
Bioassay (Biotest)

From Gelman:

Beyond the normal distribution, few multiparameter sam-
pling models allow simple explicit calculation of posterior
distributions. Data analysis for such models is possible
using the computational methods described in Part III ...

Here we present an example of a nonconjugate model
for a bioassay experiment ...
The model is a two-parameter example from the broad
class of generalized linear models ...
We use a particularly simple simulation approach, ap-
proximating the posterior distribution by a discrete distri-
bution supported on a two-dimensional grid of points,
that provides sufficiently accurate inferences ...

Grid-based methods are, e.g., illustrated in Chapter 10 (Part III),
section Numerical integration (in particular, within deterministic
numerical integration methods) 1 / 21



Bioassay experiment (Acute toxicity test)
Dose, xi Number of Number of
(log g/ml) animals, ni deaths, yi

-0.86 5 0
-0.30 5 1
-0.05 5 3
0.73 5 5
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Find out lethal dose 50% (LD50), i.e. the dose level at which the
probability of death is 50%.

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels (see the chapter notes)

Bayesian methods help to

- reduce the number of animals needed
- easy to make sequential experiment and stop as soon as

desired accuracy is obtained
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Analisi di un esperimento biotest

• (xi ,ni , yi), i = 1, . . . , k
• xi , i-esimo di k livelli di dose (spesso misurati su scala

logaritmica)
• ni animali trattati con la dose i
• yi , numero di morti

• θi , probabilità di morte data la dose i

• Assumiamo yi scambiabili entro ciascun gruppo i , i.e.
indipendenti con uguale probabilità, il che implica
yi |θi ∼ Bin(ni , θi)

In quale situazione il modello Binomiale e l’indipendenza
non sarebbero appropriati?

• Infine, i risultati yi nei quattro gruppi sono supposti
indipendenti dati i parametri θ1, . . . , θ4
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Analisi di un esperimento biotest

• Un’analisi più semplice tratterebbe i quattro parametri θi
come scambiabili nella loro distribuzione a priori, e se si
usasse una densità non informativa, e.g., p(θ1, . . . , θ4) ∝ 1,
i parametri avrebbero distribuzioni a posteriori Beta
indipendenti.

• La scambiabilità però tralascerebbe l’informazione data
dalla conoscenza del livello di dose xi per ogni gruppo i ,
mentre ci si aspetterebbe che la probabilità di morte vari
sistematicamente in funzione della dose.

• Il modello più semplice della relazione dose-risposta,
ovvero la relazione tra θi e xi , è lineare: θi = α+ βxi .
Purtroppo questo modello ha il difetto che a dosi basse o
alte, xi si avvicina a ±∞ (ricordiamo che la dose è misurata
su scala logaritmica), mentre θi , essendo una probabilità, è
vincolata a essere compresa tra 0 e 1.
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Bioassay

• La soluzione standard è usare una trasformazione delle θ,
come il logit, nella relazione dose-risposta:

logit(θi) = α+ βxi

come nella regressione logistica

6 / 21
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Bioassay
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Bioassay

yi | θi ∼ Bin(θi ,ni)
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Bioassay
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Bioassay: inferenza a posteriori su α e β

• Verosimiglianza, in termini dei parametri α e β,

p(yi |α, β,ni , xi) ∝ [logit−1(α+βxi)]
yi [1−logit−1(α+βxi)]

ni−yi

Nota: In questa analisi consideriamo ni e xi come fissati,
quindi occultiamo il condizionamento a (ni , xi) nel
prosieguo.

• A priori, indipendente e localmente uniforme per i parametri
α e β,

p(α, β) ∝ costante

• A posteriori

p(α, β|y) ∝ p(α, β)
∏

i

p(yi |α, β)
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Bioassay: a priori su α e β

From Gelman,
In practice, we might use
• a uniform prior distribution if we really have no

prior knowledge about the parameters, or
• if we want to present a simple analysis of this

experiment alone.
If the analysis using the noninformative prior distribution
is insufficiently precise, we may consider using other
sources of substantive information (for example, from
other bioassay experiments) to construct an informative
prior distribution.
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Bioassay: calcolo della a posteriori su griglia di valori

Una stima dei parametri per impostare la griglia di valori su cui
esplorare la densità a posteriori

• Stima di ML nella regressione logistica
• (α̂, β̂) = (0.8,7.7)
• (sd(α̂), sd(β̂)) = (1.0,4.9)

La griglia di valori (α, β) su cui andiamo a calcolare la congiunta
a posteriori è

• (α, β) ∈ [−5,10]× [10,40]

Possiamo quindi calcolare la densità a posteriori non
normalizzata sulla griglia e disegnare le curve di livello
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Bioassay: settare la griglia

From Gelman,
There can be difficulty finding the correct location and
scale for the grid points.
• A grid that is defined on too small an area may

miss important features of the posterior distribution
that fall outside the grid.

