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HBM

Un esempio didattico

Un modello lineare a 2 stadi

Da Robert (2007) pag. 145 sec. 5.6.

Una meta-analisi in medicina

▶ Data pertain beta-blockers treatment effect on mortality (after
heart attack) in 22 clinical trials (data from Yusuf et al., 1985;
Table 5.4 in Robert (2007)).

data each study

▶ Under the assumption that the studies are someway comparable,
it is possible to combine the findings of single studies to infer on
meta-population characteristics.

▶ Hypothesis of exchangeability
▶ A HBM for meta-analysis
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Multiple studies

Each study
consists
of 2 groups
of patients
randomly allocated
to receive
or not receive
beta-blockers
treatment

study control: dead/ total treated: dead/ total
1 3/ 39 3/ 38
2 14/ 116 7/ 114
3 11/ 93 5/ 69
4 127/1520 102/1533
5 27/ 365 28/ 355
6 6/ 52 4/ 59
7 152/ 939 98/ 945
8 48/ 471 60/ 632
9 37/ 282 25/ 278
10 188/1921 138/1916
...

.../
...

.../
...

16 38/ 213 33/ 207
17 12/ 122 28/ 251
18 6/ 154 8/ 151
19 3/ 134 6/ 174
20 40/ 218 32/ 209
21 43/ 364 27/ 391
22 39/ 674 22/ 680

es. beta-blockers graph 1 graph 2 graph 3 µ, τ posterior θ posterior



Da ogni studio: dati grezzi e parametro θj

I dati grezzi sono realizzazioni di 2 modelli binomiali indipendenti

y1j ∼ Bin(n1j, p1j) y0j ∼ Bin(n0j, p0j)

dove
▶ j = 1, . . . , 22 indicizza ciascun singolo studio
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di trattamento e controllo, rispettivamente, nello studio j.
es. beta-blockers

Funzioni di stima di interesse comune sono la differenza nelle probabil-
ità, p1j − p0j, il rapporto di probabilità o tasso di rischio, p1j/p0j, e l’odds
ratio, ρj = (p1j/(1 − p1j))/(p0j/(1 − p0j)). Per varie ragioni, e per il fatto
che la sua distribuzione a posteriori sia prossima alla normalità anche
per grandezzze campionarie relativamente piccole, ci concentriamo
sull’inferenza per il logaritmo (naturale) dell’odds ratio, che denotiamo
come θj = log ρj.
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Si sa infatti come la distribuzione a posteriori di lor sia prossima
alla normalità anche per numerosità campionarie relativamente
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HBM

Un esempio didattico

Un’approssimazione normale della verosimiglianza

Ci sono diversi approcci analitici std che producono una statistica dei
dati per ogni studio che possa essere considerato come
approssimazione di una variabile normale.

E.g. si consideri i empirical logits

yj = log
(

y1j

n1j − y1j

)
− log

(
y0j

n0j − y0j

)
con varianza campionaria approssimata

σ2
j = 1/y1j + 1/(n1j − y1j) + 1/y0j + 1/(n0j − y0j)

Siamo quindi pronti a stimare un modello normale a due stadi.
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Per campioni grandi, tramite il delta method (Bishop, Fienberg, and
Holland, 1975, Section 14.6), lo stimatore Yj di θj è approssimativa-
mente normale con standard error asintotico che può essere stimato
con la formula sopra.
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Il modello Normale-Normale

Nella sezione

Un esempio didattico
Il modello Normale-Normale

Idea fondamentale: scambiabilità
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Il modello Normale-Normale

Il modello Normale-Normale

Per j = 1, . . . , J

yj|θj
ind∼ N(θj, σ

2
j ) (σ2 nota) (1)

θj|µ, τ 2 iid∼ N(µ, τ 2) (2)
(µ, τ 2) ∼ p(µ, τ 2)

1. il modello per le unità individuali

2. il modello per la meta-popolazione (ipotesi di scambiabilità)
3. il modello a priori per gli iperparametri (full HB)

Questo modello viene anche detto one-way normal random-effects
model con varianza del modello di campionamento dei dati nota, ed
è un caso speciale del più generale modello lineare normale gerar-
chico.
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Il modello Normale-Normale

Note: Nel livello
1. La semplificazione della varianza σ2 nota è irrilevante in questo

esempio dato che le varianze in ogni studio sono stimate con
precisione per la numerosità elevata (più di 50 individui) in quasi la
totalità degli studi.

