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In questa lezione daremo dei cenni su come estendere la struttura dei
modelli Bayesiani per costruire modelli gerarchici e rendere più
flessibile la modellazione Bayesiana standard.
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Introduzione

Panoramica dei contesti di applicazione

Modelli gerarchici Bayesiani
Aliases (“Also Known As”)

I modelli gerarchici Bayesiani (Bayesian Hierarchical Models, HBM)
costituiscono un’ampia classe di modelli e comprendono, anzi
talvolta—in un’accezione più ristretta—sono “sinonimi” di

▶ modelli multilivello (Multi-level models)
▶ modelli a coefficienti casuali (Random Coefficients Models)

tra cui la ben nota tipologia dei

▶ modelli lineari generalizzati misti (Generalized Linear Mixed
Models, GLMM)
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Modelli gerarchici Bayesiani
Quando sono utili?
In genere, anche in approccio frequentista

▶ per caratteristiche oggettive o strutturali dei dati:

ogni volta che i
dati sono multi-livello o si possono riconoscere diversi strati di
variabilità;
▶ struttura gerarchica intrinseca

(e.g. studenti-scuole; misure ripetute;
campioni multi-stadio, stratificati: sotto-popolazioni di una
popolazione globale)

▶ analisi molteplici (multiple)

(e.g. meta-analisi: sotto-popolazioni di
una meta-popolazione).

Più specificatamente in approccio Bayesiano

▶ per ragioni soggettive o di modellazione

▶ incertezza nella informazione a priori
▶ espansione del modello per renderlo più flessibile (e.g. modelli a

variabili latenti, modelli mistura, modelli semiparametrici)

▶ problemi di eterogeneità dei dati
▶ model uncertainty
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Modelli gerarchici Bayesiani
Quando sono utili?

L’idea di base è quella del prendere in prestito forza, mettendo in
comune le informazioni da fonti di dati correlate,

così come l’idea di consentire la variazione tramite effetti casuali tra le
unità per tenere conto della extra-variazione o sovradispersione dei

dati

ma anche per problemi di incertezza e robustezza: in un ambiente
non-informativo, aggiungere livelli alla a priori aumenta il grado di

incertezza e di robustezza della distribuzione a priori (soprattutto nelle
strutture coniugate, altrimenti troppo restrittive)

e per semplificare il calcolo bayesiano, e.g.. per il calcolo delle
distribuzioni condizionali complete (MCMC), mattoni per la

modellazione grafica
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Definizione di modelli gerarchici Bayesiani
Una a priori specificata in modo gerarchico
Da qui in avanti, costruiremo un HBM, i.e. un modello avente diversi
livelli di distribuzioni condizionali a priori.

Una definizione formale è la seguente Robert (2007):
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Definizione
Un modello gerarchico Bayesiano

è un modello statistico Bayesiano

p(y|θ) p(θ)

dove la distribuzione a priori p(θ) viene scomposta in distribuzioni
condizionali

p1(θ|θ1) p2(θ1|θ2) . . . . . . pm(θm−1|θm)

e una distribuzione marginale pm+1(θm) di modo che

p(θ) =
∫
Θ1×...Θm

p1(θ|θ1) p2(θ1|θ2) . . . pm(θm−1|θm) pm+1(θm) dθ1 . . . θm.
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I parametri θi sono detti iperparametri di livello i.
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Essence of the hierarchical modeling

It can be pragmatic to view modeling problems in terms of three
entities (all of which have stochastic elements).

I First is the data which is presumed to be drawn from some
facet(s) of the underlying process.

II Second is the process specification itself which involves
unknowns that will be estimated as parameters.

III Third we have parameters that will be expected to vary
depending how and where the data were obtained.

With this three-part structure in mind, we are prepared to extend the
basic version of a bayesian model to more levels in a general and
flexible way.
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Essence of the hierarchical modeling

f (data, process, parameters)

∝ f (data|process, parameters)

× f (process|parameters)

× f (parameters)

[data, process, parameters] ∝
[data|process, parameters][process|parameters][parameters]
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HBM

Introduzione

Una definizione

Essence of the hierarchical modeling

Advantages of this hierarchical perspective
▶ the ability to construct complex models from simple conditional

relationships (we need not think about the entire joint distribution
for the problem, only the components)

▶ we can relax customary requirements for independent data
(conditional independence is enough)

▶ by attaching randomness to what we observe as well as to what
we do not observe, we build a fully Bayesian specification and look
at the posterior distribution of every unobservable given every
observable. (though the posterior may be high domensional and
analytically intractable, we can take advantage of the Bayesian
computational tools)
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Alcuni esempi
Modelli al confine tra modelli classici e Bayesiani

Un modello gerarchico non Bayesiano

x|N ∼ Bin(N, p)

