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In questa lezione daremo dei cenni su come estendere la struttura dei
modelli Bayesiani per costruire modelli gerarchici e rendere piu
flessibile la modellazione Bayesiana standard.
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I modelli gerarchici Bayesiani (Bayesian Hierarchical Models, HBM)
costituiscono un’ampia classe di modelli e comprendono, anzi
talvolta—in un’accezione piu ristretta—sono “sinonimi” di

» modelli multilivello (Multi-level models)

» modelli a coefficienti casuali (Random Coefficients Models)
tra cui la ben nota tipologia dei
> modelli lineari generalizzati misti (Generalized Linear Mixed
Models, GLMM)
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Modelli gerarchici Bayesiani
Quando sono utili?

Lidea di base & quella del prendere in prestito forza, mettendo in
comune le informazioni da fonti di dati correlate,

cosi come l'idea di consentire la variazione tramite effetti casuali tra le
unita per tenere conto della extra-variazione o sovradispersione dei
dati

ma anche per problemi di incertezza e robustezza: in un ambiente
non-informativo, aggiungere livelli alla a priori aumenta il grado di
incertezza e di robustezza della distribuzione a priori (soprattutto nelle
strutture coniugate, altrimenti troppo restrittive)

e per semplificare il calcolo bayesiano, e.g.. per il calcolo delle
distribuzioni condizionali complete (MCMC), mattoni per la
modellazione grafica
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Da qui in avanti, costruiremo un HBM, i.e. un modello avente diversi
livelli di distribuzioni condizionali a priori.

Una definizione formale € la seguente Robert (2007):
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Definizione
Un modello gerarchico Bayesiano € un modello statistico Bayesiano

p(y|0)p(6)

dove la distribuzione a priori p(8) viene scomposta in distribuzioni
condizionali

pl(a‘al) ]72(01‘02) ------ pm(emfllem)

e una distribuzione marginale p,,+1(0,,) di modo che

p(0) = / p1(60|601)p2(01102) ... pn(0m—1]0m) pms1(0m) dOy ... 0,,.

elx...@m

La a priori p(8) si ottiene integrando sugli iperparametri6,,....0,,.




Definizione
Un modello gerarchico Bayesiano € un modello statistico Bayesiano

p(y|6)p(0)

dove la distribuzione a priori p(8) viene scomposta in distribuzioni
condizional

pl(a‘al) p2(01‘02) ------ pm(emfllem)

e una distribuzione marginale p,,+1(0,,) di modo che

p(8) = / P1(6161) p2(61185) - . Pn(Bn1180) Prrss (B) B ... O,

@1X...@m

| parametri 8; sono detti iperparametri di livello i.
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L Una definizione
Essence of the hierarchical modeling
It can be pragmatic to view modeling problems in terms of three

entities (all of which have stochastic elements).

| Firstis the data which is presumed to be drawn from some
facet(s) of the underlying process.

Il Second is the process specification itself which involves
unknowns that will be estimated as parameters.

lll Third we have parameters that will be expected to vary
depending how and where the data were obtained.

With this three-part structure in mind, we are prepared to extend the
basic version of a bayesian model to more levels in a general and
flexible way.
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f(data, process, parameters)
 f(data|process, parameters)
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X f(parameters)

[data, process, parameters]

[data|process, parameters|[process|parameters||parameters|
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Essence of the hierarchical modeling

Advantages of this hierarchical perspective

» the ability to construct complex models from simple conditional
relationships (we need not think about the entire joint distribution
for the problem, only the components)

» we can relax customary requirements for independent data
(conditional independence is enough)

> by attaching randomness to what we observe as well as to what
we do not observe, we build a fully Bayesian specification and look
at the posterior distribution of every unobservable given every
observable. (though the posterior may be high domensional and
analytically intractable, we can take advantage of the Bayesian
computational tools)
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Modelli al confine tra modelli classici e Bayesiani

Un modello gerarchico non Bayesiano

x|N ~ Bin(N,p)

N ~ Pois()\)
entrambe le
» |l numero x di uova (gattini, etc.) che variabili sono
riescono a sopravvivere osservabili e

entrambi i livelli

» in una nidiata la cui numerosita N .
sono strutturali

sconosciuta
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Modello (lineare) a coefficienti casuali

y0 ~ Nu(0,%)
| ~ Nn(Xﬁ722)

» un modello (lineare) di regressione standard

» diventa un modello a coefficienti casuali se 8 = X3 + Zn, Zn
effetti casuali, X3 effetti fissi

La media 6 di y viene decomposta in effetti fissi, X3, e in effetti casuali,
Zn, dove n € normale con media 0.
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Modello (lineare) a coefficienti casuali

yO ~ Ni(60,%)
018 ~ Nu(XB,%2)
~ NP(Z& 23)

» un modello a coefficienti casuali

» che diviene propriamente un modello gerarchico Bayesiano a 2
stadi se viene completamente specificato, cioé se viene
assegnata una distribuzione a priori agli iperparametri 3.
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Un modello di regressione Bayesiano a 2 stadi

Y8 ~ Nu(XB,0%I,)
In ~ Np(nl,aélp)

» Per ragioni strutturali, i coefficienti di regressione sono simili,
quindi un modello scambiabile per i 8’s viene specificato

Ad esempio, i 3’s possono descrivere i tassi di investimento di differ-
enti case automobilistiche Europee, per le quali i tassi sono altamente
simili.
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Un modello di regressione Bayesiano a 2 stadi

VB~ Nu(XB,0%I)
B~ Np(nl,aélp)
~ Ni(n,03) (altrimenti) m(n) =1

» Per ragioni strutturali, i coefficienti di regressione sono simili,
quindi un modello scambiabile per i 5’s viene specificato
» Una a priori sull’iperparametro (scalare) n pud assumere una

forma propria come sopra, quando qualche informazion
aggiuntiva sia disponibile, altrimenti, pud essere non-informativa
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Il piu semplice HBM
Il modello scambiabile, 1-way anova, ...