2. Assumiamo un modello normale per gli effetti θj per ragioni di
comodo, ma è importante fare un check di tale ipotesi.

1.&2. Se altre informazioni (oltre y, n) fossero disponibili per distinguere
tra i J studi della meta-analisi, è possibile espandere il modello in
modo che sia scambiabile nei dati osservati e nelle covariate (eg
usando un modello di regressione gerarchico) in modo da stimare
una response surface sulla base di caratteristiche note della
popolazione e della sua esposizione al rischio.
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Il modello Normale-Normale

3. Assumiamo una a priori noninformativa o localmente uniforme per
µ dato che anche con un numero piccolo di studi (5-10) i dati
combinati sono relativam informativi riguardo al centro della
distribuzione della popolazione delle dimensioni degli effetti θj.
Allo stesso modo assumiamo per convenienza una a priori
localmente uniforme per τ , anche se si può modificare facilmente
l’analisi per includere un’informazione a priori.
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Un esempio didattico

Il modello Normale-Normale

H(B)M media tra due estremi

▶ τ 2 → ∞ : analisi separate
N-N si riduce a

yj|θj
ind∼ N(θj, σ

2
j ), θj ∼ pj(θj)

→ i parametri di interesse sono gli effetti θj

▶ τ 2 = 0 : pooling completo
N-N si riduce a

yj|µ, σ2
j

iid∼ N(µ, σ2
j ), µ ∼ p(µ)

→ parametro di interesse è µ

▶ 0 < τ 2 < ∞ : scambiabilità
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Il modello Normale-Normale

L’analisi Bayesiana in un modello gerarchico fornisce un compromesso
che combina le informazioni da tutti gli esperimenti senza assumere
che tutti i θj siano uguali.
La struttura gerarchica del modello è strumento essenziale per
ottenere un pooling parziale delle stime e fare un compromesso in
modo scientifico tra fonti alternative di informazione.
In particolare, consideriamo gli studi scambiabili, ie non
necessariamente identici o completamente scollegati, o, in altri termini,
ammettiamo che ci siano differenze da studio a studio ma in modo che
non ci aspettiamo a priori che tali differenze abbiano effetti prevedibili
che influenzino uno studio piuttosto che un altro.
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Stime a posteriori

▶ analisi separate
Nell’ipotesi pj(θj) uniforme su (−∞,∞)

▶ scambiabilità
2.5%, 50%, 97.5% quantili a posteriori di θj e di µ.
Inoltre, µ̂ e 95%CI del pooling completo sono sovrapposti.

HBM graph
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Nell’ipotesi pj(θj) uniforme su (−∞,∞)
θ̂j = yj , intervallo a posteriori (CI) al 95% è θ̂j ± 1.96 ∗ σj

separate analyses graph difficulties

Si Consideri un’osservazione scalare singola y da una dis-
tribuzione normale parametrizzata da media θ e varianza σ2, ove
assumiamo che σ2 sia noto. La distribuzione campionaria è

p(y|θ) = 1√
2πσ

e−
1

2σ2 (y−θ)2

.

Se p(θ) = 1, allora p(θ|y) ∝ p(y|θ) · 1, pertanto

p(θ|y) = N(y, σ2).

Si noti che nonostante la distribuzione a priori sia impropria (una
densità a priori è propria se non dipende dai dati e integra a 1), la
distribuzione a posteriori è propria (

∫
p(θ|y)dθ è finita per tutti gli

y), purchè ci sia almeno un dato puntuale.

