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Un modello lineare a 2 stadi
Da Robert (2007) pag. 145 sec. 5.6.
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Un modello lineare a 2 stadi

Una meta-analisi in medicina

» Data pertain beta-blockers treatment effect on mortality (after
heart attack) in 22 clinical trials (data from Yusuf et al., 1985;
Table 5.4 in Robert (2007)).

» Under the assumption that the studies are someway comparable,
it is possible to combine the findings of single studies to infer on
meta-population characteristics.

» Hypothesis of exchangeability
> A HBM for meta-analysis
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Multiple studies

Each study
consists

of 2 groups
of patients

randomly allocated

to receive
or not receive
beta-blockers
treatment

study
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Da ogni studio: dati grezzi e parametro 0;
| dati grezzi sono realizzazioni di 2 modelli binomiali indipendenti

yij ~ Bin(mj,p]j) Yoj ~ Bin(”ijPOj)

dove
> j=1,...,22 indicizza ciascun singolo studio
> (v, mij, P1j)s (Voj, noj» Poj) SONO morti, pazienti e mortalita nei gruppi
di trattamento e controllo, rispettivamente, nello studio j.

Funzioni di stima di interesse comune sono la differenza nelle probabil-
ita, p1; — poj, il rapporto di probabilita o tasso di rischio, pi;/pg;, e I'odds
ratio, p; = (py;/(1 — p1;))/(po;i/ (1 — poj)). Per varie ragioni, e per il fatto
che la sua distribuzione a posteriori sia prossima alla normalita anche
per grandezzze campionarie relativamente piccole, ci concentriamo
sullinferenza per il logaritmo (naturale) dell’odds ratio, che denotiamo

come 6; = log p;.
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Per stimare I'effetto del trattamento sulla mortalita si consideri il
log-odds ratio (lor)
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Da ogni studio: dati grezzi e parametro 0;
| dati grezzi sono realizzazioni di 2 modelli binomiali indipendenti

yij ~ Bin(nyj,pij)  yoj ~ Bin(ngj, poj)

dove
> j=1,...,22 indicizza ciascun singolo studio
> (v, mij, P1j)s (Voj, noj», Poj) SONO morti, pazienti e mortalita nei gruppi
di trattamento e controllo, rispettivamente, nello studio j.

Per stimare I'effetto del trattamento sulla mortalita si consideri il
log-odds ratio (lor)

0; = log(p1j/(1 — p1j))/(Poj/ (1 — po;))

come parametro ¢; di interesse per ogni studio.

Si sa infatti come la distribuzione a posteriori di lor sia prossima
alla normalita anche per numerosita campionarie relativamente
piccole.
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Un’approssimazione normale della verosimiglianza

Ci sono diversi approcci analitici std che producono una statistica dei
dati per ogni studio che possa essere considerato come
approssimazione di una variabile normale.

E.g. si consideri i empirical logits

Yij Yoj
() (%)
/ nyj — yij noj — Yoj

con varianza campionaria approssimata

o = 1/yi;+ 1/(mj = yij) + 1/yo; + 1/ (ngj — yoy)

Per campioni grandi, tramite il delta method (Bishop, Fienberg, and
Holland, 1975, Section 14.6), lo stimatore Y; di 6; & approssimativa-

mente normale con standard error asintotico che pud essere stimato
con la formula sopra.
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LUn esempio didattico

Un’approssimazione normale della verosimiglianza

Ci sono diversi approcci analitici std che producono una statistica dei
dati per ogni studio che possa essere considerato come
approssimazione di una variabile normale.

E.g. si consideri i empirical logits

y — log (yu> "~ log (yof)
nyj—yy noj — Yoj
con varianza campionaria approssimata

of = 1)y + 1/(ny; = yiy) + 1/y0; + 1/ (ng = )

Siamo quindi pronti a stimare un modello normale a due stadi.
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L Il modello Normale-Normale
Il modello Normale-Normale
Perj=1,...,J

ind
yj’ej ~ N(Gj,ajz) (aznota) (1)

1. il modello per le unita individuali
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2. il modello per la meta-popolazione (ipotesi di scambiabilita)
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Il modello Normale-Normale

Perj=1,...,J
vlg % N(,0?) (o nota) (1)
Olu, 2 % N(p,m2) 2)
(u, )~ p(u,7%) (3)

1. il modello per le unita individuali
2. il modello per la meta-popolazione (ipotesi di scambiabilita)
3. il modello a priori per gli iperparametri (full HB)
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Il modello Normale-Normale

Perj=1,...,J
ind
yj’gj ~ N(Hj,ajz) (O'ZIIOta) (1)
Olu, 2 % N(u,7?) (2)
(n, ) ~ plp,7) 3)

1. il modello per le unita individuali
2. il modello per la meta-popolazione (ipotesi di scambiabilita)
3. il modello a priori per gli iperparametri (full HB)

Questo modello viene anche detto one-way normal random-effects
model con varianza del modello di campionamento dei dati nota, ed

€ un caso speciale del piu generale modello lineare normale gerar-
chico.
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Note: Nel livello

1. La semplificazione della varianza o nota & irrilevante in questo
esempio dato che le varianze in ogni studio sono stimate con
precisione per la numerosita elevata (piu di 50 individui) in quasi la
totalita degli studi.