N ∼ Pois(λ)

▶ Il numero x di uova (gattini, etc.) che
riescono a sopravvivere

▶ in una nidiata la cui numerosità N è
sconosciuta

entrambe le
variabili sono
osservabili e
entrambi i livelli
sono strutturali
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Alcuni esempi
Modelli al confine tra modelli classici e Bayesiani

Modello (lineare) a coefficienti casuali

y|θ ∼ Nn(θ,Σ1)

θ|β ∼ Nn(Xβ,Σ2)

▶ un modello (lineare) di regressione standard
▶ diventa un modello a coefficienti casuali se θ = Xβ + Zη, Zη

effetti casuali, Xβ effetti fissi

La media θ di y viene decomposta in effetti fissi, Xβ, e in effetti casuali,
Zη, dove η è normale con media 0.



Alcuni esempi
Modelli gerarchici Bayesiani a 2 stadi

Modello (lineare) a coefficienti casuali

y|θ ∼ Nn(θ,Σ1)

θ|β ∼ Nn(Xβ,Σ2)

β ∼ Np(Zξ,Σ3)

▶ un modello a coefficienti casuali

▶ che diviene propriamente un modello gerarchico Bayesiano a 2
stadi se viene completamente specificato, cioè se viene
assegnata una distribuzione a priori agli iperparametri β.
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Modelli gerarchici Bayesiani a 2 stadi

Un modello di regressione Bayesiano a 2 stadi

y|β ∼ Nn(Xβ, σ2In)

β|η ∼ Np(η1, σ2
βIp)

η ∼ N1(η0, σ
2
0) (altrimenti) π2(η) = 1

▶ Per ragioni strutturali, i coefficienti di regressione sono simili,
quindi un modello scambiabile per i β’s viene specificato
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Un modello di regressione Bayesiano a 2 stadi

y|β ∼ Nn(Xβ, σ2In)

β|η ∼ Np(η1, σ2
βIp)

η ∼ N1(η0, σ
2
0) (altrimenti) π2(η) = 1

▶ Per ragioni strutturali, i coefficienti di regressione sono simili,
quindi un modello scambiabile per i β’s viene specificato

Ad esempio, i β’s possono descrivere i tassi di investimento di differ-
enti case automobilistiche Europee, per le quali i tassi sono altamente
simili.
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y|β ∼ Nn(Xβ, σ2In)

β|η ∼ Np(η1, σ2
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(altrimenti) π2(η) = 1

▶ Per ragioni strutturali, i coefficienti di regressione sono simili,
quindi un modello scambiabile per i β’s viene specificato

▶ Una a priori sull’iperparametro (scalare) η può assumere una
forma propria come sopra, quando qualche informazion
aggiuntiva sia disponibile

, altrimenti, può essere non-informativa
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yj|θj ∼ Nnj(θj, σ
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θ|η ∼ NJ(η1J, σ
2
ηIJ) θ = (θ1, . . . , θJ)

T

η ∼ N1(η0, σ
2
0)
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2
ηIJ) θ = (θ1, . . . , θJ)

T

η ∼ N1(η0, σ
2
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▶ modello scambiabile per le y’s
▶ modello scambiabile per i θ’s
▶ una a priori per η (ad es. come sopra) che consenta di modellare

congiuntamente i J esperimenti.



Alcuni esempi
Modelli gerarchici Bayesiani a 2 stadi

Il più semplice HBM
Il modello scambiabile, 1-way anova, . . .

yj|θj ∼ Nnj(θj, σ
2Inj) j = 1, . . . , J

θ|η ∼ NJ(η1J, σ
2
ηIJ) θ = (θ1, . . . , θJ)

T

η ∼ N1(η0, σ
2
0)

Mettere insieme (pooling) tutte le unità richiede un’assunzione di
scambiabilità (∼ simmetria degli θj’s a priori)



Alcuni esempi
Modelli gerarchici Bayesiani a 2 stadi

Il più semplice HBM
Il modello scambiabile, 1-way anova, . . .

yj|θj ∼ Nnj(θj, σ
2Inj) j = 1, . . . , J

θ|η ∼ NJ(η1J, σ
2
ηIJ) θ = (θ1, . . . , θJ)

T

η ∼ N1(η0, σ
2
0)

Si consideri J esperimenti indipendenti (e.g. gruppi di pazienti soggetti
a differenti trattamenti), con l’esperimento j che stima il parametro θj

(effetto del trattamento) da nj osservazioni di dati indipendenti normal-
mente distribuiti (misurazioni di una variabile osservabile Y), yij, og-
nuno con varianza dell’errore σ2 nota.



