Lab on computation
Metropolis sampling
library(dplyr)
library(ggplot2)
theme_set(theme_minimal())
library(tidyr)
library(gganimate)
library(ggforce)
library(MASS)
library(rstan)Esempio BDA3, p. 277 (continuiamo con l’esempio con cui abbiamo illustrato il Gibbs sampler)
Bivariate normal distribution
Parameters of a normal distribution used as a toy target distribution
y1 <- 0
y2 <- 0
r <- 0.8
S <- diag(2)
S[1, 2] <- r
S[2, 1] <- rMetropolis proposal distribution scale
sp <- ???
Sample from the toy distribution to visualize 90% HPD interval with ggplot’s stat_ellipse()
dft <- data.frame(mvrnorm(1e+05, c(0, 0), S))Starting value of the chain
t1 <- -2.5
t2 <- 2.5Number of iterations
M <- 5000Metropolis sampling
# Allocate memory for the sample
tt <- matrix(rep(0, 2 * M), ncol = 2)
tt[1, ] <- c(t1, t2) # Save starting point
# For demonstration load pre-computed values
load("demo11_2a.RData")
# tt is a M x 2 array, with M draws of both theta_1 and theta_2
dim(tt)
[1] 5000 2
head(tt)
[,1] [,2]
[1,] -2.500000 2.500000
[2,] -1.808482 2.575362
[3,] -1.808482 2.575362
[4,] -2.158913 2.231633
[5,] -2.158913 2.231633
[6,] -2.158913 2.231633
# Replace this with your algorithm!Insert your own Metropolis here
# etc etc etcThe rest is for illustration.
Take the first 100 draws to illustrate how the sampler works
df100 <- data.frame(id = rep(1, 100), iter = 1:100, th1 = tt[1:100, 1], th2 = tt[1:100,
2], th1l = c(tt[1, 1], tt[1:(100 - 1), 1]), th2l = c(tt[1, 2], tt[1:(100 - 1), 2]))
df100 %>%
head()
id iter th1 th2 th1l th2l
1 1 1 -2.500000 2.500000 -2.500000 2.500000
2 1 2 -1.808482 2.575362 -2.500000 2.500000
3 1 3 -1.808482 2.575362 -1.808482 2.575362
4 1 4 -2.158913 2.231633 -1.808482 2.575362
5 1 5 -2.158913 2.231633 -2.158913 2.231633
6 1 6 -2.158913 2.231633 -2.158913 2.231633# labels and frame indices for the plot
labs1 <- c("Draws", "Steps of the sampler", "90% HPD")
p1 <- ggplot() + geom_jitter(data = df100, width = 0.05, height = 0.05, aes(th1, th2,
group = id, color = "1"), alpha = 0.3) + geom_segment(data = df100, aes(x = th1, xend = th1l,
color = "2", y = th2, yend = th2l)) + stat_ellipse(data = dft, aes(x = X1, y = X2,
color = "3"), level = 0.9) + coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) + labs(x = "theta1",
y = "theta2") + scale_color_manual(values = c("red", "forestgreen", "blue"), labels = labs1) +
guides(color = guide_legend(override.aes = list(shape = c(16, NA, NA), linetype = c(0,
1, 1)))) + theme(legend.position = "bottom", legend.title = element_blank())The following generates a gif animation of the steps of the sampler (might take 10 seconds).