Yjl0; ~ Ny (0;,0°1,) j=1,...,J
6ln ~ Ny(nl,,0,1)) 0=0,...,00)7
o~ Nl (77070(2))

» modello scambiabile per le y’s
» modello scambiabile peri 6’s

> una a priori per n (ad es. come sopra) che consenta di modellare
congiuntamente i J esperimenti.
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Il piu semplice HBM
Il modello scambiabile, 1-way anova, ...
yj|0j~ Nﬂf(ﬁj,azlnj) j: 1,...,.]
0|77N N](ﬁl],d%]]) 9:(91,...,9])T
n~ Ni (77070(2))

Mettere insieme (pooling) tutte le unita richiede un’assunzione di
scambiabilita (~ simmetria degli ¢,’s a priori)
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Il piu semplice HBM
Il modello scambiabile, 1-way anova, ...
yj|9j~ Nﬂi(Hj,azlnj) j: 1,...,.]
0|77N NJ(HI],U%I]) 9:(91,...,9])T
n~ Ni (77070(2))

Si consideri J esperimenti indipendenti (e.g. gruppi di pazienti soggetti
a differenti trattamenti), con I'esperimento j che stima il parametro 6;
(effetto del trattamento) da »; osservazioni di dati indipendenti normal-
mente distribuiti (misurazioni di una variabile osservabile Y), y;, 0g-
nuno con varianza dell’errore o2 nota.
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Modelli gerarchici Bayesiani a 2 stadi

Il piu semplice HBM
Il modello scambiabile, 1-way anova, ...
yj|0j~ Nﬂf(ﬁj,azlnj) j: 1,...,.]
0|77N N](ﬁl],d%]]) 9:(91,...,9])T
n~ Ni (77070(2))

La mistura iid per 0, p(0) = fozlp(ajm)p(n)dn, & una distribuzione
scambiabile.
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Lo scheletro essenziale del piu semplice HBM

Y0 ~ p(y0)
Oln ~ p(@n)
n ~ pn)

» Se gli iperparametri n sono noti, allora 7 sono soppressi e
torniamo al modello Bayesiano di base;
> se n sono non-noti, allora sono possibili due approcci:
> Empirical Bayes (EB);
> Full Bayes ((full) HB).
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Full Bayes o Empirical Bayes ?

» L'analisi Bayesiana completa specifica un modello probabilistico
per ogni variabile (sia osservabile che non-osservabile), quindi
studia la distribuzione congiunta a posteriori della totalita dei
parametri (0 variabili non osservabili).

» L'analisi Bayesiana Empirica ottiene delle stime per gli
iperparametri dai dati, quindi studia la distribuzione congiunta a
posteriori dei rimanenti parametri condizionatamente a tali stime;

> non integra pienamente tutta l'incertezza

> usa i dati due volte — la precisione risulta sovrastimata

» confonde i concetti “a priori” e “empirico” (che sono
epistemologicamente ben distinti !)
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Distribuzione a posteriori

» Con i non-noti
» il metodo EB “plugs-in” una stima di n, ) = 7(y) in p(Bly,n) i.e.
il metodo EB

usa la “distribuzione a posteriori sti-
mata”

p(0ly,n)

> il metodo HB specifica una a priori p(n) e
Il metodo (full) HB}

calcola

p(8ly) = /p(Oly, mp(nly)dn

cioe, HB fa un’integrazione mentre EB fa e.g. una
massimizzazione come sopra.
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Modelli gerarchici Bayesiani

I modelli Bayesiani gerarchici o multi-stadio sono un modo naturale di

pensare a come modellare I'informazione di unita parzialmente
scambiabili

> essi posso essere adatti per modellare sia le proprieta delle unita
stesse

VIO ~ F(0°) i=1,....n°
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Modelli gerarchici Bayesiani

I modelli Bayesiani gerarchici o multi-stadio sono un modo naturale di

pensare a come modellare I'informazione di unita parzialmente
scambiabili

> essi posso essere adatti per modellare sia le proprieta delle unita
stesse

Ve~ f(0°) i=1,....,n°
> sia come queste proprieta varino tra le unita
10" ~ g(6*) s=1,...,8

» insieme ad una specificazione delle distr a priori per gli
iperparametri nell’'ultimo stadio

0 ~ h(6)
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Esempio: studio dell’efficacia di un trattamento (cardiaco)

» nell'ospedale j la probabilita di sopravvivenza e ¢,

> le osservazioni y; dicono se il paziente i sia sopravvisuto
nell’ospedale j

ﬁl (92 te (L)n
Yil Yi2 Yin

> & ragionevole assumere che i ¢;s - che rappresentano un gruppo
di ospedali - siano collegati tra loro, simili

01 02 e ()n

Yi1 Yi2 Yin



Modelli gerarchici per meta-analisi
Esempio: studio dell’efficacia di un trattamento (cardiaco)
» e che i 0; abbiano una distribuzione comune, 0; ~ g(7), con 7
probablllta di sopravvivenza della popolazmne generale



Modelli gerarchici per meta-analisi
Esempio: studio dell’efficacia di un trattamento (cardiaco)
» e che i ¢; abbiano una distribuzione comune, ¢; ~ g(7), con 7
probablllta di sopravvivenza della popolazione generale

» 0; non e direttamente osservato e la distribuzione della
popoIaZ|one non é nota



Modelli gerarchici per meta-analisi
Esempio: studio dell’efficacia di un trattamento (cardiaco)

» e che i ¢; abbiano una distribuzione comune, ¢; ~ g(7), con 7
probablllta di sopravvivenza della popolazione generale

» 0; non e direttamente osservato e la distribuzione della
popoIaZ|one non é nota

1. stima di ogni ¢, prende a prestito informazione da tutti gli altri
ospedali, P(H_/|YI» ce 7yn>



Modelli gerarchici per meta-analisi
Esempio: studio dell’efficacia di un trattamento (cardiaco)