▶ scambiabilità
2.5%, 50%, 97.5% quantili a posteriori di θj e di µ.
Inoltre, µ̂ e 95%CI del pooling completo sono sovrapposti.
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µ̂ =

∑
j

1
σ2

j
yj∑

j
1
σ2

j

, 95%CI= µ̂± 1.96 ∗ V1/2
µ , dove V−1

µ =
∑

j
1
σ2

j
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Stime a posteriori
▶ pooling completo

Nell’ipotesi p(µ) uniforme su (−∞,∞)

µ̂ =

∑
j

1
σ2

j
yj∑

j
1
σ2

j

, 95%CI= µ̂± 1.96 ∗ V1/2
µ , dove V−1

µ =
∑

j
1
σ2

j

Si consideri un campione di osservazioni iid y = (y1, . . . , ym) da
una distribuzione normale parametrizzata da media µ e varianze
individuali σ2

j (assunte note). Se p(µ) = 1, allora

p(µ|y) ∝
∏

j N(µ, σ2
j ) · 1

∝ exp
(
− 1

2

∑
j

1
σ2

j
(yj − µ)2

)
che dopo opportuni calcoli porta a

p(µ|y) = N

∑j
1
σ2

j
yj∑

j
1
σ2

j

,

(∑
j

1
σ2

j

)−1
 .

▶ scambiabilità
2.5%, 50%, 97.5% quantili a posteriori di θj e di µ.
Inoltre, µ̂ e 95%CI del pooling completo sono sovrapposti.
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Nell’ipotesi p(µ) uniforme su (−∞,∞)
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∑
j

1
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j
yj∑

j
1
σ2

j

, 95%CI= µ̂± 1.96 ∗ V1/2
µ , dove V−1

µ =
∑

j
1
σ2

j

Inoltre, 95%CI= µ̂± 1.96 ∗
√

σ̄2
j è sovrapposto, per comparare i

dati osservati con la variabilità attesa se l’ip. τ 2 = 0 dovesse
essere quella “vera”. complete pooling graph difficulties

▶ scambiabilità
2.5%, 50%, 97.5% quantili a posteriori di θj e di µ.
Inoltre, µ̂ e 95%CI del pooling completo sono sovrapposti.
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Stime a posteriori

▶ scambiabilità
Invece che essere forzati a scegliere tra

1. complete pooling, θ̂j = µ̂ ∀j, o
2. nessun pooling, θ̂j = yj,
3. possiamo pensare ad una media pesata

θ̂j = λj · µ̂+ (1 − λj) · yj

con λj tra 0 e 1

2.5%, 50%, 97.5% quantili a posteriori di θj e di µ.
Inoltre, µ̂ e 95%CI del pooling completo sono sovrapposti.

HBM graph
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▶ scambiabilità

Si consideri un’osservazione scalare singola y da una dis-
tribuzione normale parametrizzata da media θ e varianza σ2, ove
assumiamo che σ2 sia noto. La distribuzione campionaria è

p(y|θ) = 1√
2πσ

e−
1

2σ2 (y−θ)2

.

se p(θ) = N(µ, τ 2), allora p(θ|y) ∝ p(y|θ)p(θ), pertanto

p(θ|y) = N
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σ2

j
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1
τ 2 µ
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j
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τ 2

,
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σ2

j
+

1
τ 2

 .

Il calcolo della a posteriori per il modello gerarchico (completo
di iperapriori) verrà mostrato più avanti.

2.5%, 50%, 97.5% quantili a posteriori di θj e di µ.
Inoltre, µ̂ e 95%CI del pooling completo sono sovrapposti.
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La precisione a posteriori eguaglia la precisione a priori più la
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Il calcolo della a posteriori per il modello
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Alternativamente, possiamo esprimere la media a posteriori
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Stime a posteriori

▶ scambiabilità
2.5%, 50%, 97.5% quantili a posteriori di θj e di µ.

Inoltre, µ̂ e 95%CI del pooling completo sono sovrapposti.
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HBM

Un esempio didattico

Il modello Normale-Normale

Difficoltà con le analisi ‘estreme’

separate analyses graph

analisi separate eg, per lo studio 19: θ19|y19 ∼ N(0.44, 0.722)

the probability is 1/2 that the true effect in study-19 is more
than 0.44

a doubtful statement, considering the results for the other
21 studies.

analisi pooled µ|y ∼ N(−0.26, 0.052)

the probability is 1/2 that θ19, the true effect in study-19 (y19 =
0.44 con sd 0.72), is less than −0.26 or, even less than θ2, the
true effect in study-2 (y2 = −0.74 con sd 0.48)

given that P(θ19 − θ2 < 0|y) = 1/2
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HBM

Un esempio didattico

Il modello Normale-Normale

Distribuzioni a posteriori

1. Densità (marginali) a posteriori di τ e µ graph

2. Densità (istogrammi) a posteriori degli effetti θj graph

▶ Gli istogrammi delle densità a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.