2. Assumiamo un modello normale per gli effetti 6; per ragioni di
comodo, ma € importante fare un check di tale ipotesi.

1.&2. Se altre informazioni (oltre y, n) fossero disponibili per distinguere
tra i J studi della meta-analisi, € possibile espandere il modello in
modo che sia scambiabile nei dati osservati e nelle covariate (eg
usando un modello di regressione gerarchico) in modo da stimare
una response surface sulla base di caratteristiche note della
popolazione e della sua esposizione al rischio.
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L Il modello Normale-Normale

3. Assumiamo una a priori noninformativa o localmente uniforme per
u dato che anche con un numero piccolo di studi (5-10) i dati
combinati sono relativam informativi riguardo al centro della
distribuzione della popolazione delle dimensioni degli effetti ;.
Allo stesso modo assumiamo per convenienza una a priori
localmente uniforme per 7, anche se si pud modificare facilmente
I'analisi per includere un’informazione a priori.
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» 72 = oo : analisi separate‘
N-N si riduce a

ind
Yil6; = N, 97), 6~ pi(6))

— i parametri di interesse sono gli effetti 0;
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» 72 = oo : analisi separate‘
N-N si riduce a

ind
Yil6; = N, 97), 6~ pi(6))

— i parametri di interesse sono gli effetti 0;

> 72 =0 pooling completo
N-N si riduce a

iid

yj|/’£¢o-j2 NN(/%O-]'Z)a H Np('u)

— parametro di interesse € p
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LII modello Normale-Normale

H(B)M media tra due estremi

> 72— oo : analisi separate
N-N si riduce a

ind
Yil6; = N, 97), 6~ pi(6))

— i parametri di interesse sono gli effetti 0;

> 72 =0 pooling completo
N-N si riduce a

iid
yj|/'4’0-j2 lrl\'N(/%sz)’ H Np('u’)

— parametro di interesse € p

> 0< 7 < oo : [SCAMBIBIIia]
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L Il modello Normale-Normale

Lanalisi Bayesiana in un modello gerarchico fornisce un compromesso
che combina le informazioni da tutti gli esperimenti senza assumere
che tutti i 6; siano uguali.

La struttura gerarchica del modello &€ strumento essenziale per
ottenere un pooling parziale delle stime e fare un compromesso in
modo scientifico tra fonti alternative di informazione.

In particolare, consideriamo gli studi scambiabili, ie non
necessariamente identici o completamente scollegati, o, in altri termini,
ammettiamo che ci siano differenze da studio a studio ma in modo che
non ci aspettiamo a priori che tali differenze abbiano effetti prevedibili
che influenzino uno studio piuttosto che un altro.
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Stime a posteriori

> analisi separate
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f; = y;, intervallo a posteriori (Cl) al 95% & 6; 4 1.96 * o;



Stime a posteriori

> analisi separate
Nell'ipotesi p;(#;) uniforme su (—oo, co)
0 =y;, intervallo a posteriori (Cl) al 95% & 9 + 1.96 * 0;

Si Consideri un’osservazione scalare singola y da una dis-
tribuzione normale parametrizzata da media 6 e varianza o2, ove
assumiamo che o? sia noto. La distribuzione campionaria &

2(} ‘9)

e 2o

p(y0) =

2no

Se p(6) = 1, allora p(0y) «x p(y|0) - 1, pertanto

p(0ly) = N(y,0?).

Si noti che nonostante la distribuzione a priori sia impropria (una
densita a priori € propria se non dipende dai dati e integra a 1), la
distribuzione a posteriori & propria ([ p(6]y)dé € finita per tutti gli
y), purche ci sia almeno un dato puntuale.
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Nell'ipotesi p() uniforme su (—oo, 00)




Stime a posteriori

pooling completo ‘
Nell'ipotesi p() uniforme su (—oo, 00)
Zj %y-

=5 , 95%Cl= ji + 1.96 x V,/*, dove V!
)
/

I
g
\.q,\,"—‘



Stime a posteriori

> pooling completo
Nell'ipotesi p(1) uniforme su (—oo, 00)

. Zj :lg)f/ R 1/2 1 1
= Zj-’% , 95%Cl= 1+ 1.96 %« V,/~, dove V., = Zj?jz
J
Si consideri un campione di osservazioni iid y = (yi,...,yn) da

una distribuzione normale parametrizzata da media p e varianze
individuali af (assunte note). Se p(u) = 1, allora

p(uly) o [T, N(p,07) - 1
x exp (*% 2w - u)2>
che dopo opportuni calcoli porta a
Zj U%_Z)’j
25

puly) =N (




Stime a posteriori

pooling completo ‘
Nell'ipotesi p() uniforme su (—oo, 00)

ZJ 2YJ

= : ,95%Cl= f1 £ 1.96 * V,/*, dove V! = ijjz
J o

Inoltre, 95%Cl= /i + 1.96 \/o_j2 € sovrapposto, per comparare i

dati osservati con la variabilita attesa se I'ip. 72 = 0 dovesse
essere quella “vera”.



Stime a posteriori

>
Invece che essere forzati a scegliere tra

1. complete pooling, 6; = ji ¥j, 0
2. nessun pooling, 0; = y;,
3. possiamo pensare ad una media pesata
O =N+ (1=X) -y

con \jtraOe 1



Stime a posteriori

> scambiabilta

Si consideri un’osservazione scalare singola y da una dis-
tribuzione normale parametrizzata da media ¢ e varianza o2, ove
assumiamo che o2 sia noto. La distribuzione campionaria &

1 — 1 (y—p)?
POIO) = o= = 70

se p() = N(u, %), allora p(8]y) o< p(y|0)p(6), pertanto

1 1
EA L T |

1 1 2" 2
sz—’_Tz Jj T

p(0ly) =N




Stime a posteriori

> scambiabilita
Si consideri un’osservazione scalare singola y da una dis-

tribuzione normale parametrizzata da media ¢ e varianza o2, ove
assumiamo che ¢ sia noto. La distribuzione campionaria &

p016) = e
2ro

se p(0) = N(u,7?), allora p(dly)  p(y|0)p(6), pertanto

1 1
Vit ol

1y 1 05270
O’j2+7'2 9j T

p(ly) =N

La precisione a posteriori eguaglia la precisione a priori piu la
precisione dei dati.




