
Chapter 10

• 10.1 Numerical integration (overview)
• 10.2 Distributional approximations (overview, more in

Chapter 4 and 13)
• 10.3 Direct simulation and rejection sampling (overview)
• 10.4 Importance sampling
• 10.5 How many simulation draws are needed?
• 10.6 Software (can be skipped)
• 10.7 Debugging (can be skipped)
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Target distribution: distribuzione a posteriori

• Distribuzione a posteriori di θ dato y

p(θ|y) = p(y |θ)p(θ)
p(y)

∝ p(y |θ)p(θ)

• Distribuzione predittiva a posteriori p(ỹ |y)

• Finora abbiamo considerato esempi in cui queste possono
essere calcolate analiticamente, con simulazioni effettuate
direttamente usando routines di distr standard o calcoli
numerici su griglie

• Modelli più complicati richiedono algoritmi più elaborati per
approssimare la distribuzione a posteriori

• In questa prima parte consideriamo delle procedure per
calcolare approssimativamente integrali
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Notation

• In this chapter, generic p(θ) is used instead of p(θ|y) when
there is no ambiguity

• Unnormalized distribution is denoted by q(·)
• ∫

q(θ)dθ ̸= 1, but finite
• q(·) ∝ p(·)

• Proposal distribution is denoted by g(·)
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Numerical accuracy of computer arithmetic
• Many models use continuous real valued parameters.
• Computers have finite memory and thus the continuous

values are also presented with finite number of bits and thus
with finite accuracy.

• Most commonly used presentations are floating-point
presentations that try to have balanced accuracy over the
range of values where it mostly matters.

• As the presentation has finite accuracy there are limitations,
eg, with IEC 60559 floating-point (double precision)
arithmetic used in current R

• the smallest positive floating-point number x such that
1 + x ̸= 1 is 2.220446 · 10−16

• the smallest non-zero normalized floating-point number is
2.225074 · 10−308

• the largest normalized floating-point number 1.797693 · 10308

• the largest integer which can be represented is
231 − 1 = 2147483647

• see more at https://stat.ethz.ch/R-manual/R-devel/library/
base/html/zMachine.html
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Numerical accuracy – floating point
• Floating point presentation of numbers. e.g. with 64bits

• closest value to zero is ≈ 2.2 · 10−308

• generate sample of 600 from normal distribution:
qr=rnorm(600)

• calculate joint density given normal:
prod(dnorm(qr)) → 0 (underflow)

• see log densities in the next slide
• closest value to 1 is ≈ 1 ± 2.2 · 10−16

• Laplace and ratio of girl and boy babies
• pbeta(0.5, 241945, 251527) → 1 (rounding)
• pbeta(0.5, 241945, 251527, lower.tail=FALSE) ≈ −1.2 · 10−42

there is more accuracy near 0

• the largest normalized floating-point number
1.797693 · 10308 → above (in absolute value) Inf (overflow)

• the largest integer which can be represented is
231 − 1 = 2147483647
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Numerical accuracy – log scale
• Log densities

• use log densities to avoid over- and underflows in floating
point presentation

• prod(dnorm(qr)) → 0 (underflow)
• sum(dnorm(qr,log=TRUE)) → -847.3

• how many observations we can now handle?
• compute exp as late as possible

• e.g. for a > b, compute
log(exp(a) + exp(b)) = a + log(1 + exp(b − a))

e.g. log(exp(800) + exp(800)) → Inf
but 800 + log(1 + exp(800 − 800)) ≈ 800.69

• e.g. in Metropolis-algorithm (later) compute the log of ratio of
densities using the identity
log(a/b) = log(a)− log(b)
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It’s all about expectations
Ep(θ|y)[f (θ)] =

∫
f (θ)p(θ|y)dθ,

where p(θ|y) = p(y |θ)p(θ)∫
p(y |θ)p(θ)dθ

Conversely, we can express any integral over the space of θ as a
posterior expectation by defining f (θ) appropriately

We can
easily evaluate p(y |θ)p(θ) for any θ, but the integral∫

p(y |θ)p(θ)dθ is usually difficult.