• A grid defined on a large area with wide intervals
between points can miss important features that
fall between the grid points.
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Bioassay: difficoltà nel calcolo della a posteriori

From Gelman,
It is also important to avoid overflow and underflow
operations when computing the posterior distribution.
• It is usually a good idea to compute the logarithm

of the unnormalized posterior distribution and
• subtract off the maximum value before

exponentiating.
This creates an unnormalized discrete approximation
with maximum value 1, which can then be normalized
(by setting the total probability in the grid to 1).
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Bioassay: contour plot of the joint posterior density
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Bioassay: campionamento dalla congiunta a posteriori

• Dopo aver calcolato la densità a posteriori non normalizzata
su una griglia di valori che coprono il range effettivo di
(α, β),

• possiamo normalizzare approssimando la distribuzione
attraverso una funzione a gradini sulla griglia e imponendo
che la probabilità totale sulla griglia sia 1.

• Campioniamo 1000 estrazioni casuali (α∗, β∗) dalla
distribuzione a posteriori utilizzando la seguente procedura.

• Calcoliamo la distribuzione marginale a posteriori di α
(sommando numericamente su β) nella distribuzione
discreta calcolata sulla griglia

• Per s = 1, . . . ,1000
(a) Estrai α∗ dalla p(α|y) calcolata discretamente attraverso (una

versione discreta del) metodo inverse cdf
(b) Estrai β∗ dalla p(β|α, y) dato il valore appena estratto di α

usando il metodo inverse cdf
(c) Per ogni valore di α e β campionati aggiungi un jitter (ciò

conferisce alle estrazioni una distr continua)
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Bioassay posterior

Binomial model

yi | θi ∼ Bin(θi ,ni)

Link function

logit(θi) = α+ βxi

Likelihood

p(yi | α, β,ni , xi) ∝ θyi
i [1 − θi ]

ni−yi

p(yi | α, β,ni , xi) ∝ [logit−1(α+ βxi)]
yi [1 − logit−1(α+ βxi)]

ni−yi

Posterior (with uniform prior on α, β)

p(α, β | y ,n, x) ∝ p(α, β)
n∏

i=1

p(yi | α, β,ni , xi)
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Bioassay
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Bioassay
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Density evaluated in grid, but plotted using interpolation
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Bioassay

Density evaluated in grid, and plotted without interpolation
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Bioassay

Density evaluated in a coarser grid
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Bioassay

- Approximate the density as piecewise constant function
- Evaluate density in a grid over some finite region
- Density times cell area gives probability mass in each cell
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Bioassay

- Densities at 1, 2, and 3: 0.0027 0.0010 0.0001
- Probabilities of cells 1, 2, and 3: 0.0431 0.0166 0.0010
- Probabilities of cells sum to 1
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Bioassay

- Sample according to grid cell probabilities

- Several draws can be from the same grid cell
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Bioassay
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Bioassay

- Jitter can be added to improve visualization

17 / 21



Bioassay
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Bioassay
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Grid sampling

- Draws can be used to estimate expectations, for example

E [xLD50] = E [−α/β] ≈ 1
S

S∑
s=1

α(s)

β(s)

- Instead of sampling, grid could be used to evaluate
functions directly, for example

E[−α/β] ≈
T∑

t=1

w (t)
cell

α(t)

β(t) ,

where w (t)
cell is the normalized probability of a grid cell t , and

α(t) and β(t) are center locations of grid cells
• Grid sampling gets computationally too expensive in high

dimensions
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Summary of elementary modeling and computation

From Gelman, p. 78

Strategy for computation of simple Bayesian posterior
distributions

1 Write the likelihood part of the model, p(y |θ),
ignoring any factors that are free of θ.

2 Write the posterior density, p(θ|y) ∝ p(θ)p(y |θ).
• If prior information is well-formulated, include it in

p(θ).
• Otherwise use a weakly informative prior

distribution or temporarily set p(θ) ∝ constant,
with the understanding that the prior density can
be altered later to include additional information or
structure.

3 Create a crude estimate of the parameters, θ, for
use as a starting point and a comparison to the
computation in the next step.
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• Otherwise use a weakly informative prior

distribution or temporarily set p(θ) ∝ constant,
with the understanding that the prior density can
be altered later to include additional information or
structure.

3 Create a crude estimate of the parameters, θ, for
use as a starting point and a comparison to the
computation in the next step.
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Summary of elementary modeling and computation
1 Draw simulations θ1, . . . , θS, from the posterior

distribution. Use the sample draws to compute the
posterior density of any functions of θ that may be
of interest.

2 If any predictive quantities, ỹ , are of interest,
simulate ỹ1, . . . , ỹS by drawing each ỹs from the
sampling distribution conditional on the drawn
value θs, p(ỹ |θs). ... posterior simulations of θ and
ỹ can be used to check the fit of the model to data
and substantive knowledge.

For nonconjugate models, step 4 can be difficult.
Various methods have been developed to draw posterior
simulations in complicated models.
Occasionally, high-dimensional problems can be sol-
ved by combining analytical and numerical simulation
methods. If θ has only one or two components, it is
possible to draw simulations by computing on a grid (as
for the bioassay example).
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