▶ Si noti che studi maggiormente precisi sono asimmetrici rispetto al
valore centrale della media della popolazione e hanno code più
pesanti (si veda e.g. gli studi precisi 7 e 14).
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shrinkage marcato di θj risulta evidente specialmente per gli studi
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data HBM graph

▶ Gli istogrammi delle densità a posteriori simulate per ognuno degli
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▶ Gli istogrammi delle densità a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.
quantili a posteriori per µ sono

2.5% 25% Mediana 75% 97.5%
-0.37 -0.29 -0.25 -0.20 -0.11

L’intervallo 95%HPD approssimato per µ è [0.37, 0.11], o
[0.69, 0.90] se convertito nella scala dell’odds ratio. Vice versa,
l’intervallo a posteriori del 95% che risulta da un pooling completo,
[0.70, 0.85], è meno ampio.

▶ Si noti che studi maggiormente precisi sono asimmetrici rispetto al
valore centrale della media della popolazione e hanno code più
pesanti (si veda e.g. gli studi precisi 7 e 14).

M. Trevisani | HBM Un esempio didattico 19/54



HBM

Un esempio didattico

Il modello Normale-Normale

Distribuzioni a posteriori

1. Densità (marginali) a posteriori di τ e µ graph

2. Densità (istogrammi) a posteriori degli effetti θj graph

▶ Gli istogrammi delle densità a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.
quantili a posteriori per µ sono

2.5% 25% Mediana 75% 97.5%
-0.37 -0.29 -0.25 -0.20 -0.11

L’intervallo 95%HPD approssimato per µ è [0.37, 0.11], o
[0.69, 0.90] se convertito nella scala dell’odds ratio. Vice versa,
l’intervallo a posteriori del 95% che risulta da un pooling completo,
[0.70, 0.85], è meno ampio.

▶ Si noti che studi maggiormente precisi sono asimmetrici rispetto al
valore centrale della media della popolazione e hanno code più
pesanti (si veda e.g. gli studi precisi 7 e 14).

M. Trevisani | HBM Un esempio didattico 19/54



HBM

Un esempio didattico

Il modello Normale-Normale

Distribuzioni a posteriori

1. Densità (marginali) a posteriori di τ e µ graph

2. Densità (istogrammi) a posteriori degli effetti θj graph

▶ Gli istogrammi delle densità a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.

▶ Si noti che studi maggiormente precisi sono asimmetrici rispetto al
valore centrale della media della popolazione e hanno code più
pesanti (si veda e.g. gli studi precisi 7 e 14).

M. Trevisani | HBM Un esempio didattico 19/54



τ, µ posterior θ posterior

0.0 0.4 0.8

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Posterior density of Tau

−0.5 −0.3 −0.1

0
1

2
3

4
5

6

(marginal) posterior for mu



data HBM graph θ posterior

−0.5 −0.3 −0.1 0.1
0

2
4

6
−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
4

8
12

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
4

8

−0.5 −0.3 −0.1 0.1

0
4

8

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0.
0

1.
5

3.
0

−0.5 −0.3 −0.1 0.1
0

2
4

6
8

−0.5 −0.3 −0.1 0.1

0
2

4
6

8

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

8

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4



data HBM graph θ posterior

−0.5 −0.3 −0.1 0.1
0

2
4

6
−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
4

8
12

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
4

8

−0.5 −0.3 −0.1 0.1

0
4

8

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0.
0

1.
5

3.
0

−0.5 −0.3 −0.1 0.1
0

2
4

6
8

−0.5 −0.3 −0.1 0.1

0
2

4
6

8

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

−0.5 −0.3 −0.1 0.1

0
2

4
6

8

−0.5 −0.3 −0.1 0.1

0
2

4

−0.5 −0.3 −0.1 0.1

0
2

4



Fully HB
Sotto, per ogni valore di τ (preso nel range plausibile di valori di τ ,
secondo la sua marginale a posteriori), E(µ|τ, y) e sd(µ|τ, y) sono dati
per riga.