We can use the unnormalized posterior q(θ|y) = p(y |θ)p(θ), for
example, in

• Grid (equal spacing) evaluation with self-normalization

Ep(θ|y)[f (θ)] ≈
∑S

s=1
[
f (θ(s))q(θ(s)|y)

]∑S
s=1 q(θ(s)|y)

• Monte Carlo methods which can sample from p(θ(s)|y)
using only q(θ(s)|y)

Ep(θ|y)[f (θ)] ≈
1
S

S∑
s=1

f (θ(s))
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It’s all about expectations

Eθ[f (θ)] =
∫

f (θ)p(θ|y)dθ

• Conjugate priors and analytic solutions (Ch 1-5)
• Grid integration and other quadrature rules (Ch 3, 10)
• Independent Monte Carlo, rejection and importance

sampling (Ch 10)
• Markov Chain Monte Carlo (Ch 11-12)
• Distributional approximations (Laplace, VB, EP) (Ch 4, 13)
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Numerical integration
Numerical integration refers to methods in which the integral
over continuous function is evaluated by computing the value of
the function at finite number of points.

• By increasing the number of points where the function is
evaluated, desired accuracy can be obtained.

• Numerical integration methods can be divided into
• Deterministic methods such as many quadrature rule

methods (e.g. grid)
• evaluation points are selected by some deterministic rule
• good deterministic methods converge faster (need less

function evaluations)
• Simulation (stochastic) methods, such as Monte Carlo

• evaluation points are selected stochastically (randomly)

Note: Sometimes ‘quadrature’ is used to refer generically to any
numerical integration method (including Monte Carlo),
sometimes it is used to refer just to deterministic numerical
integration methods.
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Metodi (stocastici) di simulazione I

• Metodi Monte Carlo o metodi di simulazione
• Simulate (obtain random) draws from the target distribution

• these draws can be treated as any observations
• a collection of draws is a sample

• Use these draws, to estimate the expectation of any
function f (θ|y)

E [f (θ)|y ] =
∫

f (θ)p(θ|y)dθ ≈ 1
S

S∑
s=1

f (θ(s))

for example,
• to compute means, deviations, quantiles
• to marginalize
• to draw histograms, etc.

• The estimate is stochastic depending on generated random
numbers,
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Metodi (stocastici) di simulazione II
• the accuracy can be improved by obtaining more samples.
• Simulation methods can be used for high-dimensional

distributions
• Basic Monte Carlo (MC) methods produce independent

samples
• Markov chain Monte Carlo (MCMC) methods produce

dependent samples but can better adapt to
high-dimensional complex distributions

• MCMC methods have been important in making Bayesian
inference practical for generic hierarchical models.
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Metodi deterministici I

Deterministic numerical integration methods evaluate the
integrand f (θ)p(θ|y) at selected points θ(s) and are based on a
weighted version of the above MC estimate

E [f (θ)|y ] =
∫

f (θ)p(θ|y)dθ ≈ 1
S

S∑
s=1

wsf (θ(s))p(θ(s)|y)

with weight ws corresponding to the volume of space
represented by the point θ(s).

• Deterministic rules typically have lower variance than
simulation methods, but selection of locations gets difficult
in high dimensions.

• They are also known as ‘grid’ or ‘quadrature’ methods
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Quadrature integration
• The simplest quadrature integration is grid integration

E[θ] ≈
T∑

t=1

θ(t)w (t),

where w (t) is the normalized probability of a grid cell t , and
θ(t) is the center location of the grid cell

• In 1D further variations with better accuracy, e.g. trapezoid

• Adaptive quadrature methods add evaluation points where
needed, e.g., R function integrate()

• In 2D and higher
• nested quadrature
• product rules
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Approssimazioni distributive

(Accenno)

• Distributional (analytic) approximations approximate the
posterior with some simpler parametric distribution, from
which integrals can be computed directly or by using the
approximation as a starting point for simulation-based
methods.