» e che i ¢; abbiano una distribuzione comune, ¢; ~ g(7), con 7
probablllta di sopravvivenza della popolazione generale

» 0; non e direttamente osservato e la distribuzione della
popoIaZ|one non é nota
1. stima di ogni 0; prende a prestito informazione da tutti gli altri

ospedali, p(¢, |y1, ceyYn)
2. stima di 7 tiene conto della variabilita tra gli ospedali, p(7[y1, ..., yn)



Modelli gerarchici per meta-analisi
Esempio: studio dell’efficacia di un trattamento (cardiaco)

» e che i ¢; abbiano una distribuzione comune, ¢; ~ g(7), con 7
probablllta di sopravvivenza della popolazione generale
» 0; non e direttamente osservato e la distribuzione della
popoIaZ|one non é nota
1. stima di ogni 0; prende a prestito informazione da tutti gli altri

ospedali, p(¢;|y1,- - -, u)
2. stima di 7 tiene conto della variabilita tra gli ospedali, p(7[y1, ..., yn)

» Se ci sono diversi studi che considerano lo stesso problema di
ricerca, si pud pensare di combinare le informazioni da tutti i
singoli studi al fine di giungere ad una conclusione complessiva
riguardo al problema d’interesse



Modelli gerarchici per meta-analisi
Esempio: studio dell’efficacia di un trattamento (cardiaco)

>

| 2

e che i ¢; abbiano una distribuzione comune, ¢; ~ g(7), con 7
probablllta di sopravvivenza della popolazione generale
¢, non & direttamente osservato e la distribuzione della
popoIaZ|one non é nota

1. stima di ogni 0; prende a prestito informazione da tutti gli altri

ospedali, p(¢;|y1,- - -, u)
2. stima di 7 tiene conto della variabilita tra gli ospedali, p(7[y1, ..., yn)

Se ci sono diversi studi che considerano lo stesso problema di
ricerca, si pud pensare di combinare le informazioni da tutti i
singoli studi al fine di giungere ad una conclusione complessiva
riguardo al problema d’interesse

Gli studi possono essere pensati come appartenenti ad una
popolazione di studi rivolti allo stesso problema di ricerca, e la
messa insieme di singoli studi per trarre conclusioni sulla totalita &
nota in letteratura come meta-analisi
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Level 1: observations given parameters p(y;; | ¢))
Level 2: parameters given hyperparameters p(0; | 7)

p(7) T \ hyperparameter
p(0;| ) 01 0> 0, parameters
pii 1 0)) yil yi2 Vin observations

p0,71y) o py|0,7)p(0,7)
o< p(y|O)p(0]7)p(7)
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Confronto tra modelli
> "Separate model" (model with separate/independent effects)

91 02 e 011
Y1 Y2 Yn

» "Joint model" (model with a common effect / pooled model)
Y1 y2 T Yn

» Hierarchical model

S

04 0>

| |

Y1 Y2 Yn
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» Medicine testing
» Type F344 female rats in control group given placebo

> count how many get endometrial stromal polyps

> familiar binomial model example
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» Medicine testing
» Type F344 female rats in control group given placebo

> count how many get endometrial stromal polyps

> familiar binomial model example

» Experiment has been repeated 71 times
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» @ probabilia di tumore nei topi (femmina) di laboratorio che
ricevono dose 0 del farmaco

> y/n proporzione osservata di cavie con tumore
):y/n=4/14

> esperimento corrente (719):
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Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi

Analisi di un singolo esperimento nel contesto di dati storici
1. Analisi con una a priori fissata
» Supponiamo di determinare i parametri di una Beta conoscendo
media e varianza della distribuzione di 8 (che varia per le
differenze che ci sono nelle cavie e nelle condizioni sperimentali
tra gli studi)
y|n, 0 ~ Bin(n, 0)
0 ~ Beta(a, B)
Oly,n ~ Beta(a+ 4,3 + 10)
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Esempio: Incidenza di tumore nei topi
2. Dati storici su simili studi: i 70 studi precedenti
» media e sd campionaria dei y;/n; precedenti sono, rispettivamente,
0.136 e 5.1.
» dalle relazioni note con i parametri di una beta, troviamo che una
stima di (o, ) € (1.4,8.6)

>
y,-\nj,t?j ~ Bin(n,-,Qj) ]: 1,...,70,71

6; ~ Beta(a, )
071|y71, n71. datistorici ~ Beta(a + 4, B + 10)



Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi
2. Dati storici su simili studi: i 70 studi precedenti
» media e sd campionaria dei y;/n; precedenti sono, rispettivamente,
0.136 e 5.1.
» dalle relazioni note con i parametri di una beta, troviamo che una
stima di (o, ) € (1.4,8.6)

>
y,-\nj,t?j ~ Bin(n,-,Qj) ]: 1,...,70,71

6; ~ Beta(a, )
071|y71, n71. datistorici ~ Beta(a + 4, B + 10)

> E(6;|datistorici) = ﬁ_ﬁ = 0.136



Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi
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>
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6; ~ Beta(a, )
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> E(6|datistorici) = —9%— = 0.136
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2. Dati storici su simili studi: i 70 studi precedenti
» media e sd campionaria dei y;/n; precedenti sono, rispettivamente,
0.136 e 5.1.
» dalle relazioni note con i parametri di una beta, troviamo che una
stima di (o, ) € (1.4,8.6)
>
y,-\nj,t?j ~ Bin(n,-,Oj) ]: 1,...,70,71

6; ~ Beta(a, )
071|y71, n71. datistorici ~ Beta(a + 4, B + 10)

datistorici) = ~% = 0.136
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» E(071|y71,n71, , datistorici) = 0.223 (perché dal confronto dello studio
corrente con 'esperienza pregressa ...)




Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi
2. Dati storici su simili studi: i 70 studi precedenti
» media e sd campionaria dei y;/n; precedenti sono, rispettivamente,
0.136 e 5.1.
» dalle relazioni note con i parametri di una beta, troviamo che una
stima di (o, ) € (1.4,8.6)
>
y,-\nj,t?j ~ Bin(n,-,Oj) ]: 1,...,70,71

6; ~ Beta(a, )

971 ]y71,n71 ~ Beta(d + 4, B + 10)
> E(0] ) = ﬁﬁ =0.136
> 0y =4 =0286
> E(071|ym1,n7, ) = 0.223 (perché dal confronto dello studio

corrente con I'esperienza pregressa ...)
» NB: Non abbiamo adottato fino a qui un approccio Bayesiano full,
abbiamo semplicemente usato dati storici per ottenere delle stime
per i parametri della popolazione (iperparametri)
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Costruzione di una priori: un singolo esperimento
Esempio: Incidenza di tumore nei topi
» E se usassimo questo modello per fare inferenza su 6; per
j=1-—70? Sarebbe lecito?
> sovraprecisione ...
> stima comporta sempre non integrazione dell’incertezza
» Ma forse, nella logica dell’inferenza Bayesiana, non ha proprio
senso stimare («, 3) (per trattarli come noti prima che i dati siano
raccolti) ...

» (Stiamo richiamando il concetto di EB contrapposto a FB)
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separatamente ognuno dei 71 6;
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Costruzione di una priori: combinare informazioni
Esempio: Incidenza di tumore nei topi
Logica del combinare le informazioni
» Ha piu senso stimare la distribuzione della popolazione da tutti i
dati, e cio ‘aiuta’ anche la stima dei 6;, piuttosto che stimare
separatamente ognuno dei 71 6;
» Evitiamo i problemi connessi con un approccio EB, specificando
un modello probabilistico per I'insieme complessivo dei parametri
e degli esperimenti ed effettuando un’analisi Bayesiana completa
(full)
= scambiabilita e modellazione gerarchica
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Scambiabilita
» j=1,....J,un insieme di unita (eg esperimenti) ove

> yi,...,ys, dati

> 0,...,60;, parametri specifici per unita

> p(y1l6h),...,p(ys10s), likelihood specifiche per unita
Se non si pud assumere alcun ordine o raggruppamento dei parametri
6;, se non abbiamo alcuna informazione (a parte y) per distinguerli,
allora dobbiamo assumere nella distribuzione a priori simmetria tra i
parametri, rappresentata probabilisticamente dalla scambiabilita:

01,...,0; sono scambiabili se p(6,,...,0,) & invariante per
permutazioni degliindicij=1,...,J

Ignoranza — Scambiabilita
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Scambiabilita come IID condizionale
La forma piu semplice di una distr scambiabile (ma non l'unica) €
l'indipendenza condizionale
» 0; & un’estrazione indipendente da una comune distribuzione
(popolazione) governata da qualche parametro ¢

J

p(019) = [ r(6jl¢)

Jj=1

» da cui, se ¢ € non noto (come tipicamente &), la distribuzione per
0 deve essere mediata rispetto all'incertezza in ¢

J
p(6) = / [[2610)| p(é)do
j=1

i.e. p(@) € una mistura iid.
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Scambiabilita: Teorema di de Finetti

» Teorema di de Finetti
In the limit as J — oo, any suitably well-behaved exchangeable
distribution on (64, ..., 6,) can be expressed as a mixture of
independent and identical distributions
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Scambiabilita: Teorema di de Finetti

» Teorema di de Finetti
In the limit as J — oo, any suitably well-behaved exchangeable
distribution on (64, ..., 6,) can be expressed as a mixture of
independent and identical distributions

» The theorem does not hold when J is finite

> Statistically, the mixture model characterizes parameters 0 as
drawn from a common superpopulation that is determined by the
unknown hyperparameters, ¢.
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LCostruzione di una a priori gerarchica
Scambiabilita - Counter example

> A six sided die with probabilities 6, ..., 0
» without additional knowledge 6, . . ., 6 exchangeable
> due to the constraint Zle 6;, parameters are not independent and
thus joint distribution can not be presented as iid
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Scambiabilita

» Justifies why we can use

> a joint model for data
> a joint prior for a set of parameters

> Less strict than independence

» Exchangeability: Parameters 6,,...,6; (or observations y, ...

are exchangeable if the joint distribution p is invariant to the
permutation of indices (1,...,J)
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Scambiabilita

» Justifies why we can use

> a joint model for data
> a joint prior for a set of parameters

> Less strict than independence

» Exchangeability: Parameters 6,,...,6; (or observations y, ...

are exchangeable if the joint distribution p is invariant to the
permutation of indices (1,...,J)

> E.g., p(01,02,03) = p(03,6:,0,)

7)’1)
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LCostruzione di una a priori gerarchica

Scambiabilita

» Justifies why we can use

> a joint model for data

> a joint prior for a set of parameters
> Less strict than independence

» Exchangeability: Parameters 6y,...,6; (or observations yi,...,y;)
are exchangeable if the joint distribution p is invariant to the
permutation of indices (1,...,J)

> E.g., p(01,0,03) = p(63,01,0,)

» [gnorance implies exchangeability: If there is no information which
can be used a priori to separate 6; form each other, we can
assume exchangeability (~ simmetry).
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HBM
LG.uida ai modelli gerarchici

LCostruzione di una a priori gerarchica
Scambiabilita: obiezioni

> In virtually any statistical application, it is natural to object to
exchangeability on the grounds that the units actually differ. (For
example, the 71 rat tumor experiments were performed at different
times, on different rats, and presumably in different laboratories.)
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> In virtually any statistical application, it is natural to object to
exchangeability on the grounds that the units actually differ. (For
example, the 71 rat tumor experiments were performed at different
times, on different rats, and presumably in different laboratories.)

» That the experiments differ implies that the 6,’s differ, but it might
be perfectly acceptable to consider them as if drawn from a
common distribution.

» With no information available to distinguish them, we have no
logical choice but to model the 6,'s exchangeably.