Alcuni esempi
Modelli gerarchici Bayesiani a 2 stadi

Il più semplice HBM
Il modello scambiabile, 1-way anova, . . .

yj|θj ∼ Nnj(θj, σ
2Inj) j = 1, . . . , J

θ|η ∼ NJ(η1J, σ
2
ηIJ) θ = (θ1, . . . , θJ)

T

η ∼ N1(η0, σ
2
0)

La mistura iid per θ, p(θ) =
∫ ∏J

j=1 p(θj|η)p(η)dη, è una distribuzione
scambiabile.
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HBM

Introduzione

HB/EB

Lo scheletro essenziale del più semplice HBM

Y|θ ∼ p(y|θ)
θ|η ∼ p(θ|η)
η ∼ p(η)

▶ Se gli iperparametri η sono noti,

allora η sono soppressi e
torniamo al modello Bayesiano di base;

▶ se η sono non-noti, allora sono possibili due approcci:

▶ Empirical Bayes (EB);
▶ Full Bayes ((full) HB).
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HBM

Introduzione

HB/EB

Full Bayes o Empirical Bayes ?

▶ L’analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile),

quindi
studia la distribuzione congiunta a posteriori della totalità dei
parametri (o variabili non osservabili).

▶ L’analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati,

quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;
▶ non integra pienamente tutta l’incertezza
▶ usa i dati due volte → la precisione risulta sovrastimata
▶ confonde i concetti “a priori” e “empirico” (che sono

epistemologicamente ben distinti !)

M. Trevisani | HBM Introduzione 17/64



HBM

Introduzione

HB/EB

Full Bayes o Empirical Bayes ?

▶ L’analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile), quindi
studia la distribuzione congiunta a posteriori della totalità dei
parametri (o variabili non osservabili).

▶ L’analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati,

quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;
▶ non integra pienamente tutta l’incertezza
▶ usa i dati due volte → la precisione risulta sovrastimata
▶ confonde i concetti “a priori” e “empirico” (che sono

epistemologicamente ben distinti !)

M. Trevisani | HBM Introduzione 17/64



HBM

Introduzione

HB/EB

Full Bayes o Empirical Bayes ?

▶ L’analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile), quindi
studia la distribuzione congiunta a posteriori della totalità dei
parametri (o variabili non osservabili).

▶ L’analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati,

quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;
▶ non integra pienamente tutta l’incertezza
▶ usa i dati due volte → la precisione risulta sovrastimata
▶ confonde i concetti “a priori” e “empirico” (che sono

epistemologicamente ben distinti !)

M. Trevisani | HBM Introduzione 17/64



HBM

Introduzione

HB/EB

Full Bayes o Empirical Bayes ?

▶ L’analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile), quindi
studia la distribuzione congiunta a posteriori della totalità dei
parametri (o variabili non osservabili).

▶ L’analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati, quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;

▶ non integra pienamente tutta l’incertezza
▶ usa i dati due volte → la precisione risulta sovrastimata
▶ confonde i concetti “a priori” e “empirico” (che sono

epistemologicamente ben distinti !)

M. Trevisani | HBM Introduzione 17/64



HBM

Introduzione

HB/EB

Full Bayes o Empirical Bayes ?

▶ L’analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile), quindi
studia la distribuzione congiunta a posteriori della totalità dei
parametri (o variabili non osservabili).

▶ L’analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati, quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;
▶ non integra pienamente tutta l’incertezza

▶ usa i dati due volte → la precisione risulta sovrastimata
▶ confonde i concetti “a priori” e “empirico” (che sono

epistemologicamente ben distinti !)

M. Trevisani | HBM Introduzione 17/64



HBM

Introduzione

HB/EB

Full Bayes o Empirical Bayes ?

▶ L’analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile), quindi
studia la distribuzione congiunta a posteriori della totalità dei
parametri (o variabili non osservabili).

▶ L’analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati, quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;
▶ non integra pienamente tutta l’incertezza
▶ usa i dati due volte → la precisione risulta sovrastimata

▶ confonde i concetti “a priori” e “empirico” (che sono
epistemologicamente ben distinti !)

M. Trevisani | HBM Introduzione 17/64



HBM

Introduzione

HB/EB

Full Bayes o Empirical Bayes ?

▶ L’analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile), quindi
studia la distribuzione congiunta a posteriori della totalità dei
parametri (o variabili non osservabili).

▶ L’analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati, quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;
▶ non integra pienamente tutta l’incertezza
▶ usa i dati due volte → la precisione risulta sovrastimata
▶ confonde i concetti “a priori” e “empirico” (che sono

epistemologicamente ben distinti !)