• Normal approximation in Chapter 4 and more advanced
approximation methods in Ch. 13

• Crude estimation by ignoring some information
• Before developing approximations or methods for sampling

from the target distribution, it is often useful to obtain a rough
estimate of the location of the target distribution—that is, a
point estimate of the parameters in the model—using some
simple technique

• eg rat tumor ex ((α, β))
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Direct simulation

• In simple nonhierarchical Bayesian models, it is often easy
to draw from the posterior distribution directly, especially if
conjugate prior distributions have been assumed.

• For more complicated problems, it can help to factor the
distribution analytically and simulate it in parts, first
sampling from the marginal posterior distribution of the
hyperparameters, then drawing the other parameters
conditional on the data and the simulated hyperparameters.

• It is sometimes possible to perform direct simulations and
analytic integrations for parts of the larger problem (eg in
HBMs)

• See next slide ‘Direct approximation by calculating at a grid
of points’
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Direct approximation by calculating at a grid of points

• Compute the target density, q(θ|y), at a set of evenly
spaced values θ1, . . . , θN that cover a broad range of the
parameter space for θ

• approximate the continuous q(θ|y) by the discrete density at
θ1, . . . , θN , with probabilities q(θi |y)/(

∑N
j=1 q(θj |y))

• Note that is equivalent to work with a normalized or
unnormalized density

• Once the grid of density values is computed, draw
u ∼ U[0,1], then transform by the inverse cdf method to
obtain a draw from the discrete approximation
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Direct simulation

• Produces independent draws
• Using analytic transformations of uniform random numbers

(e.g. appendix A)
• factorization
• numerical inverse-CDF

• Problem: restricted to limited set of models
• The discrete approximation is more difficult to use in

higher-dimensional multivariate problems, where computing
at every point in a dense multidimensional grid becomes
prohibitively expensive
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Random number generators

• Good pseudo random number generators are sufficient for
Bayesian inference

• pseudo random generator uses deterministic algorithm to
produce a sequence which is difficult to make difference
from truly random sequence

• modern software used for statistical analysis have good
pseudo RNGs
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Direct simulation: Example

• Box-Muller -method:
If U1 and U2 are independent draws from distribution
U(0,1), and

X1 =
√
−2 log(U1) cos(2πU2)

X2 =
√
−2 log(U1) sin(2πU2)

then X1 and X2 are independent draws from the distribution
N(0,1)

• not the fastest method due to trigonometric computations
• for normal distribution more than ten different methods
• e.g. R uses inverse-CDF
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Grid sampling and curse of dimensionality

• 10 parameters
• if we don’t know beforehand where the posterior mass is

• need to choose wide box for the grid
• need to have enough grid points to get some of them where

essential mass is
• e.g. 50 or 1000 grid points per dimension

→ 5010 ≈ 1e17 grid points
→ 100010 ≈ 1e30 grid points

• R and my current laptop can compute density of normal
distribution about 20 million times per second
→ evaluation in 1e17 grid points would take 150 years
→ evaluation in 1e30 grid points would take 1 500 billion years

20 / 43



Indirect sampling

• Rejection sampling
• draw directly from a proposal distribution, reject some draws,

remaining draws are independent draws from the target
distribution

• Importance sampling
• draw directly from a proposal distribution, weight the draws

• Markov chain Monte Carlo (next)
• draw directly from a transition distribution forming a Markov

chain, draws are dependent draws from the target
distribution
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Rejection sampling

• We can work with the target distribution p as well as with the
unnormalized form q instead.

• Let g(θ) a positive function defined ∀θ for which p(θ|y) > 0
such that:

- We can draw from the probability density proportional to g.
g(θ) must have a finite integral (it is not required that
integrates to 1)

- ∃M : the importance ratio q(θ|y)/g(θ) ≤ M ∀θ
• The rejection sampling proceeds as follows:

1 Draw θ ∼ g(θ)
2 Accept with probability q(θ|y)/Mg(θ)

a. Draw u ∼ U[0, 1]
b. If u < q(θ|y)/Mg(θ) accept θ otherwise reject it

If the drawn is rejected, return to step 1.

