
Chapter 11

• 11.1 Gibbs sampler
• 11.2 Metropolis and Metropolis-Hastings
• 11.3 Using Gibbs and Metropolis as building blocks (can be

skipped)
• 11.4 Inference and assessing convergence (important)

• potential scale reduction R̂
• 11.5 Effective number of simulation draws (important)

• effective sample size Seff

• 11.6 Example: hierarchical normal model (quick glance)
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It’s all about expectations
Ep(θ|y)[f (θ)] =

∫
f (θ)p(θ|y)dθ,

where p(θ|y) =
p(y |θ)p(θ)∫
p(y |θ)p(θ)dθ

We can easily evaluate p(y |θ)p(θ) for any θ, but the integral∫
p(y |θ)p(θ)dθ is usually difficult.

We can use the unnormalized posterior q(θ|y) = p(y |θ)p(θ), for
example, in
• Grid (equal spacing) evaluation with self-normalization

Ep(θ|y)[f (θ)] ≈
∑S

s=1
[
f (θ(s))q(θ(s)|y)

]∑S
s=1 q(θ(s)|y)

• Monte Carlo methods which can sample from p(θ(s)|y)
using only q(θ(s)|y)

Ep(θ|y)[f (θ)] ≈ 1
S

S∑
s=1

f (θ(s))
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Monte Carlo
• Monte Carlo methods we have discussed so far

• Inverse CDF works for 1D
• Analytic transformations work for only certain distributions
• Factorization works only for certain joint distributions
• Grid evaluation and sampling works in less than a few

dimensions
• Rejection sampling works mostly in 1D (truncation is a

special case)
• Importance sampling is reliable only in special cases

• What to do in high dimensions?
• Markov chain Monte Carlo (Ch 11-12)
• Laplace approximation, Variational Bayes*, Expectation

Propagation* (Ch 4,13*)
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Markov chain

• Andrey Markov proved weak law of large numbers and
central limit theorem for certain dependent-random
sequences, which were later named Markov chains

• The probability of each event depends only on the state
attained in the previous event (or finite number of previous
events)
• Markov’s one example was the sequence of letters in

Pushkin’s novel “Yevgeniy Onegin”
https://www.americanscientist.org/article/
first-links-in-the-markov-chain
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Markov chain
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Markov chain

• Example of a simple Markov chain: weather example
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Markov chain Monte Carlo (MCMC)

• Produce draws θ(t) given θ(t−1) from a Markov chain, which
has been constructed so that its equilibrium distribution is
p(θ|y)

+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain
+ chain goes where most of the posterior mass is
+ asymptotically chain spends the α% of time where α%

posterior mass is
+ central limit theorem holds for expectations
- draws are dependent
- construction of efficient Markov chains is not always easy
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Markov chain

• Set of random variables θ1, θ2, . . ., so that with all values of
t , θt depends only on the previous θ(t−1)

p(θt |θ1, . . . , θ(t−1)) = p(θt |θ(t−1))

• Chain has to be initialized with some starting point θ0

• Transition distribution Tt (θ
t |θt−1) (may depend on t)

• By choosing a suitable transition distribution, the stationary
distribution of Markov chain is p(θ|y)
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Gibbs sampling (or alternating conditional
sampling)
• Given θ = (θ1, . . . , θd ), alternate sampling from 1D

conditional distributions
• 1D is easy even if no conjugate prior and analytic posterior

• Basic algorithm: at each iteration t

sample θt
j from p(θj |θt−1

−j , y),

where θt−1
−j = (θt

1, . . . , θ
t
j−1, θ

t−1
j+1 , . . . , θ

t−1
d )
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Gibbs sampling
• With conditionally conjugate priors, the sampling from the

conditional distributions is easy for wide range of models
• BUGS/WinBUGS/OpenBUGS/JAGS

• No algorithm parameters to tune
(cf. proposal distribution in Metropolis algorithm)
• For not so easy conditionals, use e.g. inverse-CDF
• Several parameters can be updated in blocks (blocking)
• Slow if parameters are highly dependent in the posterior

• demo continues
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Conditional vs joint
• How about sampling θ jointly?