M. Trevisani | HBM Introduzione 17/64



Distribuzione a posteriori
▶ se gli iperparametri η sono noti, l’inferenza su θ si basa sulla sua

distribuzione a posteriori come si ottiene dal Teorema di Bayes

▶ Con η non-noti

▶ il metodo EB “plugs-in” una stima di η, η̂ ≡ η̂(y) in p(θ|y,η)

i.e.

usa la “distribuzione a posteriori sti-
mata”

p(θ|y, η̂)

il metodo EB

▶ il metodo HB specifica una a priori p(η)

e

calcola

p(θ|y) =
∫

p(θ|y,η)p(η|y)dη

Il metodo (full) HB

cioè, HB fa un’integrazione mentre EB fa e.g. una
massimizzazione come sopra.
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Modelli gerarchici Bayesiani

I modelli Bayesiani gerarchici o multi-stadio sono un modo naturale di
pensare a come modellare l’informazione di unità parzialmente
scambiabili
▶ essi posso essere adatti per modellare sia le proprietà delle unità

stesse
ys

i |θs ∼ f (θs) i = 1, . . . , ns

▶ sia come queste proprietà varino tra le unità

θs|θ∗ ∼ g(θ∗) s = 1, . . . , S

▶ insieme ad una specificazione delle distr a priori per gli
iperparametri nell’ultimo stadio

θ∗ ∼ h(θ0)
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Modelli gerarchici
Esempio: studio dell’efficacia di un trattamento (cardiaco)

▶ nell’ospedale j la probabilità di sopravvivenza è θj

▶ le osservazioni yij dicono se il paziente i sia sopravvisuto
nell’ospedale j
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· · · θn

��
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▶ è ragionevole assumere che i θjs - che rappresentano un gruppo
di ospedali - siano collegati tra loro, simili
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Modelli gerarchici per meta-analisi
Esempio: studio dell’efficacia di un trattamento (cardiaco)

▶ e che i θj abbiano una distribuzione comune, θj ∼ g(τ), con τ
probabilità di sopravvivenza della popolazione generale

▶ θj non è direttamente osservato e la distribuzione della
popolazione non è nota

1. stima di ogni θj prende a prestito informazione da tutti gli altri
ospedali, p(θj|y1, . . . , yn)

2. stima di τ tiene conto della variabilità tra gli ospedali, p(τ |y1, . . . , yn)

▶ Se ci sono diversi studi che considerano lo stesso problema di
ricerca, si può pensare di combinare le informazioni da tutti i
singoli studi al fine di giungere ad una conclusione complessiva
riguardo al problema d’interesse

▶ Gli studi possono essere pensati come appartenenti ad una
popolazione di studi rivolti allo stesso problema di ricerca, e la
messa insieme di singoli studi per trarre conclusioni sulla totalità è
nota in letteratura come meta-analisi
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Modello gerarchico: terminologia

Level 1: observations given parameters p(yij | θj)

Level 2: parameters given hyperparameters p(θj | τ)

p(τ) τ

����
��
��
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�� ''OO
OOO

OOO
OOO

OOO
OO hyperparameter

p(θj | τ) θ1

��

θ2

��

· · · θn

��

parameters

p(yij | θj) yi1 yi2 yin observations

p(θ, τ | y) ∝ p(y | θ, τ)p(θ, τ)
∝ p(y | θ)p(θ | τ)p(τ)
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Confronto tra modelli
▶ "Separate model" (model with separate/independent effects)
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▶ "Joint model" (model with a common effect / pooled model)
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

▶ Medicine testing

▶ Type F344 female rats in control group given placebo

▶ count how many get endometrial stromal polyps
▶ familiar binomial model example

▶ Experiment has been repeated 71 times
0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/19 0/19 0/19
0/19 0/18 0/18 0/17 1/20 1/20 1/20 1/20 1/19 1/19
1/18 1/18 2/25 2/24 2/23 2/20 2/20 2/20 2/20 2/20
2/20 1/10 5/49 2/19 5/46 3/27 2/17 7/49 7/47 3/20
3/20 2/13 9/48 10/50 4/20 4/20 4/20 4/20 4/20 4/20
4/20 10/48 4/19 4/19 4/19 5/22 11/46 12/49 5/20 5/20
6/23 5/19 6/22 6/20 6/20 6/20 16/52 15/46 15/47 9/24
4/14

▶ θ probabilià di tumore nei topi (femmina) di laboratorio che
ricevono dose 0 del farmaco

▶ y/n proporzione osservata di cavie con tumore
▶ esperimento corrente (71o): y/n = 4/14
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Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi
Analisi di un singolo esperimento nel contesto di dati storici

1. Analisi con una a priori fissata

▶ Supponiamo di determinare i parametri di una Beta conoscendo
media e varianza della distribuzione di θ (che varia per le
differenze che ci sono nelle cavie e nelle condizioni sperimentali
tra gli studi)

y|n, θ ∼ Bin(n, θ)

θ ∼ Beta(α, β)

θ|y, n ∼ Beta(α+ 4, β + 10)
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Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi

2. Dati storici su simili studi: i 70 studi precedenti

▶ media e sd campionaria dei yj/nj precedenti sono, rispettivamente,
0.136 e 5.1.