tau: 0.00 0.05 0.10 0.15 0.20 0.25 0.30

mu|tau -0.260 0.05
-0.256 0.05
-0.245 0.06
-0.244 0.07
-0.240 0.07
-0.239 0.08
-0.238 0.09

Infatti, la standard deviation condizionale a posteriori, sd(µ|τ, y), ha il
valore 0.060 per τ = 0.13 (mediana a posteriori), mentre mediando
rispetto alla distribuzione a posteriori per τ otteniamo un valore di
sd(µ|y) = 0.071.
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HBM

Stima dei modelli gerarchici Bayesiani

Simulazione diretta

Simulazione diretta

Nei HBM semplici (come il modello N-N), il calcolo (stima) viene
effettuato attraverso la simulazione diretta della distribuzione a
posteriori congiunta

p(θ, µ, τ |y) ∝ p(y|θ)p(θ|µ, τ)p(µ, τ)

scomponendola in più parti:

I/ simula dalla distribuzione condizionale a posteriori

p(θ|µ, τ, y)

II/ simula dalla distribuzione marginale a posteriori

p(µ, τ |y).
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Simulazione per passi

a. Inizia dalla distribuzione congiunta a posteriori non-normalizzata

p(θ, µ, τ |y) ∝ p(y|θ)p(θ|µ, τ)p(µ, τ)

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.



Simulazione per passi

a. Inizia dalla distribuzione congiunta a posteriori non-normalizzata

p(θ, µ, τ |y) ∝ p(y|θ)p(θ|µ, τ)p(µ, τ)
che altrimenti scritta è p(θ|µ, τ, y)p(µ|τ, y)p(τ |y)

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.



Simulazione per passi

a. Inizia dalla distribuzione congiunta a posteriori non-normalizzata

p(θ, µ, τ |y) ∝ p(y|θ)p(θ|µ, τ)p(µ, τ)
che altrimenti scritta è p(θ|µ, τ, y)p(µ|τ, y)p(τ |y)

b. In modelli semplici è possibile calcolare la forma analitica di
p(θ|µ, τ, y).

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.



Simulazione per passi

a. Inizia dalla distribuzione congiunta a posteriori non-normalizzata

p(θ, µ, τ |y) ∝ p(y|θ)p(θ|µ, τ)p(µ, τ)
che altrimenti scritta è p(θ|µ, τ, y)p(µ|τ, y)p(τ |y)

b. In modelli semplici è possibile calcolare la forma analitica di
p(θ|µ, τ, y).
In N-N, con ipotesi di scambiabilità, p(θ|µ, τ, y) si fattorizza in J
componenti ove ciascuna risulta essere θj|µ, τ, y ∼ N(θ̂j,Vj) con

θ̂j =
1/σ2

j · yj + 1/τ 2 · µ
1/σ2

j + 1/τ 2
Vj =

1
1/σ2

j + 1/τ 2

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.
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che altrimenti scritta è p(θ|µ, τ, y)p(µ|τ, y)p(τ |y)

b. In modelli semplici è possibile calcolare la forma analitica di
p(θ|µ, τ, y).

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.
Per iniziare assegniamo una a priori noninformativa per µ|τ , ie

p(µ, τ) = p(µ|τ)p(τ) ∝ p(τ)

The uniform prior density for µ is generally reasonable for this
problem; because the combined data from all J experiments
are generally highly informative about µ, we can afford to be
vague about its prior distribution.



Simulazione per passi

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.
Nell’esempio binomiale avevamo menzionato la via
dell’integrazione o del calcolo analitico per derivare p(µ, τ |y) da
p(θ, µ, τ |y)



Simulazione per passi

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.
c1. In N-N è possibile calcolare la verosimiglianza marginale p(y|µ, τ),

ad es. essa è ∀j yj ∼ N(µ, σ2
j + τ 2) pertanto

p(µ, τ |y) ∝ p(µ, τ)
∏

j

N(yj|µ, σ2
j + τ 2)