• e.g. it is easy to sample from multivariate normal

• Can we use that to form a Markov chain?
http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/

11 / 58

http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/


Conditional vs joint
• How about sampling θ jointly?

• e.g. it is easy to sample from multivariate normal
• Can we use that to form a Markov chain?

http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/

11 / 58

http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/


Metropolis algorithm
• Algorithm

1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗|θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗|y)

p(θt−1|y)(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗|y) > p(θt−1|y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous (see ‘Note’)

• step c is executed by generating a random number from
U(0,1)

• p(θ∗|y) and p(θt−1|y) have the same normalization terms,
and thus instead of p(·|y), unnormalized q(·|y) can be used,
as the normalization terms cancel out!

12 / 58



Metropolis algorithm
• Algorithm

1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗|θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗|y)

p(θt−1|y)

(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗|y) > p(θt−1|y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous (see ‘Note’)

• step c is executed by generating a random number from
U(0,1)

• p(θ∗|y) and p(θt−1|y) have the same normalization terms,
and thus instead of p(·|y), unnormalized q(·|y) can be used,
as the normalization terms cancel out!

12 / 58



Metropolis algorithm
• Algorithm

1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗|θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗|y)

p(θt−1|y)(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗|y) > p(θt−1|y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous (see ‘Note’)

• step c is executed by generating a random number from
U(0,1)

• p(θ∗|y) and p(θt−1|y) have the same normalization terms,
and thus instead of p(·|y), unnormalized q(·|y) can be used,
as the normalization terms cancel out!

12 / 58



Metropolis algorithm
• Algorithm

1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗|θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗|y)

p(θt−1|y)(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗|y) > p(θt−1|y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous (see ‘Note’)

• step c is executed by generating a random number from
U(0,1)

• p(θ∗|y) and p(θt−1|y) have the same normalization terms,
and thus instead of p(·|y), unnormalized q(·|y) can be used,
as the normalization terms cancel out!

12 / 58



Metropolis algorithm
• Algorithm

1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗|θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗|y)

p(θt−1|y)(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗|y) > p(θt−1|y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous (see ‘Note’)

• step c is executed by generating a random number from
U(0,1)

• p(θ∗|y) and p(θt−1|y) have the same normalization terms,
and thus instead of p(·|y), unnormalized q(·|y) can be used,
as the normalization terms cancel out!

12 / 58



Metropolis algorithm
• Algorithm

1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗|θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗|y)

p(θt−1|y)(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗|y) > p(θt−1|y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous (see ‘Note’)

• step c is executed by generating a random number from
U(0,1)

• p(θ∗|y) and p(θt−1|y) have the same normalization terms,
and thus instead of p(·|y), unnormalized q(·|y) can be used,
as the normalization terms cancel out!

12 / 58



Metropolis algorithm
• Algorithm

1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗|θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa|θb) = Jt(θb|θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗|y)

p(θt−1|y)(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗|y) > p(θt−1|y) accept the proposal always
and otherwise accept the proposal with probability r
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Metropolis algorithm
• Example: one bivariate observation (y1, y2)

• bivariate normal distribution with unknown mean and known
covariance (

θ1
θ2

)∣∣∣∣ y ∼ N

((
y1
y2

)
,

(
1 ρ
ρ 1

))
• proposal distribution Jt (θ

∗|θt−1) = N(θ∗|θt−1, σ2
p)

• Demo
http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/,
source: https://chi-feng.github.io/mcmc-demo/app.html?
algorithm=RandomWalkMH&target=standard
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Why Metropolis algorithm works

• Intuitively more draws from the higher density areas as
jumps to higher density are always accepted and only some
of the jumps to the lower density are accepted

• Theoretically
1. Prove that simulated series is a Markov chain which has

unique stationary distribution
2. Prove that this stationary distribution is the desired target

distribution
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Why Metropolis algorithm works