Nota: The boundedness condition is necessary so that the
probability in step 2 is not greater than 1.
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Rejection sampling
- Proposal forms envelope over the target distribution

q(θ|y)/Mg(θ) ≤ 1
- Draw from the proposal and accept with probability

q(θ|y)/Mg(θ)

- Common for truncated distributions, in which case all draws
from the truncated part are rejected.

●

●

accepted

rejected

−4 −2 0 2 4
θ

Mg(theta) q(theta|y)
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Rejection sampling

• A good approximate density g(θ) should be roughly
proportional to p(θ|y)

• If g ∝ p, (with a suitable value of M) we can accept every
draw with probability 1

• When g is not nearly proportional to p, M must be set so
large that almost all draws will be rejected.

• Rejection sampling is self-monitoring—if the method is not
working efficiently, few simulated draws will be accepted.

• The number of accepted draws is the effective sample size
• with bad proposal distribution may require a lot of trials
• selection of good proposal gets very difficult when the

number of dimensions increase
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Importance sampling (and numerical integration

• Aim: to estimate E(f (θ)|y) =
∫

f (θ)p(θ|y)dθ,
• Problem: we cannot generate random draws from p(θ|y) (a

closed form is not available)
• Let g(θ) be a normalized density from which we can

generate random draws, then we can write,

E(f (θ)|y) =
∫

f (θ)
p(θ|y)
g(θ)

g(θ)dθ

= c−1
∫

f (θ)w(θ)g(θ)dθ

where w(θ) = q(θ|y)
g(θ) and c =

∫
q(θ|y)dθ

• Draw θ1, . . . , θS from g(θ)
• Estimate E(f (θ)|y) by∑

s wsf (θ(s))∑
s ws

where ws =
q(θ(s))
g(θ(s))

are called importance ratios or importance weights
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Importance sampling
- Proposal does not need to have a higher value everywhere
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Target, proposal, and draws
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Importance sampling

• Unlike the rejection sampling (RS), the proposal g(θ) must
be normalized

• IS is not a very useful method if the importance ratios vary
substantially

• Estimates will be poor if the largest ratios are too large
relative to the others

• The worst possible scenario occurs when the importance
ratios are small with high probability but with a low
probability are huge,

• eg, if q has wide tails compared to g (It is a bad idea to use
a normal for approximating a t3, viceversa it is a good idea to
use a t3 for approximating a normal

• There is always the possibility that we have missed some
extremely large but rare importance weights. (In contrast,
we do not have to worry about small importance ratios,
because they have little influence)
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• The approximating distribution g in importance sampling
should cover all the important regions of the target
distribution.

• Variation of the weights affect the effective sample size (see
eq.10.4 as a rough guide)

Seff =
1∑S

s=1(w̃(θs))2
, where w̃(θs) = w(θs)/

S∑
s′=1

w(θs′)

that is based on variance of w̃(θs)
• if single weight dominates, we have effectively one sample
• if weights are equal, we have effectively S draws

• Resampling using normalized importance weights can be
used to pick a smaller number of draws with uniform
weights (See importance resampling also called
sampling-importance resampling or SIR, p. 266)

• Selection of good proposal gets more difficult when the
number of dimensions increase
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• Often used to correct distributional approximations
(including variational inference in machine learning).
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Importance resampling

• Importance weights can be used to obtain a sample that
approximates the target distribution by using the SIR
method

• g(θ) can be unnormalized
• If the ratio q(θ)/g(θ) is bounded, then we can use rejection

sample also
• SIR: Once S draws, θ1, . . . . , θS, from the approximate

distribution g have been sampled, a sample of k < S draws
can be simulated as follows.