Potremmo quindi calcolare direttamente p(µ, τ |y) come funzione di
due variabili e procedere come nel caso binomiale. Invece,
possiamo semplificare ulteriormente, fattorizzandola,

p(µ, τ |y) = p(µ|τ, y)p(τ |y),

e calcolare prima p(µ|τ, y) e poi la marginale p(τ |y). Infatti, sotto
l’ipotesi p(µ|τ) ∝ 1, i.e. uniforme, su (−∞,∞), otteniamo
µ|τ, y ∼ N(µ̂,Vµ) con

µ̂ =

∑ 1
σ2

j +τ 2 yj∑ 1
σ2

j +τ 2

Vµ =
1∑ 1
σ2

j +τ 2



Simulazione per passi

c. Con riguardo a p(µ, τ |y), il calcolo dipende da caso a caso.
c2. Infine, p(τ |y)

▶ può essere calcolato analiticamente come

p(µ, τ |y)
p(µ|τ, y)

= una forma complicata ... (vd. BDA3 p.117, eq. 5.21)

▶ Per completare dobbiamo assegnare una a priori per τ
- p(τ) ∝ 1 porta ad una densità a post propria
- p(log τ) ∝ 1 porta ad una densità a post impropria
- p(τ) ∼ Scaled − Invχ2 data una best guess e un upper bound (a
priori informativa, più realistica)
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Simulazione iterativa

Simulazione MCMC

La stima di un HBM può essere effettuata attraverso una

1. simulazione diretta
2. simulazione iterativa o MCMC,

▶ in particolare, via Gibbs sampling.
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Simulazione iterativa

Simulazione MCMC

La stima di un HBM può essere effettuata attraverso una
1. simulazione diretta come con ll modello N-N dove la distribuzione

a posteriori

p(θ, µ, τ |y) ∝ p(τ |y)p(µ|τ, y)p(θ|µ, τ, y)

consiste in forme chiuse p(µ|τ, y) e p(θ|µ, τ, y) (per a priori
coniugate), e in p(τ |y) che, a seconda della specificazione a priori,
può anche essere calcolabile analiticamente.

2. simulazione iterativa o MCMC,

▶ in particolare, via Gibbs sampling.
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Simulazione iterativa

Simulazione MCMC

La stima di un HBM può essere effettuata attraverso una
1. simulazione diretta
2. simulazione iterativa o MCMC, i.e. integrazione Monte Carlo di

estrazioni simulate da una Markov Chain che ha la densità a
posteriori p(θ|y) (dove θ sono il complesso dei parametri) come
distribuzione target.

▶ in particolare, via Gibbs sampling.
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(Gibbs sampling e DAG)

Gibbs sampling

MCMC methods allow for sampling from complicated, high
dimensional models.

In particular, Gibbs sampler can be straightforwardly implemented
when there is

▶ a conditional independence structure (like in HM);
▶ (conditionally) conjugate priors for each hierarchical stage.

E.g., every parameter is assigned a prior to be conjugate to the
likelihood associated with its own ‘child’ in the hierarchy.
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HBM

(Gibbs sampling e DAG)

Full conditionals

Specification of conditionally conjugate priors makes the full
conditional distributions (required for implementing the Gibbs
sampler) be in closed forms.

The full conditional for each variable can be derived from

▶ the links
▶ the conditional distributions

of the Directed Acyclic Graph (DAG).
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HBM

(Gibbs sampling e DAG)

DAG

A directed acyclic graph (DAG) is an alternative representation of a
model.
▶ it is ‘directed’ because each link is an arrow

▶ it is ‘acyclic’ because by following the arrows it is not possible to
return to a node after leaving it
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DAG
▶ The graph model displays the causal structure of the problem:

▶ direct arrows (stochastic or logical dependences) towards nodes
(stochastic or deterministic variables or constants) represent a
direct influence of (direct) parents on children.