1. Prove that simulated series is a Markov chain which has
unique stationary distribution

a) irreducible

= positive probability of eventually reaching any state from any
other state

b) aperiodic

= aperiodic (return times are not periodic)
- holds for a random walk on any proper distribution (except for

trivial exceptions)

c) recurrent / not transient

= probability to return to a state i is 1
- holds for a random walk on any proper distribution (except for

trivial exceptions)
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Why Metropolis algorithm works
2. Prove that this stationary distribution is the desired target

distribution p(θ|y)
- consider starting algorithm at time t − 1 with a draw
θt−1 ∼ p(θ|y)

- consider any two such points θa and θb drawn from p(θ|y)
and labeled so that p(θb|y) ≥ p(θa|y)

- the unconditional probability density of a transition from θa to
θb is p(θt−1 = θa, θ

t = θb) = p(θa|y)Jt (θb|θa),

- the unconditional probability density of a transition from θb to
θa is

p(θt = θa, θ
t−1 = θb) = p(θb|y)Jt (θa|θb)

(
p(θa|y)

p(θb|y)

)

= p(θa|y)Jt (θa|θb),

which is the same as the probability of transition from θa to
θb, since we have required that Jt (·|·) is symmetric

- since their joint distribution is symmetric, θt and θt−1 have
the same marginal distributions, and so p(θ|y) is the
stationary distribution of the Markov chain of θ
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Metropolis-Hastings algorithm
• Generalization of Metropolis algorithm for non-symmetric

proposal distributions
• acceptance ratio includes ratio of proposal distributions

r =
p(θ∗|y)/Jt (θ

∗|θt−1)

p(θt−1|y)/Jt (θt−1|θ∗)

=
p(θ∗|y)Jt (θ

t−1|θ∗)

p(θt−1|y)Jt (θ∗|θt−1)
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Metropolis-Hastings algorithm
• Ideal proposal distribution is the distribution itself

• J(θ∗|θ) ≡ p(θ∗|y) for all θ
• acceptance probability is 1
• independent draws
• not usually feasible

• Good proposal distribution resembles the target distribution
• if the shape of the target distribution is unknown, usually

normal or t distribution is used
• After the shape has been selected, it is important to select

the scale
• small scale
→ many steps accepted, but the chain moves slowly due to
small steps

• big scale
→ long steps proposed, but many of those rejected and
again chain moves slowly

• Generic rule for rejection rate is 60-90% (but depends on
dimensionality and a specific algorithm variation)
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Gibbs sampling
• Specific case of Metropolis-Hastings algorithm

• single updated (or blocked)
• proposal distribution is the conditional distribution
→ proposal and target distributions are same
→ acceptance probability is 1
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Metropolis
• Usually doesn’t scale well to high dimensions

• if the shape doesn’t match the whole distribution, the
efficiency drops

• demo
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Dynamic Hamiltonian Monte Carlo and NUTS
• Chapter 12 presents some more advanced methods

• Chapter 12 includes Hamiltonian Monte Carlo and NUTS,
which is one of the most efficient methods
• uses gradient information
• Hamiltonian dynamic simulation reduces random walk
• Demo http://elevanth.org/blog/2017/11/28/

build-a-better-markov-chain/, source:
https://chi-feng.github.io/mcmc-demo/app.html?
algorithm=HamiltonianMC&target=donut
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HMC / NUTS

Comparison of algorithms on highly correlated  
250-dimensional Gaussian distribution

•Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, 
thinning by 1000

•Do 1,000 draws using Stan’s NUTS algorithm (no thinning)

•Do 1,000 independent draws (we can do this for multivariate normal)

Source: Jonah Gabry
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Iterative simulation
Difficulties of inference from iterative simulation

1 if the iterations have not proceeded long enough, the
simulations may be grossly unrepresentative of the target
distribution.

