032CM - 2025

PROGRAMMING FOR COMPUTATIONAL CHEMISTRY

Introduction

Gianluca Levi

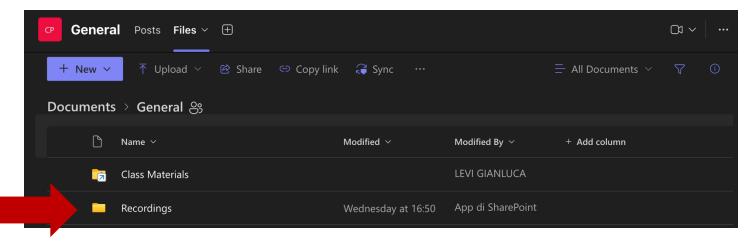
gianluca.levi@units.it, giale@hi.is

Office: Building C11, 3rd floor, Room 329

Fall 2025

Register on **Moodle**

Join the **Teams page** of the course


Find the Teams code in the course catalogue

Anno Di Offerta: 2025/2026

CHIMICA (SM13A)

INSEGNAMENTO	CODICE TEAMS	PERIODO	DOCENTI
PROGRAMMING FOR COMPUTATIONAL CHEMISTRY (032CM - 2025 - [SM13A+4+ - ORD. 2025] ANALITICA E AMBIENTE - AC 1)	9cgie5v	S1	LEVI GIANLUCA
PROGRAMMING FOR COMPUTATIONAL CHEMISTRY (032CM - 2025 - [SM13A+5+ - ORD. 2025] NANOMATERIALI, ENERGIA E MODELLING - AC 1)	9cgie5v	S1	LEVI GIANLUCA

> Access recordings of all lectures in the Files section on Teams

Programme

Introduction to UNIX and Linux shell – Week 1

Fortran Basics – Weeks 1-2

Language structure, variables, arrays, subroutines, functions, simple I/O

Python Basics – Weeks 3-4

Data types, lists and dictionaries, loops, conditionals, functions and modules

Scientific Computing with Python – Weeks 5-6

Jupyter notebooks, NumPy, Matplotlib, debugging and profiling

Applications in Computational Chemistry with Python – Weeks 7–9

Python Project Structure – Weeks 10-11

Organizing projects, version control (Git), IDEs

Study material

Lecture slides

Online tutorials suggested by the teacher

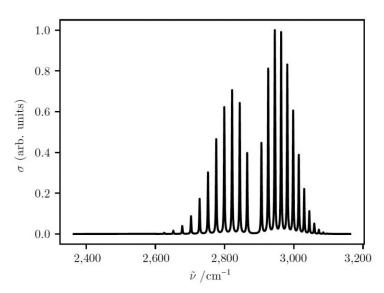
Books

- Fortran for Scientists and Engineers, 4th edition, S. J. Chapman, McGraw-Hill Education
- Programming for Computations Python, 2nd edition, S. Linge and H. P. Langtangen, Springer (Open Access)
- > Python for Chemists, C. Hill, Cambridge University Press

Assignments (learn by doing!)

Problem sets provided by the teacher (approx. one per week)

- > Start working on problems during hands-on sessions in class, then complete at home
- > Submit short report to the teacher including input and output text
- > You may collaborate on the homeworks, but submissions must be individual


Assessment

	Grading
Weekly assignments (approx.) Computational exercises with Fortran and Python	Hand in 70% of the assignments to qualify for the final exam
Final exam (written) Write and execute Python code	50%
Final exam (oral) Discussion of the written exam and topics covered in the lectures	50%

Why learning programming for computational chemistry?

Why learning programming for computational chemistry?

Create computer-based tools to address tasks in chemistry (and beyond) in an efficient, automated, and reproducible manner

Simulated IR spectrum of ¹H³⁵Cl from Python for Chemists, C. Hill

Work with large computational chemistry software packages (e.g. atomic-scale simulation programs)

- Understand what happens under the hood
- Adapt and modify implementations for specific research questions

Why learning programming for computational chemistry in the AI era?

Why learning programming for computational chemistry in the Al era?

Use AI effectively: Write good prompts, evaluate and correct code generated by AI

Train the brain to **think algorithmically**

- > Develop transferable problem solving skills
 - Break down complex problems into logical, algorithmic steps
- Understand computational methods and theory
 - Gain deeper insights into scientific problems