▶ dalle relazioni note con i parametri di una beta, troviamo che una
stima di (α, β) è (1.4, 8.6)

▶
yj|nj, θj ∼ Bin(nj, θj) j = 1, . . . , 70, 71

θj ∼ Beta(α̂, β̂)

θ71|y71, n71, datistorici ∼ Beta(α̂+ 4, β̂ + 10)

▶ E(θ71|datistorici) = α̂
α̂+β̂

= 0.136

▶ θ̂71 = 4
14 = 0.286

▶ E(θ71|y71, n71, , datistorici) = 0.223 (perchè dal confronto dello studio
corrente con l’esperienza pregressa ...)

▶ NB: Non abbiamo adottato fino a qui un approccio Bayesiano full,
abbiamo semplicemente usato dati storici per ottenere delle stime
per i parametri della popolazione (iperparametri)
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Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi

▶ E se usassimo questo modello per fare inferenza su θj per
j = 1 − 70? Sarebbe lecito?

▶ sovraprecisione ...
▶ stima comporta sempre non integrazione dell’incertezza

▶ Ma forse, nella logica dell’inferenza Bayesiana, non ha proprio
senso stimare (α, β) (per trattarli come noti prima che i dati siano
raccolti) ...

▶ (Stiamo richiamando il concetto di EB contrapposto a FB)
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Costruzione di una priori: combinare informazioni
Esempio: Incidenza di tumore nei topi
Logica del combinare le informazioni
▶ Ha più senso stimare la distribuzione della popolazione da tutti i

dati, e ciò ‘aiuta’ anche la stima dei θj, piuttosto che stimare
separatamente ognuno dei 71 θj

▶ Evitiamo i problemi connessi con un approccio EB, specificando
un modello probabilistico per l’insieme complessivo dei parametri
e degli esperimenti ed effettuando un’analisi Bayesiana completa
(full)

⇒ scambiabilità e modellazione gerarchica
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Scambiabilità
▶ j = 1, . . . .J, un insieme di unità (eg esperimenti) ove

▶ y1, . . . , yJ, dati
▶ θ1, . . . , θJ, parametri specifici per unità
▶ p(y1|θ1), . . . , p(yJ|θJ), likelihood specifiche per unità

Se non si può assumere alcun ordine o raggruppamento dei parametri
θj, se non abbiamo alcuna informazione (a parte y) per distinguerli,
allora dobbiamo assumere nella distribuzione a priori simmetria tra i
parametri, rappresentata probabilisticamente dalla scambiabilità:

θ1, . . . , θJ sono scambiabili se p(θ1, . . . , θJ) è invariante per
permutazioni degli indici j = 1, . . . , J

Ignoranza → Scambiabilità
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Scambiabilità come IID condizionale
La forma più semplice di una distr scambiabile (ma non l’unica) è
l’indipendenza condizionale
▶ θj è un’estrazione indipendente da una comune distribuzione

(popolazione) governata da qualche parametro ϕ

p(θ|ϕ) =
J∏

j=1

p(θj|ϕ)

▶ da cui, se ϕ è non noto (come tipicamente è), la distribuzione per
θ deve essere mediata rispetto all’incertezza in ϕ

p(θ) =
∫  J∏

j=1

p(θj|ϕ)

 p(ϕ)dϕ

i.e. p(θ) è una mistura iid.
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Costruzione di una a priori gerarchica

Scambiabilità: Teorema di de Finetti

▶ Teorema di de Finetti
In the limit as J → ∞, any suitably well-behaved exchangeable
distribution on (θ1, . . . , θJ) can be expressed as a mixture of
independent and identical distributions

▶ The theorem does not hold when J is finite
▶ Statistically, the mixture model characterizes parameters θ as

drawn from a common superpopulation that is determined by the
unknown hyperparameters, ϕ.
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▶ Statistically, the mixture model characterizes parameters θ as

drawn from a common superpopulation that is determined by the
unknown hyperparameters, ϕ.
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Costruzione di una a priori gerarchica

Scambiabilità - Counter example

▶ A six sided die with probabilities θ1, . . . , θ6

▶ without additional knowledge θ1, . . . , θ6 exchangeable
▶ due to the constraint

∑6
j=1 θj, parameters are not independent and

thus joint distribution can not be presented as iid
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Costruzione di una a priori gerarchica