2 within-sequence correlation
aside from any convergence issues, simulation inference
from correlated draws is generally less precise than from the
same number of independent draws⇒ effective sample size
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Warm-up and convergence diagnostics
• Asymptotically chain spends the α% of time where α%

posterior mass is

• but in finite time the initial part of the chain may be
non-representative and lower error of the estimate can be
obtained by throwing it away
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• Warm-up = remove draws from the beginning of the chain
• warm-up may include also phase for adapting algorithm

parameters
• Convergence diagnostics

• Do we get samples from the target distribution?
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MCMC draws are dependent

• Monte Carlo estimates still valid (central limit theorem holds)

Ep(θ|y)[f (θ)] ≈ 1
S

S∑
s=1

f (θ(s))

• Estimation of Monte Carlo error is more difficult
• evaluation of effective sample size
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Remedies
We handle the special problems of iterative simulation in three
ways

1 multiple sequences with starting points dispersed
throughout parameter space

2 we monitor the convergence of all quantities of interest by
comparing variation between and within simulated
sequences

3 if the simulation efficiency is unacceptably low (in the sense
of requiring too much real time), the algorithm can be
altered
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Several chains
• Use of several chains make convergence diagnostics easier
• Start chains from different starting points – preferably

overdispersed
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No convergence

• Remove draws from the beginning of the chains and run
chains long enough so that it is not possible to distinguish
where each chain started and the chains are well mixed
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Several chains
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R̂: comparison of within and between variances
of the chains
• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var_hat_plus = total variance estimate
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R̂: comparison of within and between variances
of the chains
• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
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R̂
• M chains, each having N draws (with new R-hat notation)

• Within chains variance W

W =
1
M

M∑
m=1

s2
m, where s2

m =
1

N − 1

N∑
n=1

(θnm − θ̄.m)2

• Between chains variance B

B =
N

M − 1

M∑
m=1

(θ̄.m − θ̄..)2,

where θ̄.m =
1
N

N∑
n=1

θnm, θ̄.. =
1
M

M∑
m=1

θ̄.m

• B/N is variance of the means of the chains

• Estimate total variance var(θ|y) as a weighted mean of W
and B

v̂ar+(θ|y) =
N − 1

N
W +

1
N

B
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R̂
• Estimate total variance var(θ|y) as a weighted mean of W

and B
v̂ar+(θ|y) =

N − 1
N

W +
1
N

B

• this overestimates marginal posterior variance if the starting
points are overdispersed

• but is unbiased under stationarity (that is, if the starting
distribution equals the target distribution), or in the limit
N →∞

• Given finite N, W underestimates marginal posterior
variance
• single chains have not yet visited all points in the distribution
• when N →∞, E(W )→ var(θ|y)

• As v̂ar+(θ|y) overestimates and W underestimates,
compute

R̂ =

√
v̂ar+

W
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R̂

• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var_hat_plus = total variance estimate

−4 −2 0 2 4

theta1

50  warmup,  50 post warmup iterations

var_hat_plus =  1.42
W =  0.53

−4 −2 0 2 4

theta1

Rhat =  1.64
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R̂

• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var_hat_plus = total variance estimate

−4 −2 0 2 4

theta1

5000  warmup,  5000 post warmup iterations

var_hat_plus =  0.96

W =  0.95

−4 −2 0 2 4

theta1

Rhat =  1
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R̂

R̂ =

√
v̂ar+

W

• Estimates how much the scale of a scalar estimand θ could
reduce if N →∞
• R̂ → 1, when N →∞
• if R̂ is big (e.g., R > 1.10), keep sampling

• If R̂ close to 1, it is still possible that chains have not
converged
• if starting points were not overdispersed
• distribution far from normal (especially if infinite variance)
• just by chance when n is finite
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Split-R̂

• BDA3: split-R̂
• Examines mixing and stationarity of chains
• To examine stationarity chains are split to two parts

• after splitting, we have M chains, each having N draws
• scalar draws θnm (n = 1, . . . ,N; m = 1, . . . ,M)
• compare means and variances of the split chains
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Rank normalized R̂

• Original R̂ requires that the target distribution has finite
mean and variance
• Rank normalization fixes this and is also more robust given

finite but high variance
• Folding improves detecting scale differences between

chains
• Paper proposes also local convergence diagnostics and

practical MCSE estimates for quantiles
• Notation updated compared to BDA3

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020).
Rank-normalization, folding, and localization: An improved R-hat
for assessing convergence of MCMC. Bayesian Analysis,
doi:10.1214/20-BA1221.
https://projecteuclid.org/euclid.ba/1593828229.
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Time series analysis
• Auto correlation function