Stime a posteriori

> scambiabilita
Si consideri un’osservazione scalare singola y da una dis-

tribuzione normale parametrizzata da media ¢ e varianza o2, ove
assumiamo che ¢ sia noto. La distribuzione campionaria &

p016) = e
2ro

se p(0) = N(u,7?), allora p(dly)  p(y|0)p(6), pertanto

1 1
Vit ol

1y 1 05270
O’j2+7'2 9j T

p(ly) =N

La media a posteriori viene espressa come media pesata della
media a priori e del valore osservato con pesi proporzionali alle
precisioni.




Stime a posteriori

> scambiabilita
Si consideri un’osservazione scalare singola y da una dis-

tribuzione normale parametrizzata da media ¢ e varianza o2, ove
assumiamo che ¢ sia noto. La distribuzione campionaria &

p016) = e
2ro

se p(0) = N(u,7?), allora p(dly)  p(y|0)p(6), pertanto

1 1
Vit ol

1y 1 05270
O’j2+7'2 9j T

p(ly) =N

Alternativamente, possiamo esprimere la media a posteriori
come la media a priori aggiustata verso il valore osservato, o
come il dato osservato "shrunk" verso la media a priori.




Stime a posteriori

> scambiabilita
Si consideri un’osservazione scalare singola y da una dis-

tribuzione normale parametrizzata da media ¢ e varianza o2, ove
assumiamo che ¢ sia noto. La distribuzione campionaria &

POIE) = e =0
2no

se p(0) = N(u,7?), allora p(dly)  p(y|0)p(6), pertanto

1 1
Vit ol

1y 1 05270
O’j2+7'2 9j T

p(ly) =N

Ognuna delle formulazioni rappresenta la media a posteriori
come un compromesso tra la media a priori € il valore osservato.




Stime a posteriori

> scambiabilta

Si consideri un’osservazione scalare singola y da una dis-
tribuzione normale parametrizzata da media ¢ e varianza o2, ove
assumiamo che o2 sia noto. La distribuzione campionaria &

1 — 1 (y—p)?
POIO) = o= = 70

se p() = N(u, %), allora p(8]y) o< p(y|0)p(6), pertanto

pOY) =N | F—7— 5+

Il calcolo della a posteriori per il modello gerarchico (completo
di iperapriori) verra mostrato piu avanti.




Stime a posteriori

> scambiabilita

2.5%,50%, 97.5% quantili a posteriori di 0; e di .



Stime a posteriori
> | scambiabilita.
2.5%,50%, 97.5% quantili a posteriori di 0; e di .

Inoltre, /1 e 95%CI del pooling completo sono sovrapposti.






or complete pooling?

X=X

»X—rm—X

10 15

20




8V X . 7 posterior L s 6 posterior J

Exchangeable studies: pooling strength

o ~m]|x Y.l

15

20




et YR > .+ postorior Y > 0 posteior

Exchangeable studies: pooling strength

o ~m]|x Y.l
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Difficolta con le analisi ‘estreme’

analisi separate eg, per lo studio 19: 69[yj9 ~ N(0.44,0.722)
the probability is 1/2 that the true effect in study-19 is more
than 0.44
a doubtful statement, considering the results for the other
21 studies.
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L Il modello Normale-Normale

Difficolta con le analisi ‘estreme’

analisi separate eg, per lo studio 19: 0y9|y;9 ~ N(0.44,0.72%)
the probability is 1/2 that the true effect in study-19 is more
than 0.44

a doubtful statement, considering the results for the other
21 studies.
analisi pooled |y ~ N(—0.26,0.05?)
the probability is 1/2 that 6,9, the true effect in study-19 (yi9 =
0.44 con sd 0.72), is less than —0.26 or, even less than 6,, the
true effect in study-2 (y, = —0.74 con sd 0.48)

given that P(019 — 6, < Oly) = 1/2
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L Il modello Normale-Normale

Distribuzioni a posteriori

1. Densita (marginali) a posterioridi 7 e i

» La densita marginale a posteriori di 7 ha un picco su un valore
non-zero, sebbene valori vicini a zero sono chiaramente plausibili,
con zero che ha una densita a posteriori solo circa 25% piu bassa
che sulla moda.
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» La densita marginale a posteriori di 7 ha un picco su un valore
non-zero, sebbene valori vicini a zero sono chiaramente plausibili,
con zero che ha una densita a posteriori solo circa 25% piu bassa
che sulla moda.

» Poiché 7 si concentra su valori piccoli relativamente a o;,
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LUn esempio didattico

L Il modello Normale-Normale
Distribuzioni a posteriori

1. Densita (marginali) a posterioridi 7 e i

» La densita marginale a posteriori di 7 ha un picco su un valore
non-zero, sebbene valori vicini a zero sono chiaramente plausibili,
con zero che ha una densita a posteriori solo circa 25% piu bassa
che sulla moda.

» Poiche 7 si concentra su valori piccoli relativamente a o;,

quantili a posteriori per 7 sono

2.5% 25% Mediana 75% 97.5%
0.02 0.08 0.13 0.18 0.31
mentre i valori per g;'s sono considerabilmente piu grandi (due
volte in media).
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1. Densita (marginali) a posterioridi 7 e i

» La densita marginale a posteriori di 7 ha un picco su un valore
non-zero, sebbene valori vicini a zero sono chiaramente plausibili,
con zero che ha una densita a posteriori solo circa 25% piu bassa
che sulla moda.