1 Sample a value θ from the set θ1, . . . . , θS, where the
probability of sampling each θs is proportional to the weight,
w(θs) = q(θs|y)/g(θs)

2 Sample a second value using the same procedure, but
excluding the already sampled value from the set.

3 Repeatedly sample without replacement k − 2 more times.
• In other words, we sample θ from the discrete didtr over
θ1, . . . . , θS with probabilities w(θs) (weighted bootstrap)

Nota: We don’t recommend ‘without replacement’ anymore
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Monte Carlo - history

• Used already before computers
• Buffon (18th century; needles)
• De Forest, Darwin, Galton (19th century)
• Pearson (19th century; roulette)
• Gosset (Student, 1908; hat)

• "Monte Carlo method" term was proposed by Metropolis,
von Neumann or Ulam in the end of 1940s

• they worked together in atomic bomb project
• Metropolis and Ulam, "The Monte Carlo Method", 1949

• Bayesians started to have enough cheap computation time
in 1990s

• BUGS project started 1989 (last OpenBUGS release 2014)
• Gelfand & Smith, 1990
• Stan initial release 2012
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How many simulation draws are needed?

• Bayesian inferences are usually most conveniently
summarized by random draws from the posterior distribution
of the model parameters.
Riportiamo usualmente:

• percentili della distribuzione a posteriori di parametri
univariati (quantili 2.5%, 25%, 50%, 75%, e 97.5%, da cui
ricaviamo gli intervalli a posteriori 50% and a 95%)

• scatterplot delle simulazioni, contour plot di funzioni di
densità e altri grafici per visualizzare la distribuzione a
posteriori in 2D o 3D

• We also use posterior simulations to make inferences about
predictive quantities. Given each draw θs, we can sample
any predictive quantity, ys ∼ p(ỹ |θs) or, for a regression
model, ys ∼ p(ỹ |X̃ , θs)

• Finally, given each draw θs, we can simulate a replicated
dataset ys

rep. We can then check the model by comparing
the data to these posterior predictive replications.
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How many simulation draws are needed?

• How many draws or how big sample size?
• If draws are independent

• usual methods to estimate the uncertainty due to a finite
number of observations (finite sample size)

• Markov chain Monte Carlo produces dependent draws
• requires additional work to estimate the effective sample size
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How many simulation draws are needed?
Our goal in Bayesian computation is to obtain a set of
independent draws θs, s = 1, . . . ,S, from the posterior
distribution, with enough draws S so that quantities of interest
can be estimated with reasonable accuracy.
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How many simulation draws are needed?
• Expectation of unknown quantity θ (with mean µθ and sd σθ)

E(θ) ≈ 1
S

S∑
s=1

θ(s)

if S is big and θ(s) are independent, we may assume that
the distribution of the expectation approaches normal
distribution (see Ch 4) with variance σ2

θ/S (asymptotic
normality) The posterior mean is then estimated to an
accuracy of approximately σθ/

√
S.

• this variance is independent on dimensionality of θ

• total variance is sum of the epistemic uncertainty in the
posterior and the uncertainty due to using finite number of
Monte Carlo draws (Monte Carlo error),

σ2
θ + σ2

θ/S

= σ2
θ(1 + 1/S)

• e.g. if S = 100, deviation increases by
√

1 + 1/S = 1.005
i.e. Monte Carlo error is very small (for the expectation)

• (See Ch 4 for counter-examples for asymptotic normality)
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Example: Kilpisjärvi summer temperature
Average temperature in June, July, and August at Kilpisjärvi,
Finland
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Example: Kilpisjärvi summer temperature

0.00 0.02 0.04
C°/year

Posterior of temperature change

total deviation2 = σ2
θ + MCSE2
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Example: Kilpisjärvi summer temperature

MCSE of posterior mean with S=100

0 2 4
C°/century

Posterior of temperature change

σθ ≈ 0.827, MCSE ≈ 0.0827, total deviation ≈ 0.831

total deviation2 = σ2
θ + MCSE2
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Example: Kilpisjärvi summer temperature

MCSE of posterior mean with S=1000

0 2 4
C°/century

Posterior of temperature change

σθ ≈ 0.827, MCSE ≈ 0.0261, total deviation ≈ 0.827

total deviation2 = σ2
θ + MCSE2
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Tail quantiles are more difficult to estimate
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How many simulation draws are needed?
For some posterior inferences, more simulation draws are
needed to obtain desired precisions.

