From Gelman:

Beyond the normal distribution, few multiparameter sam-
pling models allow simple explicit calculation of posterior
distributions. Data analysis for such models is possible
using the computational methods described in Part Il ...

Here we present an example of a nonconjugate model
for a bioassay experiment ...

The model is a two-parameter example from the broad
class of generalized linear models ...

We use a particularly simple simulation approach, ap-
proximating the posterior distribution by a discrete distri-
bution supported on a two-dimensional grid of points,
that provides sufficiently accurate inferences ...

Grid-based methods are, e.g., illustrated in Chapter 10 (Part ),
section Numerical integration (in particular, within deterministic
numerical inteagration methods) 1/21



Bioassay experiment
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Dose (log g/ml)
Find out lethal dose 50% (LD50), i.e. the dose level at which the
probability of death is 50%.

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels (see the chapter notes)
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Bioassay experiment (Ac
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Dose (log g/ml)
Find out lethal dose 50% (LD50), i.e. the dose level at which the
probability of death is 50%.

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels (see the chapter notes)

Bayesian methods help to

- reduce the number of animals needed
- easy to make sequential experiment and stop as soon as

desired accuracy is obtained .



L4 (x,-,n,-,y,-), i = 1,...,k
® x;, i-esimo di k livelli di dose (spesso misurati su scala
logaritmica)
® n; animali trattati con la dose /
® y;, numero di morti

® ¢;, probabilita di morte data la dose i
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L4 (x,-,n,-,y,-), i = 1,...,k
® x;, i-esimo di k livelli di dose (spesso misurati su scala
logaritmica)
® n; animali trattati con la dose i
® y;, numero di morti

® ¢;, probabilita di morte data la dose i

e Assumiamo y; scambiabili entro ciascun gruppo /, i.e.
indipendenti con uguale probabilita, il che implica

yi‘ei ~ Bin(n,-, 0,)

In quale situazione il modello Binomiale e l'indipendenza
non sarebbero appropriati?

e Infine, i risultati y; nei quattro gruppi sono supposti
indipendenti dati i parametri 61, ...,604
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e Un’analisi piu semplice tratterebbe i quattro parametri 6;
come scambiabili nella loro distribuzione a priori, e se si
usasse una densita non informativa, e.g., p(1,...,04) x 1,
i parametri avrebbero distribuzioni a posteriori Beta
indipendenti.

e |a scambiabilita perd tralascerebbe 'informazione data
dalla conoscenza del livello di dose x; per ogni gruppo i,
mentre ci si aspetterebbe che la probabilita di morte vari
sistematicamente in funzione della dose.
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e Un’analisi piu semplice tratterebbe i quattro parametri 6;
come scambiabili nella loro distribuzione a priori, e se si
usasse una densita non informativa, e.g., p(1,...,04) x 1,
i parametri avrebbero distribuzioni a posteriori Beta
indipendenti.

e |a scambiabilita perd tralascerebbe 'informazione data
dalla conoscenza del livello di dose x; per ogni gruppo i,
mentre ci si aspetterebbe che la probabilita di morte vari
sistematicamente in funzione della dose.

¢ |l modello piu semplice della relazione dose-risposta,
ovvero la relazione tra 6; e x;, & lineare: 6; = a + S5x;.
Purtroppo questo modello ha il difetto che a dosi basse o
alte, x; si avvicina a +oo (ricordiamo che la dose & misurata
su scala logaritmica), mentre 6;, essendo una probabilita, &
vincolata a essere compresatraOe 1.
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Bioassay

Data

Number of deaths
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Bioassay

Linear fit

Number of deaths
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Bioassay

Linear fit

Number of deaths

Dose (log g/ml)
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e | a soluzione standard € usare una trasformazione delle 9,
come il logit, nella relazione dose-risposta:

logit(6;) = o+ BX;

come nella regressione logistica

6/21



Data
1.0 s

0.8 1
0.6 o
0.4+

0.2 .

Proportion of deaths / 6

0.0 s

-1 0 1
Dose (log g/ml)

7/21



Data
1.0+ .

0.8 1

0.4 1

0.2 1 .

Proportion of deaths / 6

0.0 s

-1 0 1
Dose (log g/ml)

Binomial model
Yi | 0i ~ Bin(6;, n;)
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Bioassay

1.0+
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Logistic regression fit

Binomial model

0 1
Dose (log g/ml)
. ) 0;
Yi | 0i~Bin(6;, mj), logit(6) = log | 7— | = a+ fBX;
— Vi
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Logistic regression in latent space

Yi | 0i ~ Bin(0;, n;)
logit(0;) = log ( bi ) |
1-0,;

=a+ BX

logit(6)

0
Dose (log g/ml)
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Logistic regression in latent space

i | 0; ~ Bin(0;, n;)
logit(0;) = log [ ! ’
g j) = 108 1-0,

=+ X

logit(6)

1+ exp(—(a + 8x7)) Dose (Iog g/m)