animate(p1 + transition_reveal(along = iter) + shadow_trail(0.01))Plot the final frame
p1Take the first 5000 observations after warmup of 500
s <- 5000
warm <- 500
dfs <- data.frame(th1 = tt[(warm + 1):s, 1], th2 = tt[(warm + 1):s, 2])Show 1000 draws after the warm-up
labs2 <- c("Draws", "90% HPD")
ggplot() + geom_point(data = dfs[1:1000, ], aes(th1, th2, color = "1"), alpha = 0.3, size = 0.75) +
stat_ellipse(data = dft, aes(x = X1, y = X2, color = "2"), level = 0.9) + coord_cartesian(xlim = c(-4,
4), ylim = c(-4, 4)) + labs(x = "theta1", y = "theta2") + scale_color_manual(values = c("steelblue",
"blue"), labels = labs2) + guides(color = guide_legend(override.aes = list(shape = c(16,
NA), linetype = c(0, 1), alpha = c(1, 1)))) + theme(legend.position = "bottom", legend.title = element_blank())Show 4500 draws after the warm-up
labs2 <- c("Draws", "90% HPD")
ggplot() + geom_point(data = dfs, aes(th1, th2, color = "1"), alpha = 0.3, size = 0.75) +
stat_ellipse(data = dft, aes(x = X1, y = X2, color = "2"), level = 0.9) + coord_cartesian(xlim = c(-4,
4), ylim = c(-4, 4)) + labs(x = "theta1", y = "theta2") + scale_color_manual(values = c("steelblue",
"blue"), labels = labs2) + guides(color = guide_legend(override.aes = list(shape = c(16,
NA), linetype = c(0, 1), alpha = c(1, 1)))) + theme(legend.position = "bottom", legend.title = element_blank())Convergence diagnostics
samp <- tt
dim(samp)
[1] 5000 2
dim(samp) <- c(dim(tt), 1)
samp <- aperm(samp, c(1, 3, 2))
samp %>%
head
, , 1
[,1]
[1,] -2.500000
[2,] -1.808482
[3,] -1.808482
[4,] -2.158913
[5,] -2.158913
[6,] -2.158913
, , 2
[,1]
[1,] 2.500000
[2,] 2.575362
[3,] 2.575362
[4,] 2.231633
[5,] 2.231633
[6,] 2.231633
res <- monitor(samp, probs = c(0.25, 0.5, 0.75), digits_summary = 2)
Inference for the input samples (1 chains: each with iter = 5000; warmup = 2500):
Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS
V1 -1.8 0 1.6 -0.1 1 1 101 152
V2 -1.7 0 1.7 0.0 1 1 92 105
For each parameter, Bulk_ESS and Tail_ESS are crude measures of
effective sample size for bulk and tail quantities respectively (an ESS > 100
per chain is considered good), and Rhat is the potential scale reduction
factor on rank normalized split chains (at convergence, Rhat <= 1.05).
res
mean se_mean sd 25% 50% 75% n_eff Rhat
V1 -0.07869941 0.1025303 1.034916 -0.7483862 -0.04865786 0.5869848 103 1.002561
V2 -0.03807652 0.1074524 1.022875 -0.7411121 0.01686879 0.6261406 92 1.000491
valid Q5 Q50 Q95 MCSE_Q25 MCSE_Q50 MCSE_Q75 MCSE_SD
V1 1 -1.821258 -0.04865786 1.578810 0.1205514 0.09048805 0.1138745 0.07270846
V2 1 -1.745641 0.01686879 1.730768 0.1256292 0.09507786 0.1094501 0.07622624
Bulk_ESS Tail_ESS
V1 101 152
V2 92 105neff <- res[, "n_eff"]
neff
V1 V2
103 92
res[, "sd"]
V1 V2
1.034916 1.022875
res[, "sd"]/sqrt(neff)
V1 V2
0.1019733 0.1066421 # both theta have own neff, but for plotting these are so close to each other, so
# that single relative efficiency value is used
reff <- mean(neff/(s/2))Visual convergence diagnostics
Collapse the data frame with row numbers augmented into key-value pairs for visualizing the chains
dfb <- dfs
sb <- s - warm
dfch <- within(dfb, iter <- 1:sb) %>%