> e.g. if we know that the experiments have been in two different
laboratories, and we know that the other laboratory has better
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LCostruzione di una a priori gerarchica
Scambiabilita: obiezioni

> In virtually any statistical application, it is natural to object to
exchangeability on the grounds that the units actually differ. (For
example, the 71 rat tumor experiments were performed at different
times, on different rats, and presumably in different laboratories.)

» That the experiments differ implies that the 6,’s differ, but it might
be perfectly acceptable to consider them as if drawn from a
common distribution.

» With no information available to distinguish them, we have no
logical choice but to model the 6,'s exchangeably.

> e.g. if we know that the experiments have been in two different
laboratories, and we know that the other laboratory has better
conditions for the rats, but we do not know which experiments have
been made in which laboratory

> A priori experiments are exchangeable
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LCostruzione di una a priori gerarchica

Scambiabilita e informazione addizionale

» Example: bioassay

> y; number of dead animals are not exchangeable alone
» x; dose is additional information
> (x;,¥;) exchangeable and logistic regression was used

p(avﬂ | y?nax) S8 Hp(yl | Oé,ﬂ,l’li,.Xi)p(OlHB)

i=1
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LCostruzione di una a priori gerarchica

Scambiabilita gerarchica

» Example: hierarchical rats example
> all rats not exchangeable
> in a single laboratory rats exchangeable
> laboratories exchangeable
» — hierarchical model
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Scambiabilita parziale o condizionale
Often observations are not fully exchangeable, but are conditionally or

partially exchangeable:

» If y; has additional information x; so that y; are not exchangeable
but (y;,x;) still are exchangeable, then we can make a joint model
for (y;,x;) or a conditional model for (y;|x;).
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LCostruzione di una a priori gerarchica
Scambiabilita parziale o condizionale

Often observations are not fully exchangeable, but are conditionally or
partially exchangeable:

» If y; has additional information x; so that y; are not exchangeable
but (y;,x;) still are exchangeable, then we can make a joint model
for (yi, x;) or a conditional model for (y;|x;).

> |f observations can be grouped (a priori), we may make a
hierarchical model, where each group has its own submodel, but
the group properties are unknown. If we assume that group
properties are exchangeable, we can use a common prior
distribution for the group properties.

Partial exchangeability allows us to model variation within each
group and between groups
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Scambiabilita condizionale
» x = (x1,...,xs), covariate specifiche per unita

> 0= (6,,...,0;), parametri specifici per unita
» Oi|xi,...,0;]x; sono scambiabili

> p(0) = J [I1;(6116,3)] p(elv)de

M. Trevisani | HBM Guida ai modelli gerarchici 40/64



HBM
LG.uida ai modelli gerarchici

LCostruzione di una a priori gerarchica

Scambiabilita condizionale

» x = (x1,...,xs), covariate specifiche per unita
> 0= (6,,...,0;), parametri specifici per unita
» Oi|xi,...,0;]x; sono scambiabili
> p(0}) = [ [T;p(016,%)] p(6lv)de
In questo modo, i modelli scambiabili diventano quasi universalmente

applicabili, perché qualsiasi informazione disponibile per distinguere le
diverse unita dovrebbe essere codificata nelle variabili x e y.
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LCostruzione di una a priori gerarchica
Analisi bayesiana completa del modello gerarchico

Lelemento "gerarchico” chiave di questi modelli &€ che ¢ non & noto e
quindi ha una propria distribuzione a priori, p(¢). La distribuzione a
posteriori appropriata € del vettore (¢, 0).

» Distribuzione a priori

p(e,0) = p(e)p(0]9)
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LCostruzione di una a priori gerarchica
Analisi bayesiana completa del modello gerarchico

Lelemento "gerarchico” chiave di questi modelli &€ che ¢ non & noto e
quindi ha una propria distribuzione a priori, p(¢). La distribuzione a
posteriori appropriata € del vettore (¢, 0).

» Distribuzione a priori

p(e,0) = p(e)p(0]9)

» Distribuzione a posteriori congiunta

p(¢,0ly) o< p(¢,0)p(v|,0)
=p(9,0)p(y]6)
con quest’ultima semplificazione che vale perché la distribuzione

dei dati, p(y|¢, 0), dipende solo da 6; gli iperparametri ¢
influenzano y solo attraverso 6.
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LCostruzione di una a priori gerarchica

Distribuzione hyperprior

Se si sa poco di ¢, possiamo assegnare una distribuzione a priori

diffusa, ma dobbiamo stare attenti quando si utilizza una a priori non
propria per

» verificare che la a posteriori risultante sia propria,
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Distribuzione hyperprior

Se si sa poco di ¢, possiamo assegnare una distribuzione a priori
diffusa, ma dobbiamo stare attenti quando si utilizza una a priori non
propria per

» verificare che la a posteriori risultante sia propria,

> valutare se le nostre conclusioni sono sensibili a questa ipotesi
semplificatrice.
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LCostruzione di una a priori gerarchica

Distribuzione hyperprior

Se si sa poco di ¢, possiamo assegnare una distribuzione a priori
diffusa, ma dobbiamo stare attenti quando si utilizza una a priori non
propria per

» verificare che la a posteriori risultante sia propria,

> valutare se le nostre conclusioni sono sensibili a questa ipotesi
semplificatrice.

Nella maggior parte dei problemi reali, si dovrebbe avere una
conoscenza sostanziale dei parametri

» almeno per vincolare gli iperparametri in una regione finita,
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Distribuzione hyperprior

Se si sa poco di ¢, possiamo assegnare una distribuzione a priori
diffusa, ma dobbiamo stare attenti quando si utilizza una a priori non
propria per

» verificare che la a posteriori risultante sia propria,

> valutare se le nostre conclusioni sono sensibili a questa ipotesi
semplificatrice.