» Poiché 7 si concentra su valori piccoli relativamente a o;, uno
shrinkage marcato di ¢; risulta evidente specialmente per gli studi
meno precisi.

Si esplori I'effetto su e.g. gli studi 1, 3, 6, 18, 19.
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1.

| 2

Densita (marginali) a posterioridi 7 e u

La densita marginale a posteriori di 7 ha un picco su un valore
non-zero, sebbene valori vicini a zero sono chiaramente plausibili,
con zero che ha una densita a posteriori solo circa 25% piu bassa
che sulla moda.

Poiche 7 si concentra su valori piccoli relativamente a o;, uno
shrinkage marcato di ¢; risulta evidente specialmente per gli studi
meno precisi.

Inoltre, questo fatto (i.e. una sostanziale omogeneita degli studi)
produce anche un sostanziale decremento della variabilita a
posteriori di §; che riflette il fatto che ogni singolo studio borrows
strength da tutti gli altri.
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Densita (marginali) a posterioridi 7 e u

La densita marginale a posteriori di 7 ha un picco su un valore
non-zero, sebbene valori vicini a zero sono chiaramente plausibili,
con zero che ha una densita a posteriori solo circa 25% piu bassa
che sulla moda.

Poiche 7 si concentra su valori piccoli relativamente a o;, uno
shrinkage marcato di ¢; risulta evidente specialmente per gli studi
meno precisi.

Inoltre, questo fatto (i.e. una sostanziale omogeneita degli studi)
produce anche un sostanziale decremento della variabilita a
posteriori di §; che riflette il fatto che ogni singolo studio borrows
strength da tutti gli altri (si veda la notevole riduzione della
lunghezza dell’intervallo di credibilita in )
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1. Densita (marginali) a posterioridi 7 e
2. Densita (istogrammi) a posteriori degli effetti 6;

» Gli istogrammi delle densita a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.
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1. Densita (marginali) a posterioridi 7 e u

2. Densita (istogrammi) a posteriori degli effetti 6;

» Gli istogrammi delle densita a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.

quantili a posteriori per 1 sono

2.5% 25%  Mediana 75%  97.5%
-0.37 -0.29 -0.25 -0.20 -0.11
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L Il modello Normale-Normale
Distribuzioni a posteriori

1. Densita (marginali) a posterioridi 7 e u

2. Densita (istogrammi) a posteriori degli effetti 6;

» Gli istogrammi delle densita a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.

quantili a posteriori per 1 sono

2.5% 25%  Mediana 75%  97.5%
-0.37 -0.29 -0.25 -0.20 -0.11

Lintervallo 95%HPD approssimato per x € [0.37,0.11], 0
[0.69,0.90] se convertito nella scala dell’odds ratio. Vice versa,
l'intervallo a posteriori del 95% che risulta da un pooling completo,
[0.70,0.85], € meno ampio.
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LUn esempio didattico

L Il modello Normale-Normale

Distribuzioni a posteriori

1. Densita (marginali) a posterioridi 7 e
2. Densita (istogrammi) a posteriori degli effetti 6;

» Gli istogrammi delle densita a posteriori simulate per ognuno degli
effetti individuali mostrano un’asimmetria lontano dal valore
centrale della media globale, mentre la distribuzione della media
globale ha maggiore simmetria.

» Si noti che studi maggiormente precisi sono asimmetrici rispetto al
valore centrale della media della popolazione e hanno code piu
pesanti (si veda e.g. gli studi precisi 7 e 14).
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Fully HB

Sotto, per ogni valore di 7 (preso nel range plausibile di valori di 7,
secondo la sua marginale a posteriori), E(p|7,y) € sd(p|7,y) sono dati
per riga.

tau: 0.00 0.05 0.10 0.15 0.20 0.25 0.30

multau -0.260 0.05
-0.256 0.05
-0.245 0.06
-0.244 0.07
-0.240 0.07
-0.239 0.08
-0.238 0.09



Fully HB

Sotto, per ogni valore di 7 (preso nel range plausibile di valori di 7,
secondo la sua marginale a posteriori), E(p|7,y) € sd(p|7,y) sono dati

per riga.

tau: 0.00 0.05 0.10 0.15 0.20 0.25 0.30

mul|tau -0

Si noti il quasi raddoppiamento degli sd. Cido mostra I'importanza di
mediare su 7 (invece di fissare = come in un approccio non full Bayes)
in modo da adeguatemente tenere conto dell'incertezza nella sua

stima.
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Fully HB

Sotto, per ogni valore di 7 (preso nel range plausibile di valori di 7,
secondo la sua marginale a posteriori), E(p|7,y) € sd(p|7,y) sono dati

per riga.

tau: 0.00 0.05 0.10 0.15 0.20 0.25 0.30

mul|tau -0
-0

Infatti, la standard deviation condizionale a posteriori, sd(u|7,y), ha il
valore 0.060 per 7 = 0.13 (mediana a posteriori), mentre mediando
rispetto alla distribuzione a posteriori per 7 otteniamo un valore di

sd(ply) = 0.
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LSimulazione diretta
Simulazione diretta