gather(grp, value, -iter)Another data frame for visualizing the estimate of the autocorrelation function
nlags <- 50
dfa <- sapply(dfb, function(x) acf(x, lag.max = nlags, plot = F)$acf) %>%
data.frame(iter = 0:(nlags)) %>%
gather(grp, value, -iter)A third data frame to visualize the cumulative averages and the 95% intervals
dfca <- (cumsum(dfb)/(1:sb)) %>%
within({
iter <- 1:sb
uppi <- 1.96/sqrt(1:sb)
upp <- 1.96/(sqrt(1:sb * reff))
}) %>%
gather(grp, value, -iter)Visualize the chains
ggplot(data = dfch) + geom_line(aes(iter, value, color = grp)) + labs(title = "Trends") +
scale_color_discrete(labels = c("theta1", "theta2")) + theme(legend.position = "bottom",
legend.title = element_blank())Visualize the estimate of the autocorrelation function
ggplot(data = dfa) + geom_line(aes(iter, value, color = grp)) + geom_hline(aes(yintercept = 0)) +
labs(title = "Autocorrelation function") + scale_color_discrete(labels = c("theta1",
"theta2")) + theme(legend.position = "bottom", legend.title = element_blank())Visualize the estimate of the Monte Carlo error estimates
# labels
labs3 <- c("theta1", "theta2", "95% interval for MCMC error", "95% interval for independent MC")
ggplot() + geom_line(data = dfca, aes(iter, value, color = grp, linetype = grp)) + geom_line(aes(1:sb,
-1.96/sqrt(1:sb * reff)), linetype = 2) + geom_line(aes(1:sb, -1.96/sqrt(1:sb)), linetype = 3) +
geom_hline(aes(yintercept = 0)) + coord_cartesian(ylim = c(-1.5, 1.5)) + labs(title = "Cumulative averages") +
scale_color_manual(values = c("red", "blue", rep("black", 2)), labels = labs3) + scale_linetype_manual(values = c(1,
1, 2, 3), labels = labs3) + theme(legend.position = "bottom", legend.title = element_blank())Tuning Metropolis scale
Same again with \(sp = 1.5\)
sp <- 1.5Insert your own Metropolis sampling here
# etc etc etc# Allocate memory for the sample
tt <- matrix(rep(0, 2 * M), ncol = 2)
tt[1, ] <- c(t1, t2) # Save starting point
# For demonstration load pre-computed values
load("demo11_2c.RData")
# tt is a M x 2 array, with M draws of both theta_1 and theta_2 Replace this with
# your algorithm!The rest is for illustration.
Take the first 100 draws to illustrate how the sampler works
df100 <- data.frame(id = rep(1, 100), iter = 1:100, th1 = tt[1:100, 1], th2 = tt[1:100,
2], th1l = c(tt[1, 1], tt[1:(100 - 1), 1]), th2l = c(tt[1, 2], tt[1:(100 - 1), 2]))# labels and frame indices for the plot
labs1 <- c("Draws", "Steps of the sampler", "90% HPD")
p1 <- ggplot() + geom_jitter(data = df100, width = 0.05, height = 0.05, aes(th1, th2,
group = id, color = "1"), alpha = 0.3) + geom_segment(data = df100, aes(x = th1, xend = th1l,
color = "2", y = th2, yend = th2l)) + stat_ellipse(data = dft, aes(x = X1, y = X2,
color = "3"), level = 0.9) + coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) + labs(x = "theta1",
y = "theta2") + scale_color_manual(values = c("red", "forestgreen", "blue"), labels = labs1) +
guides(color = guide_legend(override.aes = list(shape = c(16, NA, NA), linetype = c(0,
1, 1)))) + theme(legend.position = "bottom", legend.title = element_blank())The following generates a gif animation of the steps of the sampler.