Scambiabilità

▶ Justifies why we can use

▶ a joint model for data
▶ a joint prior for a set of parameters

▶ Less strict than independence
▶ Exchangeability: Parameters θ1, . . . , θJ (or observations y1, . . . , yJ)

are exchangeable if the joint distribution p is invariant to the
permutation of indices (1, . . . , J)

▶ E.g., p(θ1, θ2, θ3) = p(θ3, θ1, θ2)

▶ Ignorance implies exchangeability: If there is no information which
can be used a priori to separate θj form each other, we can
assume exchangeability (∼ simmetry).
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Costruzione di una a priori gerarchica

Scambiabilità: obiezioni

▶ In virtually any statistical application, it is natural to object to
exchangeability on the grounds that the units actually differ. (For
example, the 71 rat tumor experiments were performed at different
times, on different rats, and presumably in different laboratories.)

▶ That the experiments differ implies that the θj’s differ, but it might
be perfectly acceptable to consider them as if drawn from a
common distribution.

▶ With no information available to distinguish them, we have no
logical choice but to model the θj’s exchangeably.

▶ e.g. if we know that the experiments have been in two different
laboratories, and we know that the other laboratory has better
conditions for the rats, but we do not know which experiments have
been made in which laboratory

▶ A priori experiments are exchangeable
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Costruzione di una a priori gerarchica

Scambiabilità e informazione addizionale

▶ Example: bioassay

▶ yi number of dead animals are not exchangeable alone
▶ xi dose is additional information
▶ (xi, yi) exchangeable and logistic regression was used

p(α, β | y, n, x) ∝
n∏

i=1

p(yi | α, β, ni, xi)p(α, β)
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Costruzione di una a priori gerarchica

Scambiabilità gerarchica

▶ Example: hierarchical rats example

▶ all rats not exchangeable
▶ in a single laboratory rats exchangeable
▶ laboratories exchangeable
▶ → hierarchical model
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Costruzione di una a priori gerarchica

Scambiabilità parziale o condizionale

Often observations are not fully exchangeable, but are conditionally or
partially exchangeable:
▶ If yi has additional information xi so that yi are not exchangeable

but (yi, xi) still are exchangeable, then we can make a joint model
for (yi, xi) or a conditional model for (yi|xi).

▶ If observations can be grouped (a priori), we may make a
hierarchical model, where each group has its own submodel, but
the group properties are unknown. If we assume that group
properties are exchangeable, we can use a common prior
distribution for the group properties.
Partial exchangeability allows us to model variation within each
group and between groups
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Costruzione di una a priori gerarchica

Scambiabilità condizionale

▶ x = (x1, . . . , xJ), covariate specifiche per unità

▶ θ = (θ1, . . . , θJ), parametri specifici per unità
▶ θ1|x1, . . . , θJ|xJ sono scambiabili

▶ p(θ|x) =
∫ [∏

j p(θj|ϕ, xj)
]

p(ϕ|x)dϕ

In questo modo, i modelli scambiabili diventano quasi universalmente
applicabili, perché qualsiasi informazione disponibile per distinguere le
diverse unità dovrebbe essere codificata nelle variabili x e y.
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Costruzione di una a priori gerarchica

Analisi bayesiana completa del modello gerarchico

L’elemento "gerarchico" chiave di questi modelli è che ϕ non è noto e
quindi ha una propria distribuzione a priori, p(ϕ). La distribuzione a
posteriori appropriata è del vettore (ϕ, θ).
▶ Distribuzione a priori

p(ϕ, θ) = p(ϕ)p(θ|ϕ)

▶ Distribuzione a posteriori congiunta

p(ϕ, θ|y) ∝ p(ϕ, θ)p(y|ϕ, θ)
= p(ϕ, θ)p(y|θ)

con quest’ultima semplificazione che vale perché la distribuzione
dei dati, p(y|ϕ, θ), dipende solo da θ; gli iperparametri ϕ
influenzano y solo attraverso θ.
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Costruzione di una a priori gerarchica

Distribuzione hyperprior

Se si sa poco di ϕ, possiamo assegnare una distribuzione a priori
diffusa, ma dobbiamo stare attenti quando si utilizza una a priori non
propria per
▶ verificare che la a posteriori risultante sia propria,

▶ valutare se le nostre conclusioni sono sensibili a questa ipotesi
semplificatrice.

Nella maggior parte dei problemi reali, si dovrebbe avere una
conoscenza sostanziale dei parametri

▶ almeno per vincolare gli iperparametri in una regione finita,
▶ se non per assegnare una distribuzione hyperprior sostanziale.