• Posterior probability

p(θ ∈ A) ≈ 1
S

∑
l

I(θ(s) ∈ A)

where I(θ(s) ∈ A) = 1 if θ(s) ∈ A
• I(·) is binomially distributed as p(θ ∈ A)

→ var(I(·)) = p(1 − p) (Appendix A, p. 579)
→ standard deviation of p is

√
p(1 − p)/S

• if S = 100 and p ≈ 0.5,
√

p(1 − p)/S = 0.05
i.e. accuracy is about 5% units

• S = 2500 draws needed for 1% unit accuracy
• To estimate small probabilities, a large number of draws is

needed
• to be able to estimate p, need to get draws with θ(l) ∈ A,

which in expectation requires S ≫ 1/p
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• To estimate small probabilities, a large number of draws is

needed
• to be able to estimate p, need to get draws with θ(l) ∈ A,

which in expectation requires S ≫ 1/p
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Example: Kilpisjärvi summer temperature

Uncertainty given S=100, and 0 draws < 0

0.000 0.025 0.050 0.075 0.100
p(temperature change < 0)

Posterior uncertainty p(temperature change < 0)
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0.000 0.025 0.050 0.075 0.100
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Example: Kilpisjärvi summer temperature

Uncertainty given S=1000, and 8 draws < 0

0.000 0.025 0.050 0.075 0.100
p(temperature change < 0)

Posterior uncertainty p(temperature change < 0)
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Example: Kilpisjärvi summer temperature

Uncertainty given S=4000, and 34 draws < 0

0.000 0.025 0.050 0.075 0.100
p(temperature change < 0)

Posterior uncertainty p(temperature change < 0)
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How many simulation draws are needed?
In general, fewer simulations are needed to estimate

• posterior medians of parameters, probabilities near 0.5, and
low-dimensional summaries than

• extreme quantiles, posterior means, probabilities of rare
events, and higher-dimensional summaries.

In most of the examples in BDA, a moderate number of
simulation draws (typically 100 to 2000) is used emphasizing
that applied inferences do not typically require a high level of
simulation accuracy.
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How many digits to show in reports?

• Too many digits make reading of the results slower and give
false impression of the accuracy

• Don’t show digits which are just random noise
• use Monte Carlo standard error estimates to check how

many digits are likely to stay the same if the sampling would
be continued.

• Show meaningful digits given the posterior uncertainty
• You can compare posterior standard error or posterior

intervals to the mean value. Posterior interval length can be
used to determine also how many digits to show for the
interval endpoints.
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• Example: The mean and 90% central posterior interval for
temperature increase C◦/century based on posterior draws

• 2.050774 and [0.7472868 3.3017524] (NO! Too many digits)
• 2.1 and [0.7 3.3] (Good compared to the interval length)
• 2 and [1 3] (depends on the context)
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used to determine also how many digits to show for the
interval endpoints.

• Example: The probability that temp increase is positive

• 0.9960000 (NO!)
• 1.00 (depends on the context, 1.00 hints it’s not exactly 1,

but larger than 0.99)
• With 4000 draws MCSE ≈ 0.002. We could report that

probability is very likely larger than 0.99, or sample more to
justify reporting three digits

• For probabilities close to 0 or 1, consider also when the
model assumption justify certain accuracy

41 / 43



How many digits to show in reports?

• Too many digits make reading of the results slower and give
false impression of the accuracy

• Don’t show digits which are just random noise
• use Monte Carlo standard error estimates to check how

many digits are likely to stay the same if the sampling would
be continued.

• Show meaningful digits given the posterior uncertainty
• You can compare posterior standard error or posterior

intervals to the mean value. Posterior interval length can be
used to determine also how many digits to show for the
interval endpoints.