• describes the correlation given a certain lag
• can be used to compare efficiency of MCMC algorithms and

parameterizations
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Auto correlation
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Time series analysis

• Time series analysis can be used to estimate Monte Carlo
error in case of MCMC
• For expectation θ̄

Var[θ̄] =
σ2
θ

Seff

where Seff = S/τ , and τ is sum of autocorrelations

• τ describes how many dependent draws correspond to one
independent sample

• new R-hat paper S = NM (in BDA3 N = nm and neff = N/τ )
• BDA3 focuses on Seff and not the Monte Carlo error directly

new R-hat paper discusses more about MCSEs for different
quantities
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Time series analysis

• Estimation of the autocorrelation using several chains

ρ̂n = 1−
W − 1

M
∑M

m=1 ρ̂n,m

2v̂ar+

where ρ̂n,m is autocorrelation at lag n for chain m

• This combines R̂ and autocorrelation estimates
• takes into account if the chains are not mixing (the chains

have not converged)
• BDA3 has slightly different and less accurate equation. The

above equation is used in Stan 2.18+
• Compared to a method which computes the autocorrelation

from a single chain, the multi-chain estimate has smaller
variance
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Time series analysis

• Estimation of τ

τ = 1 + 2
∞∑

t=1

ρ̂t

where ρ̂t is empirical autocorrelation

• empirical autocorrelation function is noisy and thus estimate
of τ is noisy

• noise is larger for longer lags (less observations)
• less noisy estimate is obtained by truncating

τ̂ = 1 + 2
T∑

t=1

ρ̂t

• As τ is estimated from a finite number of draws, it’s
expectation is overoptimistic
• if τ̂ > MN/20 then the estimate is unreliable
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Geyer’s adaptive window estimator
• Truncation can be decided adaptively

• for stationary, irreducible, recurrent Markov chain
• let Γm = ρ2m + ρ2m+1, which is sum of two consequent

autocorrelations
• Γm is positive, decreasing and convex function of m

• Initial positive sequence estimator (Geyer’s IPSE)
• Choose the largest m so, that all values of the sequence

Γ̂1, . . . , Γ̂m are positive
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Effective sample size
Effective sample size ESS = Seff ≈ S/τ̂
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Effective sample size
Effective sample size ESS = Seff ≈ S/τ̂
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Problematic distributions
• Nonlinear dependencies

• optimal proposal depends on location

• Funnels
• optimal proposal depends on location

• Multimodal
• difficult to move from one mode to another

• Long-tailed with non-finite variance and mean
• central limit theorem for expectations does not hold
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Ch. 12: HMC, NUTS, and dynamic HMC
Effective sample size ESS = Seff ≈ S/τ̂
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Further diagnostics
• Dynamic HMC/NUTS has additional diagnostics

• divergences
• tree depth exceedences
• fraction of missing information
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Note

• Basics of Markov chains: http:
//www.netlab.tkk.fi/opetus/s38143/luennot/english.shtml,
see Lecture 4.
To prove that Metropolis algorithm works, it is sufficient to
show that chain is irreducible, aperiodic and not transient.
• Nice animations with discussion http://elevanth.org/blog/

2017/11/28/build-a-better-markov-chain/
And just the animations with more options to experiment
https://chi-feng.github.io/mcmc-demo/
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• Metropolis algorithm
Don’t confuse rejection in the rejection sampling and in
Metropolis algorithm.
In the rejection sampling, the rejected samples are thrown
away.
In Metropolis algorithm the rejected proposals are thrown
away, but time moves on and the previous sample x(t) is
also the sample x(t + 1).
• When rejecting a proposal, the previous sample is repeated

in the chain, they have to be included and they are valid
samples from the distribution.