Nei HBM semplici (come il modello N-N), il calcolo (stima) viene
effettuato attraverso la simulazione diretta della distribuzione a
posteriori congiunta

p(0, p,7ly) o< p(y|0)p(O|u, 7)p(11, 7)
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Nei HBM semplici (come il modello N-N), il calcolo (stima) viene
effettuato attraverso la simulazione diretta della distribuzione a
posteriori congiunta

p(0, p,7ly) o< p(y|0)p(O|u, 7)p(11, 7)

scomponendola in piu parti:
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Nei HBM semplici (come il modello N-N), il calcolo (stima) viene
effettuato attraverso la simulazione diretta della distribuzione a
posteriori congiunta

p(0, p,7ly) o< p(y|0)p(0|p, T)p (12, 7)

scomponendola in piu parti:
I/ simula dalla distribuzione condizionale a posteriori

PO, T,y)
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LSimulazione diretta
Simulazione diretta

Nei HBM semplici (come il modello N-N), il calcolo (stima) viene
effettuato attraverso la simulazione diretta della distribuzione a
posteriori congiunta

p(0, p,7ly) o< p(y|0)p(0|p, T)p (12, 7)

scomponendola in piu parti:
I/ simula dalla distribuzione condizionale a posteriori

PO, T,y)

Il/ simula dalla distribuzione marginale a posteriori

p(p, ly)-
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Simulazione per passi
a. Inizia dalla distribuzione congiunta a posteriori non-normalizzata

p(0,p,7ly) o< p(y0)p(8|u, T)p(1,T)
che altrimenti scritta & PO\, 7, y)p(p|m,y)p(Tly)

b. In modelli semplici & possibile calcolare la forma analitica di
PO, 7,y).
In N-N, con ipotesi di scambiabilita, p(0|u, 7,y) si fattorizza in J
componenti ove ciascuna risulta essere 6;|u, 7,y ~ N(6;,V;) con

é'zl/q,z-yj—i-l/rz-,u v — 1
! 1/01-24— 1/72 ! l/ajz—i— 1/72



Simulazione per passi
a. Inizia dalla distribuzione congiunta a posteriori non-normalizzata

pO0,p,7ly) o< p(y|@)p(8|p, T)p(p,T)
che altrimenti scritta & PO\, 7, y)p(p|m,y)p(Tly)

b. In modelli semplici & possibile calcolare la forma analitica di

p(Olp,7,y).
c. Con riguardo a p(u, 7ly), il calcolo dipende da caso a caso.

Per iniziare assegniamo una a priori noninformativa per u|r, ie
p(p,7) = p(p|m)p(7) o< p(7)

The uniform prior density for 1 is generally reasonable for this
problem; because the combined data from all J experiments
are generally highly informative about 1., we can afford to be
vague about its prior distribution.



Simulazione per passi

c. Con riguardo a p(u,7|y), il calcolo dipende da caso a caso.

Nell’'esempio binomiale avevamo menzionato la via
dell'integrazione o del calcolo analitico per derivare p(u, 7|y) da

p(0, u, 7ly)



Simulazione per passi

c. Conriguardo a p(u,7ly), il calcolo dipende da caso a caso.
c1. In N-N & possibile calcolare la verosimiglianza marginale p(y|u, 7),
ad es. essa & Vj y; ~ N(u, 07 + 72) pertanto

p(uly) o< p(p, ) [[ NGl oF + 72)
J

Potremmo quindi calcolare direttamente p(u, 7|y) come funzione di
due variabili e procedere come nel caso binomiale. Invece,
possiamo semplificare ulteriormente, fattorizzandola,

P, 7ly) = p(ulm,y)p(ly),

e calcolare prima p(p|7,y) e poi la marginale p(rly). Infatti, sotto
lipotesi p(u|7) x 1, i.e. uniforme, su (—oo, 00), otteniamo
:U‘|T7y ~ N([:L’ Vlt) con
X y |
,LL = = m = =
X i X i
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> puo essere calcolato analiticamente come

pp, 7py) = una forma complicata ... (vd. BDA3 p.117, eq. 5.21)
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Simulazione per passi

c. Con riguardo a p(u, 7|y), il calcolo dipende da caso a caso.
c2. Infine, p(7ly)

> puo essere calcolato analiticamente come

pp, 7py) = una forma complicata ... (vd. BDA3 p.117, eq. 5.21)

p(plT,y)

» Per completare dobbiamo assegnare una a priori per 7
- p(1) 1 porta ad una densita a post propria
- p(log 7) 1 porta ad una densita a post impropria
- p(1) ~ Scaled — Invx” data una best guess e un upper bound (a
priori informativa, piu realistica)



Simulazione per passi
a. Inizia dalla distribuzione congiunta a posteriori non-normalizzata

p(O,p,7ly) o< p(y|@)p(Olu, T)p(p,7)
b. In modelli semplici & possibile calcolare la forma analitica di

p(Olp,7,y).
c. Con riguardo a p(u, 7ly), il calcolo dipende da caso a caso.
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La stima di un HBM pud essere effettuata attraverso una
1. simulazione diretta
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HBM
LStima dei modelli gerarchici Bayesiani

LSimulazione iterativa

Simulazione MCMC

La stima di un HBM pud essere effettuata attraverso una

1. simulazione diretta come con Il modello N-N dove la distribuzione
a posteriori

PO, p, 7ly) o< p(7ly)p(pl,y)p(0|1, 7,y)

consiste in forme chiuse p(u|7,y) e p(0|u, 7,y) (per a priori
coniugate), e in p(7|y) che, a seconda della specificazione a priori,
pud anche essere calcolabile analiticamente.
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LSimulazione iterativa

Simulazione MCMC

La stima di un HBM pud essere effettuata attraverso una

1. simulazione diretta

2. simulazione iterativa o MCMG, i.e. integrazione Monte Carlo di
estrazioni simulate da una Markov Chain che ha la densita a
posteriori p(0|y) (dove 6 sono il complesso dei parametri) come
distribuzione target.