▶ missing links represent non-relevance between nodes.
▶ The probabilistic structure is then added to the model. Let denote

▶ V = {v} the set of nodes
▶ p(v|pa(v)) the conditional distribution of v (child) given its

(stochastic) parents pa(v).
▶ Hence, the probability structure results p(V) =

∏
v∈V p(v|pa(v)) by

assuming conditional independence wherever there is
non-relevance between nodes.
Thereby, p(V) consists of the product of priors for nodes without
parents and of conditional distributions for the remaining children
given their (stochastic) parents.
The marginal distribution for each node (given the observed data)
can be calculated via Bayes rule.

a DAG example
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▶ Hence, the probability structure results p(V) =
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v∈V p(v|pa(v)) by
assuming conditional independence wherever there is
non-relevance between nodes.
Thereby, p(V) consists of the product of priors for nodes without
parents and of conditional distributions for the remaining children
given their (stochastic) parents.
The marginal distribution for each node (given the observed data)
can be calculated via Bayes rule.
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A DAG example

Consider a simple linear regression problem given by

yi ∼ N(µi, σ
2) µi = α+ β xi i = 1, . . . ,N

α ∼ N(mα, vα) β ∼ N(mβ , vβ) log σ ∼ U(a, b)

for fixed constants mα, vα,mβ , vβ , a and b.
An alternative representation of this model is the directed acyclic graph
shown below.

a 2-stage linear model
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A DAG example

DAG description DAG interpretation
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DAG interpretation

a DAG example The notation is defined as follows.
▶ Rectangular nodes denote known constants.

▶ Elliptical nodes represent either deterministic relationships (i.e.
functions) or stochastic quantities, i.e. quantities that require a
distributional assumption.

▶ Stochastic dependence and functional dependence are denoted
by single-edged arrows and double-edged arrows, respectively.

▶ Repetitive structures, such as the ‘loop’ from i =1 to N, are
represented by ‘plates’, which may be nested if the model is
hierarchical.
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Full conditional

▶ The full conditional for v is calculated as

p(v|V − v) ∝ p(v,V − v) = p(V).

That is, it is proportional to the product of the terms in p(V)
containing v, i.e.,

p(v|V − v) ∝ p(v|pa(v))
∏

v∈pa(w) p(w|pa(w)),
where

∏
v∈pa(w) p(w|pa(w)) is the product of distributions where v is

a parent itself.

▶ Thus, by exploiting the DAG as well as the ‘conjugancy’, the full
conditionals of the linear hierarchical model are →
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Model specification within BUGS

a simple regression

A customary GLMM model in HB form is specified as

1. Yij
ind∼ N(αi + βixij, σ

2) j = 1, . . . , J

2. θi ≡
(

αi

βi

)
i.i.d.∼ N

(
θ0 ≡

(
α0
β0

)
,Σ

)
i = 1, . . . , I

σ−2 ∼ G(a, b) (according to a full HB)

3. θ0 ∼ N(η, C) Σ−1 ∼ W((ρR)−1, ρ) (according to a full HB)

σ2, θ0, Σ
−1 are the “stochastic founder nodes” in the Directed

Acyclic Graph (DAG).

prior specification full conditionals
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Prior specification within BUGS
a 2-stage linear model full condirionals

If one is not willing/able to specify an “influent” prior, a non-informative
prior has to be chosen.

Yet, BUGS requires a proper probability model.

▶ A locally uniform prior (on likelihood support region) is typically
chosen for location parameters (e.g. regression coefs)

▶ A “barely proper” prior is chosen for the variance parameters (in
precision form)

In the above examples all the priors for stochastic founder nodes have
been chosen as conjugate priors. Their own hyperparameters were
assumed known.
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Full conditionals of 2-stage linear model

a 2-stage linear model prior specification

▶ θi|θ0,Σ, y, σ ∝ N(θ0,Σ) ·
∏

j N(αi + βixij, σ
2)

∼ N(. . .),

▶ θ0|{θi},Σ−1 ∝ N(η, C) ·
∏

i N(θ0,Σ)
∼ N(. . .),

▶ Σ−1|{θi},θ0 ∝ W((ρR)−1, ρ) ·
∏

i N(θ0,Σ)
∼ W(. . .)

▶ σ−2|y, {θi} ∝ G(a, b) ·
∏

i,j N(αi + βixij, σ
2)

∼ G(. . .)

now we have all we need for simulating the parameters from each
full conditional distribution.
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Software
BUGS is a software package (a high-level language) for performing
Bayesian inference Using Gibbs Sampling.

1. The user specifies a statistical model, of (almost) arbitrary
complexity (by simply stating the relationships between related
variables).

2. The software includes an ‘expert system’, which determines an
appropriate MCMC scheme (based on the Gibbs sampler) for
analysing the specified model.