Logistic regression fit
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* Verosimiglianza, in termini dei parametri « e 3,
p(yi’aa B, nj, Xi) X [lOgitfll (@4-5)(’-)]}4[1 —logitill (04+Bx,-)]”i*yi

Nota: In questa analisi consideriamo n; e x; come fissati,
quindi occultiamo il condizionamento a (n;, x;) nel
prosieguo.
¢ A priori, indipendente e localmente uniforme per i parametri
aepf,
p(a, B) x costante

® A posteriori

p(a, Bly) o p(a, B) Hp(y,-|a, B)
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From Gelman,
In practice, we might use
® a uniform prior distribution if we really have no
prior knowledge about the parameters, or
¢ f we want to present a simple analysis of this
experiment alone.
If the analysis using the noninformative prior distribution
is insufficiently precise, we may consider using other
sources of substantive information (for example, from
other bioassay experiments) to construct an informative
prior distribution.
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Una stima dei parametri per impostare la griglia di valori su cui
esplorare la densita a posteriori

e Stima di ML nella regressione logistica
* (4,8)=(08,7.7)
* (sd(&),sd(B)) =(1.0,4.9)

La griglia di valori («, 8) su cui andiamo a calcolare la congiunta
a posteriori €

® (a,B) € [-5,10] x [10,40]

Possiamo quindi calcolare la densita a posteriori non
normalizzata sulla griglia e disegnare le curve di livello
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From Gelman,

There can be difficulty finding the correct location and
scale for the grid points.

* A grid that is defined on too small an area may
miss important features of the posterior distribution
that fall outside the grid.

¢ A grid defined on a large area with wide intervals
between points can miss important features that
fall between the grid points.
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From Gelman,

It is also important to avoid overflow and underflow
operations when computing the posterior distribution.
e |t is usually a good idea to compute the logarithm
of the unnormalized posterior distribution and
e subtract off the maximum value before
exponentiating.
This creates an unnormalized discrete approximation
with maximum value 1, which can then be normalized
(by setting the total probability in the grid to 1).
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Posterior density evaluated in a grid
30 1
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¢ Dopo aver calcolato la densita a posteriori non normalizzata
su una griglia di valori che coprono il range effettivo di
(OC, 5)!

e possiamo normalizzare approssimando la distribuzione
attraverso una funzione a gradini sulla griglia e imponendo
che la probabilita totale sulla griglia sia 1.
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e Dopo aver calcolato la densita a posteriori non normalizzata
su una griglia di valori che coprono il range effettivo di
(Oéﬂ B)s

e possiamo normalizzare approssimando la distribuzione
attraverso una funzione a gradini sulla griglia e imponendo
che la probabilita totale sulla griglia sia 1.

e Campioniamo 1000 estrazioni casuali (a*, 5*) dalla
distribuzione a posteriori utilizzando la seguente procedura.

¢ Calcoliamo la distribuzione marginale a posteriori di «
(sommando numericamente su ) nella distribuzione
discreta calcolata sulla griglia
® Pers=1,...,1000
(a) Estrai o dalla p(«|y) calcolata discretamente attraverso (una
versione discreta del) metodo inverse cdf
(b) Estrai g* dalla p(8|«, y) dato il valore appena estratto di «
usando il metodo inverse cdf
(c) Per ogni valore di o € 8 campionati aggiungi un jitter (cio
conferisce alle estrazioni una distr continua)
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Bioassay posterior

Binomial model
Yi | 0i ~ Bin(0;, n;)
Link function

logit(0;) = a + BX;
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Bioassay posterior

Binomial model
Yi | i ~ Bin(6;, n;)
Link function
logit(6;) = o + BX;
Likelihood
Pl |, B, i, X;) o< Y1 — ;]
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Bioassay posterior

Binomial model
Yi | i ~ Bin(6;, n;)
Link function
logit(6;) = o + BX;
Likelihood

Py | o, B, mi, xi) o< OF1[1 — 6]
p(yi | . B, i, x;) o [logit™" (a + Bx;)[1 — logit™" (a + 8x;)]"
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Bioassay posterior

Binomial model
Yi | 0i ~ Bin(0;, n;)
Link function
logit(0;) = o + B
Likelihood
Pl |, B, i, X;) o< Y1 — ;]
p(yi | o, B, nj, x;) o [logit™" (o + Bx;)][1 — logit™ ' (o + Bx;)]" Y

Posterior (with uniform prior on «, 3)

n

p(aaﬁ | Y, n,X) X p(aaﬁ)Hp(yl | a,ﬁvni’xi)

i=1
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Bioassay
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Posterior density evaluated in a grid
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Bioassay

301
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Posterior density evaluated in a grid
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Density evaluated in grid, but plotted using interpolation
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Bioassay

Posterior density evaluated in a grid
30 1

20 P

- l 0.002

10+ ‘ 0.001

Density evaluated in grid, and plotted without interpolation
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Bioassay