M. Trevisani | HBM Stima dei modelli gerarchici Bayesiani 28/54



HBM
LStima dei modelli gerarchici Bayesiani

LSimulazione iterativa

Simulazione MCMC

La stima di un HBM pud essere effettuata attraverso una

1. simulazione diretta
2. simulazione iterativa o MCMGC,
> in particolare, via Gibbs sampling.
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Gibbs sampling

MCMC methods allow for sampling from complicated, high
dimensional models.

In particular, Gibbs sampler can be straightforwardly implemented
when there is

> a conditional independence structure (like in HM);
> (conditionally) conjugate priors for each hierarchical stage.
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L (Gibbs sampling e DAG)

Gibbs sampling

MCMC methods allow for sampling from complicated, high

dimensional models.
In particular, Gibbs sampler can be straightforwardly implemented

when there is
> a conditional independence structure (like in HM);
> (conditionally) conjugate priors for each hierarchical stage.
E.g., every parameter is assigned a prior to be conjugate to the
likelihood associated with its own ‘child’ in the hierarchy.

31/54
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Full conditionals

Specification of conditionally conjugate priors makes the full
conditional distributions (required for implementing the Gibbs
sampler) be in closed forms.
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Full conditionals

Specification of conditionally conjugate priors makes the full
conditional distributions (required for implementing the Gibbs
sampler) be in closed forms.
The full conditional for each variable can be derived from

> the links
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Full conditionals

Specification of conditionally conjugate priors makes the full
conditional distributions (required for implementing the Gibbs
sampler) be in closed forms.

The full conditional for each variable can be derived from

» the links
» the conditional distributions
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HBM
L (Gibbs sampling e DAG)

Full conditionals

Specification of conditionally conjugate priors makes the full
conditional distributions (required for implementing the Gibbs
sampler) be in closed forms.
The full conditional for each variable can be derived from

> the links

> the conditional distributions

of the Directed Acyclic Graph (DAG).
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DAG

A directed acyclic graph (DAG) is an alternative representation of a
model.

» it is ‘directed’ because each link is an arrow
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DAG

A directed acyclic graph (DAG) is an alternative representation of a
model.

» it is ‘directed’ because each link is an arrow

> it is ‘acyclic’ because by following the arrows it is not possible to
return to a node after leaving it
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direct influence of (direct) parents on children.
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DAG
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» The graph model displays the causal structure of the problem:
> direct arrows (stochastic or logical dependences) towards nodes
(stochastic or deterministic variables or constants) represent a
direct influence of (direct) parents on children.
> missing links represent non-relevance between nodes.
» The probabilistic structure is then added to the model. Let denote
> V={v} the setof nodes
> p(v|pa(v)) the conditional distribution of v (child) given its
(stochastic) parents pa(v).
> Hence, the probability structure results p(V) = [],c, p(vlpa(v)) by
assuming conditional independence wherever there is
non-relevance between nodes.
Thereby, p(V) consists of the product of priors for nodes without
parents and of conditional distributions for the remaining children
given their (stochastic) parents.
The marginal distribution for each node (given the observed data)
can be calculated via Bayes rule.
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A DAG example

Consider a simple linear regression problem given by
yi~ N(pi,0®)  pi=a+fx i=1,...,N
a~ N(my,vq) B~ N(mg,vg) logo ~ Ula,b)

for fixed constants mq, va, mg,vs,a and b.

An alternative representation of this model is the directed acyclic graph
shown below.
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DAG interpretation

The notation is defined as follows.

» Rectangular nodes denote known constants.
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» Elliptical nodes represent either deterministic relationships (i.e.
functions) or stochastic quantities, i.e. quantities that require a
distributional assumption.
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» Elliptical nodes represent either deterministic relationships (i.e.
functions) or stochastic quantities, i.e. quantities that require a
distributional assumption.

» Stochastic dependence and functional dependence are denoted
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DAG interpretation

The notation is defined as follows.

» Rectangular nodes denote known constants.

» Elliptical nodes represent either deterministic relationships (i.e.
functions) or stochastic quantities, i.e. quantities that require a
distributional assumption.

» Stochastic dependence and functional dependence are denoted
by single-edged arrows and double-edged arrows, respectively.

> Repetitive structures, such as the ‘loop’ fromi=1to N, are
represented by ‘plates’, which may be nested if the model is
hierarchical.
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Full conditional

» The full conditional for v is calculated as
p(v[V =v) o< p(v,V —v) = p(V).
That is, it is proportional to the product of the terms in p(V)

containing v, i.e.,

POV =v) o< p(vlpa(v)) T1,epaqw) P(Wipa(w)),
where [],¢ ) P(wlpa(w)) is the product of distributions where v is
a parent |tse|f
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Full conditional

» The full conditional for v is calculated as
p(v[V =v) o< p(v,V —v) = p(V).
That is, it is proportional to the product of the terms in p(V)

containing v, i.e.,

POV =v) o< p(vlpa(v)) T1,epaqw) P(Wipa(w)),
where [],¢ ) P(wlpa(w)) is the product of distributions where v is
a parent |tse|f

» Thus, by exploiting the DAG as well as the ‘conjugancy’, the full
conditionals of the linear hierarchical model are —
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Model specification within BUGS
A customary GLMM model in HB form is specified as

» prior specification » full conditionals
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Model specification within BUGS
A customary GLMM model in HB form is specified as

indN(Oti—i-Bixij, 0'2) j=1,...,J

1. Y; ~
o\ iid. a%y) .
2. 6,= ~TN|(6y= , 2 =1,....1
(5:‘) (0 (50) ) l

» prior specification » full conditionals
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Model specification within BUGS

A customary GLMM model in HB form is specified as

1. Yl‘j%iN(Oéi—I—ﬁixij, 02) j=1,...,J

2. 0i=<gf>i'i""N(eo= < g(‘)))z) i=1,...