Nella maggior parte dei problemi reali, si dovrebbe avere una
conoscenza sostanziale dei parametri

» almeno per vincolare gli iperparametri in una regione finita,
> se non per assegnare una distribuzione hyperprior sostanziale.
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LCostruzione di una a priori gerarchica
Distribuzione hyperprior

Se si sa poco di ¢, possiamo assegnare una distribuzione a priori
diffusa, ma dobbiamo stare attenti quando si utilizza una a priori non
propria per

» verificare che la a posteriori risultante sia propria,

» valutare se le nostre conclusioni sono sensibili a questa ipotesi

semplificatrice.

Nella maggior parte dei problemi reali, si dovrebbe avere una
conoscenza sostanziale dei parametri

» almeno per vincolare gli iperparametri in una regione finita,

> se non per assegnare una distribuzione hyperprior sostanziale.
Come nei modelli non gerarchici, € spesso sensato iniziare con una
distribuzione a priori semplice, relativamente non informativa su ¢ e
cercare di aggiungere ulteriori informazioni a priori se rimane troppa
variabilita nella distribuzione a posteriori.
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LCostruzione di una a priori gerarchica

Distribuzioni predittive a posteriori

Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:

1. la distribuzione di osservazioni future y corrispondenti a un 6,
esistente (cavie aggiuntive da un esperimento esistente), o
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LCostruzione di una a priori gerarchica
Distribuzioni predittive a posteriori
Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:
1. la distribuzione di osservazioni future y corrispondenti a un 6,
esistente (cavie aggiuntive da un esperimento esistente), o

2. la distribuzione di osservazioni y corrispondenti a futuri ;’s tratti

dalla stessa superpopolazione (risultati da un esperimento futuro).
Etichettiamo 6,’s futuri come 6;.
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Distribuzioni predittive a posteriori
Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:

1. la distribuzione di osservazioni future y corrispondenti a un 6,
esistente (cavie aggiuntive da un esperimento esistente), o
2. la distribuzione di osservazioni y corrispondenti a futuri ;’s tratti

dalla stessa superpopolazione (risultati da un esperimento futuro).
Etichettiamo 6,’s futuri come 6;.

Nei due casi, le estrazioni predittive a posteriori y si basano su
1. estrazioni a posteriori di 6; per I'esperimento esistente.
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dalla stessa superpopolazione (risultati da un esperimento futuro).
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Nei due casi, le estrazioni predittive a posteriori y si basano su

1. estrazioni a posteriori di 6; per I'esperimento esistente.
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LCostruzione di una a priori gerarchica
Distribuzioni predittive a posteriori
Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:

1. la distribuzione di osservazioni future y corrispondenti a un 6,
esistente (cavie aggiuntive da un esperimento esistente), o
2. la distribuzione di osservazioni y corrispondenti a futuri ;’s tratti

dalla stessa superpopolazione (risultati da un esperimento futuro).
Etichettiamo 6,’s futuri come 6;.

Nei due casi, le estrazioni predittive a posteriori y si basano su
1. estrazioni a posteriori di 6; per I'esperimento esistente.
2. 0; simulati:
(a) siestrae ¢ da p(¢ly)
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LCostruzione di una a priori gerarchica
Distribuzioni predittive a posteriori
Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:
1. la distribuzione di osservazioni future y corrispondenti a un 6,
esistente (cavie aggiuntive da un esperimento esistente), o

2. la distribuzione di osservazioni y corrispondenti a futuri ;’s tratti

dalla stessa superpopolazione (risultati da un esperimento futuro).
Etichettiamo 6,’s futuri come 6;.

Nei due casi, le estrazioni predittive a posteriori y si basano su
1. estrazioni a posteriori di 6; per I'esperimento esistente.
2. 0; simulati:
(a) siestrae ¢ da p(¢ly)

(b) si estrae 6 da p(6]5)
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LCostruzione di una a priori gerarchica
Distribuzioni predittive a posteriori
Ci sono due distribuzioni predittive a posteriori che potrebbero
interessare nei modelli gerarchici:
1. la distribuzione di osservazioni future y corrispondenti a un 6,
esistente (cavie aggiuntive da un esperimento esistente), o

2. la distribuzione di osservazioni y corrispondenti a futuri ;’s tratti

dalla stessa superpopolazione (risultati da un esperimento futuro).
Etichettiamo 6,’s futuri come 6;.

Nei due casi, le estrazioni predittive a posteriori y si basano su
1. estrazioni a posteriori di 6; per I'esperimento esistente.
2. 0; simulati:

(a) siestrae ¢ da p(¢ly)
(b) siestrae 6 da p(0|¢)
(c) siestrae ydap(y|9).
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Guida ai modelli gerarchici

Analisi Bayesiana di modelli gerarchici coniugati
Applicazione all’esempio rat fumors
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LAnalisi Bayesiana di modelli gerarchici coniugati
Calcolo nei modelli gerarchici coniugati

La strategia inferenziale per i modelli gerarchici segue I'approccio
generale adottato con i problemi multiparametrici
> (6,¢) con 0 ‘parametri d’'interesse’ e ¢ ‘parametri di disturbo’
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M. Trevisani | HBM Guida ai modelli gerarchici

45/64



HBM
LG.uida ai modelli gerarchici

LAnalisi Bayesiana di modelli gerarchici coniugati
Calcolo nei modelli gerarchici coniugati

La strategia inferenziale per i modelli gerarchici segue I'approccio
generale adottato con i problemi multiparametrici
> (6,¢) con 0 ‘parametri d’'interesse’ e ¢ ‘parametri di disturbo’
> p(0|¢) coniugata alla varosimiglianza p(y|0)
Derivazione analitica delle distribuzioni condizionali e marginali
1. si scriva la distr congiunta a posteriori in forma non-normalizzata
(passo immediato): p(6, ¢ly) o« p(¢)p(0]¢)p(y|0)
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Calcolo nei modelli gerarchici coniugati