3. The user then controls the execution of the scheme and is free to
choose from a wide range of output types.

All you must care about is essentially the model specification!
There are several versions of Bugs.
See the BUGS project at
http://www.mrc-bsu.cam.ac.uk/software/bugs/.

http://www.mrc-bsu.cam.ac.uk/software/bugs/
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It is an established and stable, stand-alone version of the software,
which will remain available but not further developed.

OpenBUGS
http://www.openbugs.info/w/
It is an open-source version of the package, on which all future
development work will be focused.
For reference, see The BUGS project: Evolution, critique and future
directions, by David Lunn, David Spiegelhalter, Andrew Thomas and
Nicky Best, Statistics in Medicine, 2009.
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Software

JAGS
http://www-fis.iarc.fr/~martyn/software/jags/
JAGS is Just Another Gibbs Sampler.
It is a program for analysis of Bayesian hierarchical models using
MCMC simulation not wholly unlike BUGS. JAGS was written with
three aims in mind:
▶ To have an engine for the BUGS language that runs on Unix
▶ To be extensible, allowing users to write their own functions,

distributions and samplers.
▶ To be a plaftorm for experimentation with ideas in Bayesian

modelling.
To this last end, JAGS is licensed under the GNU General Public
License.

http://www-fis.iarc.fr/~martyn/software/jags/


Software
It is possible to set up models and run them entirely within Bugs, but in
practice it is almost always necessary to process data before entering
them into a model, and to process the inferences after the model is
fitted, and so (after learned how Bugs works!) you can opt for running
Bugs by calling it from R (using the bugs() function in R, you can find
the instructions at http://www.stat.columbia.edu/~gelman/bugsR/).

http://www.stat.columbia.edu/~gelman/bugsR/
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HBM

MCMC tricks

Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.

2. Hierarchically centered parameterization: each stage-k is
centered about stage-k+1.
It is the parameterization that we have always set in this lecture.
Whereas random coefficients (/mixed/multilevel) models are
typically specified by a classical statistician in an "horizontal"
fashion.
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HBM

Convergence diagnosis

Diagnostic strategy

▶ Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

▶ visually inspect these chains by overlaying them;
▶ Gelman-Rubin statistic;
▶ check autocorrelation;
▶ investigate crosscorrelation

M. Trevisani | HBM Convergence diagnosis 50/54



HBM

Convergence diagnosis

Diagnostic strategy

▶ Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

▶ visually inspect these chains by overlaying them;

▶ Gelman-Rubin statistic;
▶ check autocorrelation;
▶ investigate crosscorrelation

M. Trevisani | HBM Convergence diagnosis 50/54



HBM

Convergence diagnosis

Diagnostic strategy

▶ Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

▶ visually inspect these chains by overlaying them;
▶ Gelman-Rubin statistic;

▶ check autocorrelation;
▶ investigate crosscorrelation

M. Trevisani | HBM Convergence diagnosis 50/54



HBM

Convergence diagnosis

Diagnostic strategy

▶ Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

▶ visually inspect these chains by overlaying them;
▶ Gelman-Rubin statistic;
▶ check autocorrelation;

▶ investigate crosscorrelation

M. Trevisani | HBM Convergence diagnosis 50/54



HBM

Convergence diagnosis

Diagnostic strategy

▶ Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

▶ visually inspect these chains by overlaying them;
▶ Gelman-Rubin statistic;
▶ check autocorrelation;
▶ investigate crosscorrelation

M. Trevisani | HBM Convergence diagnosis 50/54



HBM

Convergence diagnosis

CODA

One can summarize the Gibbs samples generated by BUGS using
CODA: Convergence Diagnostics and Output Analysis

It is avalaible for R the R-CODA version: Suite of S-functions to
analyse output from BUGS and any other MCMC algorithm.

▶ Output Analysis:
Plots, Printing graphical output from CODA, Multiple pages of plots,
Displaying multiple graphics windows on screen,

▶ Statistics
▶ Convergence Diagnostics:

Geweke Plotting, Geweke’s diagnostic, Gelman & Rubin Plotting,
Gelman & Rubin’s diagnostic, Raftery & Lewis, Heidelberger and
Welch,

▶ Autocorrelations plots
▶ Cross-correlations plots
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