0~2 ~ G(a,b) (according to a full HB)
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Model specification within BUGS

A customary GLMM model in HB form is specified as
1. Yij%iN(Oéi—I—ﬁixij, 02) j=1,...,J

2. 9, = ( g > ""'""N<00= < g(‘)))z) i=1,...,1

0~2 ~ G(a,b) (according to a full HB)

3. 8o ~N(n, C) X'~ W((pR)"!, p) (according to a full HB)
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Model specification within BUGS

A customary GLMM model in HB form is specified as
indN(ai"i'ﬁixij? 02) J:17>J

1. Y, ™
2. 9,=( Y i'i'd'N<0 =<a0>,2> i=1,...,1
(51’) 0 Bo l

0~2 ~ G(a,b) (according to a full HB)

3. 8o ~N(n, C) X'~ W((pR)"!, p) (according to a full HB)

a%, 8y, X! are the “stochastic founder nodes” in the Directed
Acyclic Graph (DAG).
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If one is not willing/able to specify an “influent” prior, a non-informative
prior has to be chosen. Yet, BUGS requires a proper probability model.

» A locally uniform prior (on likelihood support region) is typically
chosen for location parameters (e.g. regression coefs)
> A “barely proper” prior is chosen for the variance parameters (in
precision form)
e.g. an “almost improper” Gamma for (univariate) scale
parameters
02 ~ G(e, €)
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Prior specification within BUGS

If one is not willing/able to specify an “influent” prior, a non-informative
prior has to be chosen. Yet, BUGS requires a proper probability model.

» A locally uniform prior (on likelihood support region) is typically

| 2

chosen for location parameters (e.g. regression coefs)

A “pbarely proper” prior is chosen for the variance parameters (in
precision form)

e.g. a Wishart for multivariate scale parameters

1 Sy 0
)Y W((o s, )P

The prior for the precision matrix ¥~! is made ‘vague’ by choosing
the minimum value for the number of df p, i.e., p = rank(X) (in this
case minimum is 2).

The scale matrix divided by df is our prior opinion on the order of
magnitude of the covariance matrix .
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» A locally uniform prior (on likelihood support region) is typically
chosen for location parameters (e.g. regression coefs)
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In the above examples all the priors for stochastic founder nodes have
been chosen as conjugate priors.



Prior specification within BUGS

If one is not willing/able to specify an “influent” prior, a non-informative
prior has to be chosen. Yet, BUGS requires a proper probability model.

» A locally uniform prior (on likelihood support region) is typically
chosen for location parameters (e.g. regression coefs)

> A “barely proper” prior is chosen for the variance parameters (in
precision form)

In the above examples all the priors for stochastic founder nodes have
been chosen as conjugate priors. Their own hyperparameters were
assumed known.
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Full conditionals of 2-stage linear model

> 0,-|00,Z,y,a X N(Oo,Z) 'HjN(ai+/6ixij7 0'2)
~N(...),
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Full conditionals of 2-stage linear model

2
> 0i|00727y70 X N(007E) HJN(al+/leU, O')

~N(...),
> 00[{6:},57" x N(n, C)-TI;N(6o,%)
~N(...),
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Full conditionals of 2-stage linear model

2
> 0i|00727y70 X N(O()?E) 'HjN(ai"i_/Bixij, O')

~N(...),

> 00|{0i}72_1 X N(777 C) : HiN(GOaZ)
~N(...),

> %71{6:},80 o< W((pR)™", p) - [1;N(60,%)
~W(..)
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Full conditionals of 2-stage linear model

> 0,‘|00, 2,y,0 X N(eo, E) . HjN(a,- + ﬁix,-j, 0'2)

~N(..),

> 00|{0i}72_1 X N(77» C) : HiN(BOa E)
~N(..),

> %71{6:},80 o< W((pR)™", p) - [1;N(60,%)
~ W)

> 07|y, {6;} o G(a,b) - TI;;N(oi + Bixyj, 07)
~G(..)
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Full conditionals of 2-stage linear model

> 0,‘|00, 2,y,0 X N(eo, E) . HjN(ai + ﬁix,-j, 0'2)
~ N(...),

> 00|{0i}72_1 X N(77» C) : HiN(OOa E)
~N(...),

> 271{6:},00 o< W((pR)™", p) - T1;N(60,%)
~W(...)

> 02|y, {6;} x G(a,b)- [, N(ai + Bixy, o?)
~G(...)

now we have all we need for simulating the parameters from each
full conditional distribution.
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BUGS is a software package (a high-level language) for performing
Bayesian inference Using Gibbs Sampling.
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Software
BUGS is a software package (a high-level language) for performing
Bayesian inference Using Gibbs Sampling.

1. The user specifies a statistical model, of (almost) arbitrary
complexity (by simply stating the relationships between related
variables).

2. The software includes an ‘expert system’, which determines an
appropriate MCMC scheme (based on the Gibbs sampler) for
analysing the specified model.

3. The user then controls the execution of the scheme and is free to
choose from a wide range of output types.

All you must care about is essentially the model specification!
There are several versions of Bugs.