Come nei modelli non gerarchici, è spesso sensato iniziare con una
distribuzione a priori semplice, relativamente non informativa su ϕ e
cercare di aggiungere ulteriori informazioni a priori se rimane troppa
variabilità nella distribuzione a posteriori.
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Costruzione di una a priori gerarchica

Distribuzioni predittive a posteriori

Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:

1. la distribuzione di osservazioni future ỹ corrispondenti a un θj

esistente (cavie aggiuntive da un esperimento esistente), o

2. la distribuzione di osservazioni ỹ corrispondenti a futuri θj’s tratti
dalla stessa superpopolazione (risultati da un esperimento futuro).
Etichettiamo θj’s futuri come θ̃j.

Nei due casi, le estrazioni predittive a posteriori ỹ si basano su

1. estrazioni a posteriori di θj per l’esperimento esistente.

2. θ̃j simulati:

(a) si estrae ϕ̃ da p(ϕ|y)
(b) si estrae θ̃ da p(θ|ϕ̃)
(c) si estrae ỹ da p(y|θ̃).
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M. Trevisani | HBM Guida ai modelli gerarchici 43/64



HBM

Guida ai modelli gerarchici

Costruzione di una a priori gerarchica

Distribuzioni predittive a posteriori

Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:

1. la distribuzione di osservazioni future ỹ corrispondenti a un θj
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M. Trevisani | HBM Guida ai modelli gerarchici 43/64



HBM

Guida ai modelli gerarchici

Costruzione di una a priori gerarchica

Distribuzioni predittive a posteriori

Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:

1. la distribuzione di osservazioni future ỹ corrispondenti a un θj
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Calcolo nei modelli gerarchici coniugati

La strategia inferenziale per i modelli gerarchici segue l’approccio
generale adottato con i problemi multiparametrici
▶ (θ, ϕ) con θ ‘parametri d’interesse’ e ϕ ‘parametri di disturbo’

▶ p(θ|ϕ) coniugata alla varosimiglianza p(y|θ)
Derivazione analitica delle distribuzioni condizionali e marginali

1. si scriva la distr congiunta a posteriori in forma non-normalizzata
(passo immediato): p(θ, ϕ|y) ∝ p(ϕ)p(θ|ϕ)p(y|θ)

2. si determini analiticamente p(θ|ϕ, y) (semplice in modelli coniugati
dato che p(θ|ϕ) =

∏J
j=1 p(θj|ϕ), quindi p(θ|ϕ, y) è il prodotto di

densità a posteriori coniugate per le componenti θj)
3. si determini p(ϕ|y), due modi

▶ p(ϕ|y) =
∫

p(θ, ϕ|y)dθ
▶ p(ϕ|y) = p(θ,ϕ|y)

p(θ|ϕ,y) (delicata per la determinaz della cost di norm di
p(θ|ϕ, y); non è d’aiuto quando l’int non ha sol in forma chiusa)
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Simulazione dalla distribuzione a posteriori

La seguente strategia è utile per simulare un’estrazione dalla
distribuzione congiunta a posteriori p(θ, ϕ|y)

1. si estrae ϕ∗ da p(ϕ|y)

2. si estrae θ∗ da p(θ|ϕ∗, y)

▶ se vale la fattorizzazione p(θ|ϕ, y) =
∏J

j=1 p(θj|ϕ, y) allora si
possono estrarre le componenti θj indipendentemente una alla volta

3. in caso, si estrae ỹ da p(y|θ∗)
4. Si ripete la procedura L volte per ottenere un insieme di L

estrazioni
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—————————————————————

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

▶ j = 1, . . . , J, J = 71, esperimenti

yj|nj, θj ∼ Bin(nj, θj) ind., nj noto

θ ∼ Beta(α, β) ind.

(α, β) ∼ noninformative

▶ Eseguiamo i tre passi per determinare la forma analitica della
distribuzione a posteriori: distribuzioni congiunta, condizionale e
marginale a posteriori

1. p(θ, α, β|y) ∝ p(α, β)p(θ|α, β)p(y|θ)
2. p(θ|α, β, y) =

∏
j Beta(α+ yj, β + nj − yj)

3. p(α, β|y) = p(θ,α,β|y)
p(θ|α,β,y) (BDA3, p. 110) equazione che non può

essere semplificata analiticamente ma è facile da calcolare per
qualsiasi valore specificato di (α, β)
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

3. Simulazione da p(α, β|y)

3.1 Valutiamo p(α, β|y) su una griglia di valori
3.2 Approssimiamo secondo una funzione a gradini e imponiamo

somma prob a 1
3.3 Campioniamo αl ∼ p(α|y) e βl ∼ p(β|αl, y) usando il metodo

inverse-cdf
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Analisi Bayesiana di modelli gerarchici coniugati