• Example: The probability that temp increase is positive
• 0.9960000 (NO!)

• 1.00 (depends on the context, 1.00 hints it’s not exactly 1,
but larger than 0.99)

• With 4000 draws MCSE ≈ 0.002. We could report that
probability is very likely larger than 0.99, or sample more to
justify reporting three digits

• For probabilities close to 0 or 1, consider also when the
model assumption justify certain accuracy

41 / 43



How many digits to show in reports?

• Too many digits make reading of the results slower and give
false impression of the accuracy

• Don’t show digits which are just random noise
• use Monte Carlo standard error estimates to check how

many digits are likely to stay the same if the sampling would
be continued.

• Show meaningful digits given the posterior uncertainty
• You can compare posterior standard error or posterior

intervals to the mean value. Posterior interval length can be
used to determine also how many digits to show for the
interval endpoints.

• Example: The probability that temp increase is positive
• 0.9960000 (NO!)
• 1.00 (depends on the context, 1.00 hints it’s not exactly 1,

but larger than 0.99)

• With 4000 draws MCSE ≈ 0.002. We could report that
probability is very likely larger than 0.99, or sample more to
justify reporting three digits

• For probabilities close to 0 or 1, consider also when the
model assumption justify certain accuracy

41 / 43



How many digits to show in reports?

• Too many digits make reading of the results slower and give
false impression of the accuracy

• Don’t show digits which are just random noise
• use Monte Carlo standard error estimates to check how

many digits are likely to stay the same if the sampling would
be continued.

• Show meaningful digits given the posterior uncertainty
• You can compare posterior standard error or posterior

intervals to the mean value. Posterior interval length can be
used to determine also how many digits to show for the
interval endpoints.

• Example: The probability that temp increase is positive
• 0.9960000 (NO!)
• 1.00 (depends on the context, 1.00 hints it’s not exactly 1,

but larger than 0.99)
• With 4000 draws MCSE ≈ 0.002. We could report that

probability is very likely larger than 0.99, or sample more to
justify reporting three digits

• For probabilities close to 0 or 1, consider also when the
model assumption justify certain accuracy

41 / 43



How many digits to show in reports?

• Too many digits make reading of the results slower and give
false impression of the accuracy

• Don’t show digits which are just random noise
• use Monte Carlo standard error estimates to check how

many digits are likely to stay the same if the sampling would
be continued.

• Show meaningful digits given the posterior uncertainty
• You can compare posterior standard error or posterior

intervals to the mean value. Posterior interval length can be
used to determine also how many digits to show for the
interval endpoints.

• Example: The probability that temp increase is positive
• 0.9960000 (NO!)
• 1.00 (depends on the context, 1.00 hints it’s not exactly 1,

but larger than 0.99)
• With 4000 draws MCSE ≈ 0.002. We could report that

probability is very likely larger than 0.99, or sample more to
justify reporting three digits

• For probabilities close to 0 or 1, consider also when the
model assumption justify certain accuracy 41 / 43



How many simulation draws are needed?
• Less draws needed with

• deterministic methods
• marginalization (Rao-Blackwellization)
• variance reduction methods, such, control variates

• Grid sampling and curse of dimensionality
• Number of grid points increases exponentially
• Concentration of the measure, i.e., where is the most of the

mass?

• Number of independent draws needed doesn’t depend on
the number of dimensions

• but it may be difficult to obtain independent draws in high
dimensional case
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Markov chain Monte Carlo (MCMC)
• Pros

• Markov chain goes where most of the posterior mass is
• Certain MCMC methods scale well to high dimensions

• Cons
• Draws are dependent (affects how many draws are needed)
• Convergence in practical time is not guaranteed

• MCMC methods (the most used)
• Gibbs: “iterative conditional sampling”
• Metropolis: “random walk in joint distribution”
• Dynamic Hamiltonian Monte Carlo: “state-of-the-art” used in

Stan
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