See the BUGS project at
http://www.mrc-bsu.cam.ac.uk/software/bugs/.


http://www.mrc-bsu.cam.ac.uk/software/bugs/

Software
WinBUGS

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

It is an established and stable, stand-alone version of the software,
which will remain available but not further developed.
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Software

WinBUGS

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
It is an established and stable, stand-alone version of the software,
which will remain available but not further developed.

OpenBUGS

http://www.openbugs.info/w/

It is an open-source version of the package, on which all future
development work will be focused.

For reference, see The BUGS project: Evolution, critique and future

directions, by David Lunn, David Spiegelhalter, Andrew Thomas and
Nicky Best, Statistics in Medicine, 2009.


http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.openbugs.info/w/

Software

JAGS

http://www-fis.iarc.fr/~martyn/software/jags/
JAGS is Just Another Gibbs Sampler.
It is a program for analysis of Bayesian hierarchical models using
MCMC simulation not wholly unlike BUGS. JAGS was written with
three aims in mind:
» To have an engine for the BUGS language that runs on Unix
> To be extensible, allowing users to write their own functions,
distributions and samplers.

» To be a plaftorm for experimentation with ideas in Bayesian
modelling.

To this last end, JAGS is licensed under the GNU General Public
License.


http://www-fis.iarc.fr/~martyn/software/jags/

Software

It is possible to set up models and run them entirely within Bugs, but in
practice it is almost always necessary to process data before entering
them into a model, and to process the inferences after the model is
fitted, and so (after learned how Bugs works!) you can opt for running
Bugs by calling it from R (using the bugs() function in R, you can find
the instructions at http://www.stat.columbia.edu/~gelman/bugsR/).


http://www.stat.columbia.edu/~gelman/bugsR/

A possible model of Bayesian data analysis

The computer does step 2 (Bayesian inference), the homunculus
does step 1 (model building) and step 3 (model checking)
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Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.
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1. Variable transformation: centering the covariates around the grand
mean.
Here, variable transformation is strategically used for improving
MCMC. In fact, cross-correlation between intercept and slope is
reduced with covariates centering.
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Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.

Here, variable transformation is strategically used for improving
MCMC. In fact, cross-correlation between intercept and slope is
reduced with covariates centering.

The ‘uni\/clariate’ version of the Normal hierarchical model is:
n

(1) Y; ~ N(o; + Bix; — %), 02),
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Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.
Here, variable transformation is strategically used for improving
MCMC. In fact, cross-correlation between intercept and slope is
reduced with covariates centering.

The ‘uni\iiariate’ version of the Normal hierarchical model is:
(1) Yif ™ N(ozi + 6,'()@_'/' — X), 0'2),

so that a; and g; are a priori independent (full balanced data).
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Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.

Here, variable transformation is strategically used for improving
MCMC. In fact, cross-correlation between intercept and slope is
reduced with covariates centering.
The ‘univariate’ version of the Normal hierarchical model is:
(1) Yif lfn\lfi N(ozi + 6,'()@_'/' — X), 0'2),
so that a; and g; are a priori independent (full balanced data).

(2) "% N(ag.o2), B "~ N(Bo,o3)
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Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.
Here, variable transformation is strategically used for improving
MCMC. In fact, cross-correlation between intercept and slope is
reduced with covariates centering.

The ‘uni\iiariate’ version of the Normal hierarchical model is:
n

(1) Yif ~ N(ozi + 6,'()@_'/' — X), 0'2),
so that a; and g; are a priori independent (full balanced data).
(2) ;"% N(ag,02), B "= N(fo, 03)
(3) ap ~ N(0,.00001), By~ N(0,.00001),
o2~ G(ee), 0/;2 ~ G(e,€)
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Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.

2. Hierarchically centered parameterization: each stage-k is
centered about stage-k+1.
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Improving Gibbs sampling computation
1. Variable transformation: centering the covariates around the grand
mean.

2. Hierarchically centered parameterization: each stage-k is
centered about stage-k+1.

It is the parameterization that we have always set in this lecture.
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Improving Gibbs sampling computation

1. Variable transformation: centering the covariates around the grand
mean.

2. Hierarchically centered parameterization: each stage-k is
centered about stage-k+1.
It is the parameterization that we have always set in this lecture.

Whereas random coefficients (/mixed/multilevel) models are
typically specified by a classical statistician in an "horizontal"
fashion.
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Diagnostic strategy

» Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;
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» visually inspect these chains by overlaying them;
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Diagnostic strategy

» Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

» visually inspect these chains by overlaying them;

» Gelman-Rubin statistic;
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LConvergence diagnosis

Diagnostic strategy

» Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

» visually inspect these chains by overlaying them;

» Gelman-Rubin statistic;

» check autocorrelation;
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LConvergence diagnosis

Diagnostic strategy

» Run 3 or 5 parallel chains, with starting points drawn from a
distribution believed to be overdispersed wrt the stationary
distribution;

» visually inspect these chains by overlaying them;
» Gelman-Rubin statistic;

» check autocorrelation;

> investigate crosscorrelation
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One can summarize the Gibbs samples generated by BUGS using
CODA: Convergence Diagnostics and Output Analysis
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One can summarize the Gibbs samples generated by BUGS using
CODA: Convergence Diagnostics and Output Analysis

It is avalaible for R the R-CODA version: Suite of S-functions to
analyse output from BUGS and any other MCMC algorithm.
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CODA

One can summarize the Gibbs samples generated by BUGS using
CODA: Convergence Diagnostics and Output Analysis
It is avalaible for R the R-CODA version: Suite of S-functions to
analyse output from BUGS and any other MCMC algorithm.

> Output Analysis:

Plots, Printing graphical output from CODA, Multiple pages of plots,
Displaying multiple graphics windows on screen,
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