Campionamento con il metodo inverse-cdf

F(v∗) = P(v ≤ v∗) =

{∑
v < v∗ p(v)∫ v∗

−∞ p(v)dv

1. Estrai u ∼ U(0, 1)

2. Calcola v = F−1(u), quindi v ∼ p

Esempio

▶ v ∼ Exp(λ)
▶ F(v) = 1 − e−λ v)

▶ v = F−1(u) iff − log(1 − u)/λ
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi
Specifichiamo una distribuzione hyperprior non-informativa per (α, β)
▶ Sia γ = logit α

α+β = log α
β e δ = log(α+ β)

p(γ, δ) ∝ constanton(−∞,∞)

Questa a priori porta ad una a post impropria
▶ Con una numerosità campionaria ragionevolmente alta, possiamo

specificare una iperpriori ‘noninformativa’ dominata dalla
verosimiglianza e che conduce ad una distr a post propria:
(γ1, δ1)(

α
α+β , (α+ β)−1/2) uniforme, che moltiplicata per

l’opportuno Jacobiano ha densità

▶ nella scala originaria

p(α, β) ∝ (α+ β)−5/2

▶ nella scala della trasformata naturale sopra

p(γ, δ) ∝ αβ(α+ β)−5/2
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

Calcolo della densità marginale a posteriori
▶ Calcoliamo p(γ, δ|y) nonnormalizzata su una griglia di valori

(curve di livello)

▶ calcolo del log della fdp p(α, β|y) con a priori p(α, β) ∝ (α+ β)−5/2,
moltiplicato per lo Jacobiano per fornire p(γ, δ|y)

▶ griglia (γ, δ) ∈ [−2.,−1]× [1.5, 3] centrata nella stima empirica
basata sui dati storici, (α̂, β̂) = (1.4, 8.6), che in termini di (γ, δ) è
(−2.5,−1) e che ha una copertura con fattore 4 per ogni parametro

▶ si sottrae il max della log densità ed infine si esponenzia per
ottenere la p(γ, δ|y) nonnormalizzata

▶ poichè parti importanti della marg a post cadono fuori il range, si
ricalcola su [−2.3,−1.3]× [1, 5]

▶ Normalizziamo la densità a post relativa approssimandola
attraverso una funzione a gradini e imponendo che la prob totale
sulla griglia sia 1

▶ Possiamo calcolare momenti a posteriori, ad es E(α|y) e E(β|y)
(che risultano (2.4, 14.3) vicini alla moda per la simmetria della
distr nella scala (γ, δ))
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Guida ai modelli gerarchici

Analisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

Campionamento dalla densità marginale a posteriori
▶ Estrai 1000 valori dalla congiunta a post p(α, β, θ|y) in questo

modo

1. estrai γl, δl dalla loro a post p(γ, δ|y) con la procedura del
campionamento discrete-grid

2. per l = 1, . . . , 1000:

▶ trasforma γ l, δl → αl, βl

▶ per ogni j estrai θl
j dalla cond a post Beta(αl + yj, β

l + nj − yj)

▶ mostra i risultati
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▶ Estrai 1000 valori dalla congiunta a post p(α, β, θ|y) in questo

modo
1. estrai γl, δl dalla loro a post p(γ, δ|y) con la procedura del

campionamento discrete-grid
2. per l = 1, . . . , 1000:

▶ trasforma γ l, δl → αl, βl

▶ per ogni j estrai θl
j dalla cond a post Beta(αl + yj, β

l + nj − yj)

▶ mostra i risultati
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

▶ θj: shrinkage verso la media a posteriori 0.14

▶ esperimenti con meno osservazioni mostrano uno shrinkage più
evidente e varianza a post maggiore

▶ risultati simili a quanto si ottiene con EB (per il numero piuttosto
alto degli esperimenti)

▶ variabilità a posteriori maggiore che con EB (per incertezza a post
degli iperparametri) (Nota: nel laboratorio, questo non si verifica!)
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

▶ Hierarchical binomial model for rats
prior parameters α and β are unknown

yj

GFED@ABCθj
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nj

����
��

jyj | nj, θj ∼ Bin(yj | nj, θj)

θj | α, β ∼ Beta(θj | α, β)

▶ Joint posterior p(θ1, . . . , θJ, α, β | y)

▶ multiple parameters
▶ factorize

∏J
j=1 p(θj | α, β, y)p(α, β | y)
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Esempio: Incidenza di tumore nei topi

▶ Population prior Beta(θj | α, β)

▶ Hyperprior p(α, β)?

▶ α, β both affect the location and scale
▶ BDA3 has p(α, β) ∝ (α+ β)−5/2

▶ diffuse prior for location and scale (BDA3 p. 110)

▶ lab
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi. Effetto della numerosità dei gruppi

Pooled mean
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