• For basic Metropolis, it can be shown that optimal rejection
rate is 55–77%, so that on even the optimal case quite many
of the samples are repeated samples.
However, high number of rejections is acceptable as then the
accepted proposals are on average further away from the
previous point. It is better to jump further away 23–45% of
time than more often to jump really close.
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• Transition distribution vs. proposal distribution Transition
distribution is a property of Markov chain. In Metropolis
algorithm the transition distribution is a mixture of a
proposal distribution and a point mass in the current point.
BDA uses also term jumping distribution to refer to proposal
distribution.
• Convergence

Theoretical convergence in an infinite time is different than
practical convergence in a finite time. There is no exact
moment when chain has converged and thus it is not
possible to detect when the chain has converged (except for
rare perfect sampling methods not discussed in BDA3).
The convergence diagnostics can help to find out if the chain
is unlikely to be representative of the target distribution.
Furthermore, even if would be able to start from a
independent sample from the posterior so that chain starts
from the convergence, the mixing can be so slow that we
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may require very large number of samples before the
samples are representative of the target distribution.

If starting point is selected at or near the mode, less time is
needed to reach the area of essential mass, but still the
samples in the beginning of the chain are not presentative
of the true distribution unless the starting point was
somehow samples directly from the target distribution.
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Laplace, VB, EP: motivation

• MCMC methods could be expensive to compute, especially
for large sample sizes n.
• Moreover, many MCMC algorithms require a rough estimate

of some key posterior quantities, such as the posterior
variance.
• These issues motivates the development of deterministic

approximations of the posterior distribution
• Compared to MCMC methods, the accuracy of this class of

approximations can not be reduced by running the algorithm
longer.
• On the other hand, deterministic approximations are

typically very fast to compute and sufficiently reliable in
several applied contexts.
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Laplace approximation

• Let π(θ|X) be a continuous and differentiable posterior
density in Θ ⊆ <p

• The Laplace approximation is one of the first approximation
methods that has been proposed. It was known even before
the advent of MCMC.
• The key idea is approximating the log-posterior density

log π(θ|X) using a Taylor expansion around the mode θ̂MAP
yielding

log π(θ|X) ≈ log π(θ̂MAP |X)−1
2

(θ−θ̂MAP)T M̂(θ−θ̂MAP)+const

where M is the negative Hessian of log π(θ|X) evaluated at
θ̂MAP , ie,

M̂ = − ∂2

∂θ∂θT log π(θ|X)

∣∣∣∣
θ=θ̂MAP
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• This expansion leads to the following multivariate Gaussian
approximate posterior

π(θ|X) ≈ Np(θ̂MAP , M̂−1)

• A fairly strong asymptotic justification of the Laplace
approximation is based on the Bernstein–von Mises
theorem.
• Here we are also assuming that θ̂MAP and nM̂−1 are

consistent estimators for the “true” parameter value θ0 and
for the inverse Fisher information matrix, respectively.
• Hence, in several cases and for n large enough, the law
π(θ|X) is roughly a Gaussian centered at the mode and with
variance depending on the Fisher information.

+ The Laplace approximation is an old and simple method
that has appealing asymptotic guarantees. Moreover, it only
requires the computation of the Hessian and the MAP.
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• Refined higher order improvements of expected posterior
functionals can be obtained.

- On the other hand, especially when the sample size n is
relatively small, the quadratic approximation of log π(θ|X)
may perform poorly.

- For example, if the posterior is not symmetric and unimodal,
the MAP is not a good estimate for the posterior mean, thus
leading to inaccurate Gaussian approximations.

- Furthermore, if the parameter space Θ is bounded, a
Gaussian approximation could be quite problematic⇒ a
reparametrization should be considered.

- Finally, it is unclear how to handle discrete parameter
spaces.
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Approximation methods

• Let π(θ|X) be the intractable posterior distribution and let
q(θ) be a density belonging to Q, where Q is a general
class of tractable densities.
• An optimal approximation q̂(θ) ∈ Q of the posterior

distribution is defined as

q̂(θ) = arg min
q∈Q
D{q(θ), π(θ|X)}

where D is some divergence or metric over the space of
probability distributions.
• An example is the Kullback-Leibler divergence
D(·, ·) = KL(·||·)
• KL(q(θ||π(θ|X)) divergence leads to the variational Bayes

method
• KL(π(θ|X)||q(θ) divergence leads to the expectation

propagation method
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