Posterior density evaluated in a grid
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Density evaluated in a coarser grid
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Bioassay

Posterior density evaluated in a grid
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- Approximate the density as piecewise constant function
- Evaluate density in a grid over some finite region
- Density times cell area gives probability mass in each cell
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Bioassay

Posterior density evaluated in a grid
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- Densities at 1, 2, and 3: 0.0027 0.0010 0.0001
- Probabilities of cells 1, 2, and 3: 0.0431 0.0166 0.0010
- Probabilities of cells sum to 1
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Bioassay

Posterior density and draws in a grid

30+
20+ P
- l 0.002
10 0.001
O .
0 2 4
(04

- Sample according to grid cell probabilities
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Bioassay

Posterior density and draws in a grid
30 1

20 1 . .

- Sample according to grid cell probabilities
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Bioassay

0.001

Posterior density and draws in a grid
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- Sample according to grid cell probabilities

- Several draws can be from the same grid cell
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Bioassay

Posterior density in a grid and jittered draws

- Jitter can be added to improve visualization
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Bioassay

Logistic regression fit
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Bioassay

Posterior draws
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Bioassay

Posterior draws
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Bioassay

Posterior draws
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LD50: E (%)

18/21



Bioassay

Posterior draws
1.0 A
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Bioassay

Bioassay LD50
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LD50: E (%) —logit "(a+BX) =05 = Xipso = —a/B
X(Dso = —al®) /8
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Grid sampling
- Draws can be used to estimate expectations, for example

NO

18
ExLpso] = E[—a/B] = S Z 36
s=1
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Grid sampling
- Draws can be used to estimate expectations, for example

a()
Elxpso] = E[-a/B] = SZ

- Instead of sampling, grid could be used to evaluate
functions directly, for example

Q)
E[ Oé/ﬁ] Z cetl)lgt)7

t=1

where wc(el) is the normalized probability of a grid cell t, and
B and 58 ) are center locations of grid cells
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Grid sampling
- Draws can be used to estimate expectations, for example

a()
Elxpso] = E[-a/B] = SZ

- Instead of sampling, grid could be used to evaluate
functions directly, for example

Q)
E[ Oé/ﬁ] Z cetl)lgt)7

t=1

where wc(el) is the normalized probability of a grid cell t, and
B and 58 ) are center locations of grid cells

° Grid sampling gets computationally too expensive in high
dimensions
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From Gelman, p. 78

Strategy for computation of simple Bayesian posterior
distributions
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Strategy for computation of simple Bayesian posterior
distributions

@ Write the likelihood part of the model, p(y|6),
ignoring any factors that are free of 6.
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From Gelman, p. 78

Strategy for computation of simple Bayesian posterior
distributions

@ Write the likelihood part of the model, p(y|6),
ignoring any factors that are free of 6.
@ Write the posterior density, p(6]y) < p(6)p(y|0).
e [f prior information is well-formulated, include it in
p(6).
® QOtherwise use a weakly informative prior
distribution or temporarily set p(9) « constant,
with the understanding that the prior density can
be altered later to include additional information or
Structure.
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From Gelman, p. 78

Strategy for computation of simple Bayesian posterior
distributions

@ Write the likelihood part of the model, p(y|6),
ignoring any factors that are free of 6.
@ Write the posterior density, p(6]y) < p(6)p(y|0).
e [f prior information is well-formulated, include it in
0).

° I())(th)erwise use a weakly informative prior
distribution or temporarily set p(9) « constant,
with the understanding that the prior density can
be altered later to include additional information or
Structure.

© Create a crude estimate of the parameters, 6, for
use as a starting point and a comparison to the
computation in the next step.
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@ Draw simulations 0", ..., 0S5, from the posterior
distribution. Use the sample draws to compute the
posterior density of any functions of 6 that may be
of interest.
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@ Draw simulations 0", ..., 0S5, from the posterior
distribution. Use the sample draws to compute the
posterior density of any functions of 6 that may be

of interest.
@ If any predictive quantities, y, are of interest,
simulate ', ..., yS by drawing each y*° from the

sampling distribution conditional on the drawn
value 6°, p(y|0°). ... posterior simulations of § and
y can be used to check the fit of the model to data
and substantive knowledge.
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@ Draw simulations 0", ..., 0S5, from the posterior
distribution. Use the sample draws to compute the
posterior density of any functions of 6 that may be

of interest.
@ If any predictive quantities, y, are of interest,
simulate ', ..., yS by drawing each y*° from the

sampling distribution conditional on the drawn
value 6%, p(y|0°). ... posterior simulations of § and
y can be used to check the fit of the model to data
and substantive knowledge.
For nonconjugate models, step 4 can be difficult.
Various methods have been developed to draw posterior
simulations in complicated models.
Occasionally, high-dimensional problems can be sol-
ved by combining analytical and numerical simulation
methods. If & has only one or two components, it is
possible to draw simulations by computing on a grid (as

for the bioassay example).
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