- α0 =

∑
j αj determines the concentration of a Dirichlet, that

is, how much the distribution is dense (high α0) or sparse
(low α0)
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Modello multinomiale per dati categoriali

- A posteriori

p(θ | α, y) ∝
k∏

j=1

θ
yj+αj−1
j ∝ D(y + α)

• Si noti che le medie a posteriori delle probabilitá
multinomiali sono

E(θj |y) =
yj + αj

n + α0
=

yj

n
· n

n + α0
+

αj

α0
·

αj

n + α0

che esprime ...
- Ci sono varie noninformative plausibili:

• a priori uniforme: αj = 1∀j
• a priori impropria: αj = 0∀j , i.e., uniforme su log(θj)

• a posteriori propria se c’é almeno un’osservazione in ogni
categoria cosí che ogni componente di y sia positiva.
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Example of simplex

The support Ωk is the space of all the probability vectors of k
probabilities that sum to 1.

Because of the constraint on the components of a probability
vector, Ωk is k − 1 dimensional and is the standard or
probability K − 1-simplex.

For k = 3 the support is the triangle with vertices (1,0,0),
(0,1,0), (0,0,1)
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D(α) with different α

3-dimensional Dirichlet distribution on a 2-simplex for different
values of α.

Properties: Symmetric, flat Dirichlet; concentration par.
∑

k αk .
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α = 1/0.1/0.001/10/100
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Normale multivariata

- y é un vettore di d componenti
- y | µ, Σ ∼ Nd(y | µ, Σ)
- Modello di osservazione

p(y | µ,Σ) ∝| Σ |−1/2 exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
,

- Multivariate normal with known variance p. 70-71
- Multivariate normal with unknown mean and variance p.

72-73
The two cases follow the development seen in the univariate
context but with matrix expressions since the distributions
are here multivariate
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