La strategia inferenziale per i modelli gerarchici segue I'approccio
generale adottato con i problemi multiparametrici
> (6,¢) con 0 ‘parametri d’'interesse’ e ¢ ‘parametri di disturbo’
> p(0|¢) coniugata alla varosimiglianza p(y|0)
Derivazione analitica delle distribuzioni condizionali e marginali
1. si scriva la distr congiunta a posteriori in forma non-normalizzata
(passo immediato): p(6, ¢ly) o« p(¢)p(0]¢)p(y|0)
2. si determini analiticamente p(6|¢,y) (semplice in modelli coniugati
dato che p(6|¢) = [, p(6j|¢), quindi p(6]$, y) & il prodotto di
densita a posteriori coniugate per le componenti 6;)
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La strategia inferenziale per i modelli gerarchici segue I'approccio
generale adottato con i problemi multiparametrici

> (6,¢) con 0 ‘parametri d’'interesse’ e ¢ ‘parametri di disturbo’

> p(0|¢) coniugata alla varosimiglianza p(y|0)
Derivazione analitica delle distribuzioni condizionali e marginali

1. si scriva la distr congiunta a posteriori in forma non-normalizzata

(passo immediato): p(6, ¢|y) o< p(¢)p(0]¢)p(y|0)

2. si determini analiticamente p(6|¢,y) (semplice in modelli coniugati
dato che p(6|¢) = [, p(6j|¢), quindi p(6]$, y) & il prodotto di
densita a posteriori coniugate per le componenti 6;)

3. si determini p(¢|y), due modi
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generale adottato con i problemi multiparametrici

> (6,¢) con 0 ‘parametri d’'interesse’ e ¢ ‘parametri di disturbo’

> p(0|¢) coniugata alla varosimiglianza p(y|0)

Derivazione analitica delle distribuzioni condizionali e marginali

1. si scriva la distr congiunta a posteriori in forma non-normalizzata
(passo immediato): p(6, ¢ly) o« p(¢)p(0]¢)p(y|0)

2. si determini analiticamente p(6|¢,y) (semplice in modelli coniugati
dato che p(6|¢) = [, p(6j|¢), quindi p(6]$, y) & il prodotto di
densita a posteriori coniugate per le componenti 6;)

3. si determini p(¢|y), due modi

> p(¢ly) = [ p(0, dly)do
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LAnalisi Bayesiana di modelli gerarchici coniugati
Calcolo nei modelli gerarchici coniugati

La strategia inferenziale per i modelli gerarchici segue I'approccio
generale adottato con i problemi multiparametrici

> (6,¢) con 0 ‘parametri d’'interesse’ e ¢ ‘parametri di disturbo’

> p(0|¢) coniugata alla varosimiglianza p(y|0)

Derivazione analitica delle distribuzioni condizionali e marginali

1. si scriva la distr congiunta a posteriori in forma non-normalizzata
(passo immediato): p(6, ¢ly) o« p(¢)p(0]¢)p(y|0)

2. si determini analiticamente p(6|¢,y) (semplice in modelli coniugati
dato che p(6|¢) = [, p(6j|¢), quindi p(6]$, y) & il prodotto di
densita a posteriori coniugate per le componenti 6;)

3. si determini p(¢|y), due modi

> p(¢ly) = [ p(0, dly)do
> p(oly) = ZEZ@‘;; (delicata per la determinaz della cost di norm di
p(0|o,y); non & d’aiuto quando I'int non ha sol in forma chiusa)
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LAnalisi Bayesiana di modelli gerarchici coniugati
Simulazione dalla distribuzione a posteriori

La seguente strategia € utile per simulare un’estrazione dalla
distribuzione congiunta a posteriori p(8, ¢|y)

1. si estrae ¢* da p(¢|y)
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Simulazione dalla distribuzione a posteriori
La seguente strategia € utile per simulare un’estrazione dalla

distribuzione congiunta a posteriori p(8, ¢|y)

1. si estrae ¢* da p(¢|y)
2. si estrae 6* da p(0]¢*,y)

> se vale la fattorizzazione p(8|¢,y) = [T._, p(6j|¢,y) allora si
possono estrarre le componenti §; indipendentemente una alla volta
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LAnalisi Bayesiana di modelli gerarchici coniugati
Simulazione dalla distribuzione a posteriori
La seguente strategia € utile per simulare un’estrazione dalla

distribuzione congiunta a posteriori p(8, ¢|y)

1. si estrae ¢* da p(¢|y)
2. si estrae 6* da p(0]¢*,y)

> se vale la fattorizzazione p(8|¢,y) = [T._, p(6j|¢,y) allora si
possono estrarre le componenti §; indipendentemente una alla volta

3. in caso, si estrae y da p(y|0*)
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LAnalisi Bayesiana di modelli gerarchici coniugati
Simulazione dalla distribuzione a posteriori
La seguente strategia € utile per simulare un’estrazione dalla
distribuzione congiunta a posteriori p(8, ¢|y)

1. si estrae ¢* da p(¢|y)

2. si estrae 6* da p(0]¢*,y)

> se vale la fattorizzazione p(8|¢,y) = [T._, p(6j|¢,y) allora si
possono estrarre le componenti §; indipendentemente una alla volta

3. in caso, si estrae y da p(y|0*)

4. Siripete la procedura L volte per ottenere un insieme di L
estrazioni
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LAnalisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

> j=1,...,J,J =71, esperimenti
yj]nj, 0]‘ ~ Bin(nj, (9]) ind., n; noto
0 ~ Beta(a, §) ind.