animate(p1 + transition_reveal(along = iter) + shadow_trail(0.01))Plot the final frame
p1Take the first 5000 observations after warmup of 500
s <- 5000
warm <- 500
dfs <- data.frame(th1 = tt[(warm + 1):s, 1], th2 = tt[(warm + 1):s, 2])Show 1000 draws after the warm-up
labs2 <- c("Draws", "90% HPD")
ggplot() + geom_point(data = dfs[1:1000, ], aes(th1, th2, color = "1"), alpha = 0.3, size = 0.75) +
stat_ellipse(data = dft, aes(x = X1, y = X2, color = "2"), level = 0.9) + coord_cartesian(xlim = c(-4,
4), ylim = c(-4, 4)) + labs(x = "theta1", y = "theta2") + scale_color_manual(values = c("steelblue",
"blue"), labels = labs2) + guides(color = guide_legend(override.aes = list(shape = c(16,
NA), linetype = c(0, 1), alpha = c(1, 1)))) + theme(legend.position = "bottom", legend.title = element_blank())Show 4500 draws after the warm-up
labs2 <- c("Draws", "90% HPD")
ggplot() + geom_point(data = dfs, aes(th1, th2, color = "1"), alpha = 0.3, size = 0.75) +
stat_ellipse(data = dft, aes(x = X1, y = X2, color = "2"), level = 0.9) + coord_cartesian(xlim = c(-4,
4), ylim = c(-4, 4)) + labs(x = "theta1", y = "theta2") + scale_color_manual(values = c("steelblue",
"blue"), labels = labs2) + guides(color = guide_legend(override.aes = list(shape = c(16,
NA), linetype = c(0, 1), alpha = c(1, 1)))) + theme(legend.position = "bottom", legend.title = element_blank())Convergence diagnostics
samp <- tt
dim(samp) <- c(dim(tt), 1)
samp <- aperm(samp, c(1, 3, 2))
res <- monitor(samp, probs = c(0.25, 0.5, 0.75), digits_summary = 2)
Inference for the input samples (1 chains: each with iter = 5000; warmup = 2500):
Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS
V1 -1.8 -0.5 0.8 -0.5 0.8 1.00 45 34
V2 -1.9 -0.4 0.8 -0.5 0.8 1.01 45 33
For each parameter, Bulk_ESS and Tail_ESS are crude measures of
effective sample size for bulk and tail quantities respectively (an ESS > 100
per chain is considered good), and Rhat is the potential scale reduction
factor on rank normalized split chains (at convergence, Rhat <= 1.05).neff <- res[, "n_eff"]# As before single relative efficiency value is used
reff <- mean(neff/(s/2))Visual convergence diagnostics
Collapse the data frame with row numbers augmented into key-value pairs for visualizing the chains
dfb <- dfs
sb <- s - warm
dfch <- within(dfb, iter <- 1:sb) %>%
gather(grp, value, -iter)Another data frame for visualizing the estimate of the autocorrelation function
nlags <- 100
dfa <- sapply(dfb, function(x) acf(x, lag.max = nlags, plot = F)$acf) %>%
data.frame(iter = 0:(nlags)) %>%
gather(grp, value, -iter)A third data frame to visualize the cumulative averages and the 95% intervals
dfca <- (cumsum(dfb)/(1:sb)) %>%
within({
iter <- 1:sb
uppi <- 1.96/sqrt(1:sb)
upp <- 1.96/(sqrt(1:sb * reff))
}) %>%
gather(grp, value, -iter)Visualize the chains
ggplot(data = dfch) + geom_line(aes(iter, value, color = grp)) + labs(title = "Trends") +
scale_color_discrete(labels = c("theta1", "theta2")) + theme(legend.position = "bottom",
legend.title = element_blank())Visualize the estimate of the autocorrelation function
ggplot(data = dfa) + geom_line(aes(iter, value, color = grp)) + geom_hline(aes(yintercept = 0)) +
labs(title = "Autocorrelation function") + scale_color_discrete(labels = c("theta1",
"theta2")) + theme(legend.position = "bottom", legend.title = element_blank())Visualize the estimate of the Monte Carlo error estimates
# labels
labs3 <- c("theta1", "theta2", "95% interval for MCMC error", "95% interval for independent MC")
ggplot() + geom_line(data = dfca, aes(iter, value, color = grp, linetype = grp)) + geom_line(aes(1:sb,
-1.96/sqrt(1:sb * reff)), linetype = 2) + geom_line(aes(1:sb, -1.96/sqrt(1:sb)), linetype = 3) +
geom_hline(aes(yintercept = 0)) + coord_cartesian(ylim = c(-1.5, 1.5)) + labs(title = "Cumulative averages") +
scale_color_manual(values = c("red", "blue", rep("black", 2)), labels = labs3) + scale_linetype_manual(values = c(1,
1, 2, 3), labels = labs3) + theme(legend.position = "bottom", legend.title = element_blank())