(a, B) ~ noninformative
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LAnalisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi
> j=1,...,J,J =171, esperimenti
yj|n;, 0; ~ Bin(n;,0;) ind.,n;noto
6 ~ Beta(a, 8) ind.
(e, B) ~ noninformative

» Eseguiamo i tre passi per determinare la forma analitica della
distribuzione a posteriori: distribuzioni congiunta, condizionale e
marginale a posteriori
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

> j=1,...,J,J =171, esperimenti
yj|n;, 0; ~ Bin(n;,0;) ind.,n;noto
6 ~ Beta(a, 8) ind.
(e, B) ~ noninformative

» Eseguiamo i tre passi per determinare la forma analitica della
distribuzione a posteriori: distribuzioni congiunta, condizionale e
marginale a posteriori

1. p(0, o, Bly) o p(a, B)p(0]ex, B)p(v]0)
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LAnalisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

> j=1,...,J,J =171, esperimenti
yj|n;, 0; ~ Bin(n;,0;) ind.,n;noto
6 ~ Beta(a, 8) ind.
(e, B) ~ noninformative
» Eseguiamo i tre passi per determinare la forma analitica della
distribuzione a posteriori: distribuzioni congiunta, condizionale e

marginale a posteriori
1. p(0, o, Bly) o p(a, B)p(0]ex, B)p(v]0)
2. p(0]a, B,y) = I[; Beta(ar + yj, B+ nj — y;)
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LAnalisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi
> j=1,...,J,J =171, esperimenti
yj|nj, Hj ~ Bin(nj, 9]) ind., n; noto
6 ~ Beta(a, 8) ind.
(e, B) ~ noninformative
» Eseguiamo i tre passi per determinare la forma analitica della
distribuzione a posteriori: distribuzioni congiunta, condizionale e
marginale a posteriori
1. p(0, o, Bly) o p(a, B)p(0]ex, B)p(v]0)
2. p(Ole, B,y) = [[;Beta(a +y;, B+ n; — ;)
3. p(o, Bly) = % (BDA3, p. 110) equazione che non puo
essere semplificata analiticamente ma é facile da calcolare per
qualsiasi valore specificato di (a, 3)
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LAnalisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

3. Simulazione da p(a, A]y)
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Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

3. Simulazione da p(«, B|y)
3.1 Valutiamo p(«, B|y) su una griglia di valori
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LAnalisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

3. Simulazione da p(«, B|y)
3.1 Valutiamo p(«, B|y) su una griglia di valori
3.2 Approssimiamo secondo una funzione a gradini € imponiamo
somma prob a 1
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LAnalisi Bayesiana di modelli gerarchici coniugati

Modello binomiale gerarchico
Esempio: Incidenza di tumore nei topi

3. Simulazione da p(a, A]y)

3.1 Valutiamo p(«, B|y) su una griglia di valori
3.2 Approssimiamo secondo una funzione a gradini € imponiamo
somma prob a 1

3.3 Campioniamo «; ~ p(aly) e 85 ~ p(B|ay,y) usando il metodo
inverse-cdf
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LAnalisi Bayesiana di modelli gerarchici coniugati

Campionamento con il metodo inverse-cdf

_[Sv<vem)
=T pa

1. Estraiu ~ U(0,1)
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LAnalisi Bayesiana di modelli gerarchici coniugati

Campionamento con il metodo inverse-cdf

_ Z*v <v*p(v)
B I oo p(v)dv

1. Estraiu ~ U(0,1)
2. Calcola v = F~!(u), quindiv ~ p
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LAnalisi Bayesiana di modelli gerarchici coniugati

Campionamento con il metodo inverse-cdf

_ Z*v <v*p(v)
B I oo p(v)dv

1. Estraiu ~ U(0,1)

2. Calcola v = F~!(u), quindiv ~ p
Esempio

> v~ Exp(\)
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LAnalisi Bayesiana di modelli gerarchici coniugati

Campionamento con il metodo inverse-cdf

Sy < v p()

1. Estraiu ~ U(0,1)

2. Calcola v = F~!(u), quindiv ~ p
Esempio

> v~ Exp(\)

> F(v)=1—¢ Y
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LAnalisi Bayesiana di modelli gerarchici coniugati

Campionamento con il metodo inverse-cdf

Sy < v p()

1. Estraiu ~ U(0,1)

2. Calcola v = F~!(u), quindiv ~ p
Esempio

> v~ Exp(\)

> F(v)=1—¢ Y

> v =F!(u)iff —log(1 —u)/\
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Esempio: Incidenza di tumore nei topi
Specifichiamo una distribuzione hyperprior non-informativa per («, 3)
> Sia y = logit;§5 = log § e 6 = log(a + )
p(7,d) o constanton(—o0, 00)
Questa a priori porta ad una a post impropria

» Con una numerosita campionaria ragionevolmente alta, possiamo
specificare una iperpriori ‘noninformativa’ dominata dalla
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» Calcoliamo p(~, d|y) nonnormalizzata su una griglia di valori
(curve di livello)

» calcolo del log della fdp p(a, B|y) con a priori p(a, 8) o (o + 3) /2,
moltiplicato per lo Jacobiano per fornire p(v, d|y)

> griglia (v,0) € [-2.,—1] x [1.5,3] centrata nella stima empirica
basata sui dati storici, (&, 3) = (1.4,8.6), che in termini di (v, ) &
(=2.5,—1) e che ha una copertura con fattore 4 per ogni parametro

> si sottrae il max della log densita ed infine si esponenzia per
ottenere la p(v, d|y) nonnormalizzata

> poiché parti importanti della marg a post cadono fuori il range, si
ricalcola su [—2.3, —1.3] x [1, 3]

» Normalizziamo la densita a post relativa approssimandola
attraverso una funzione a gradini e imponendo che la prob totale
sulla griglia sia 1

» Possiamo calcolare momenti a posteriori, ad es E(a|y) e E(S|y)
(che risultano (2.4, 14.3) vicini alla moda per la simmetria della
distr nella scala (v, ¢))
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» 0;: shrinkage verso la media a posteriori 0.14
> esperimenti con meno osservazioni mostrano uno shrinkage piu
evidente e varianza a post maggiore
> risultati simili a quanto si ottiene con EB (per il numero piuttosto
alto degli esperimenti)
» variabilita a posteriori maggiore che con EB (per incertezza a post
deali inerparametri) (Nota: nel laboratorio. cuesto non sizverificalh)
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