032CM - 2025

PROGRAMMING FOR COMPUTATIONAL CHEMISTRY

UNIX and Linux shell

Additional reading material https://www.doc.ic.ac.uk/~wjk/UnixIntro/

Gianluca Levi

gianluca.levi@units.it, giale@hi.is

Office: Building C11, 3rd floor, Room 329

Fall 2025

What is a computer?

A computer is a machine that executes sequences of instructions (algorithms)

What is a computer?

A computer is a machine that executes sequences of instructions (algorithms)

- > Store instructions and information as data
- > Execute instructions at very high speed (billions per second)

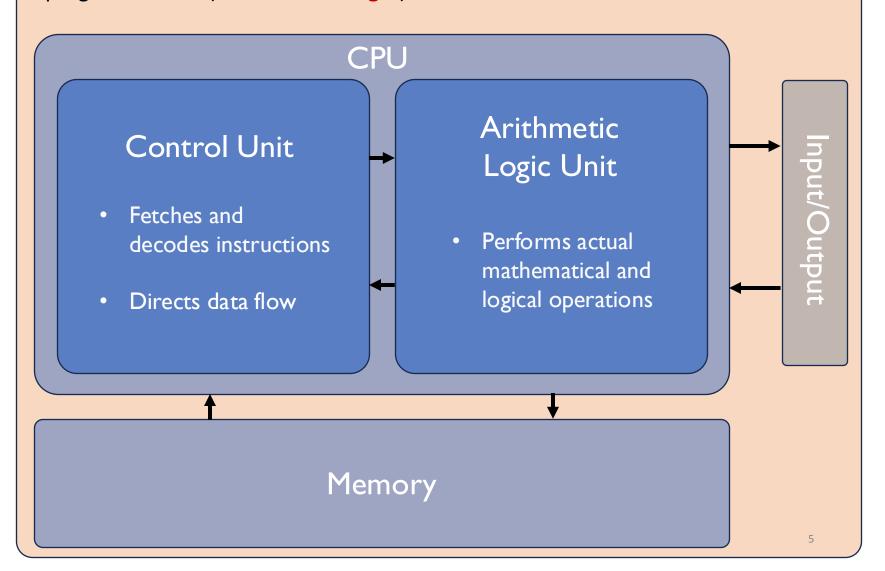
What is a computer?

A computer is a machine that executes sequences of instructions (algorithms)

- > Store instructions and information as data
- > Execute instructions at very high speed (billions per second)

Programs tell the computer what sequence of instructions is required

- Written in high-level language (Fortran, Python)
- > Translated into machine language (binary instructions) by a compiler/interpreter


The computer only does what you tell it to do!

CPU

Hardware

Operating System (OS)

System software that manages all hardware resources and provides interface for programs to run (Resource manager)

UNIX and Linux

UNIX

First portable operating system (born in the 1970s)

UNIX and Linux

UNIX

First portable operating system (born in the 1970s)

Linux

- Free, open-source UNIX-like system (1991)
- > Stable, secure, flexible, with wide hardware/software support
- Everyone can download, use, modify, and distribute
- Widely used
 - Most supercomputers for High-Performance Computing (HPC)
 - Most computational chemistry software run on Linux

UNIX is an essential environment for scientific computing

Kernel and Shell

Kernel

- > Core of the operating system
- Controls all hardware (CPU, memory, devices)
- > Manages interactions between hardware and software components

Kernel and Shell

Kernel

- Core of the operating system
- > Controls all hardware (CPU, memory, devices)
- > Manages interactions between hardware and software components

Shell

- Interface between user and kernel
- Takes commands from the user and passes them to the kernel for execution
- Bash is one of the most popular shells (default on most Linux distributions and macOS)

The shell is the primary way we interact with the operating system

UNIX file system

Everything treated as a file

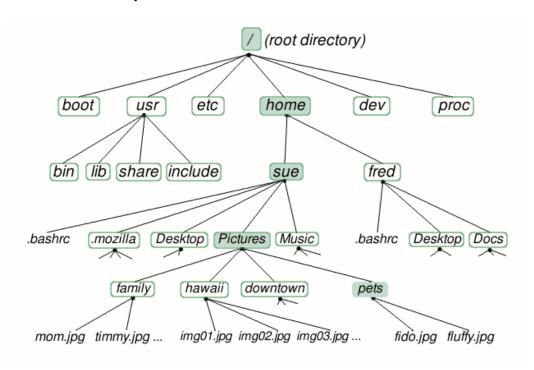
Ordinary files

- > Contain text, data, or programs
- Filenames can contain any character except /

Note!

Do not use *, ?, # and &, they have special meanings

Do not leave spaces in filenames, rather use underscore _


Directories

Containers for other files (including other directories)

UNIX file system

Hierarchical tree structure with root (/) as top directory

- > Absolute path starts from
 - / → Root, e.g. /home/sue/Pictures/pets
 - ~ → Home directory, e.g. ~/sue/Pictures/pets
- > Relative path starts from
 - . \rightarrow Current directory
 - $.. \rightarrow$ Parent directory

Let's goooo!

Login to Linux machine

- I. Open Bitvise SSH client
- 2. Enter

Host: dscfalpha7.units.it **Username**: pcc

3. Log in

To transfer file use **Bitvise SFTP**

Try it!

Type uname -s and press Enter. What do you see on the terminal?

Note!

We all share the same home. Let's keep it tidy. Create a personal folder with your name. From now on, place all your files inside your personal folder only.

Executing Linux commands

General structure of a Linux command:

>> command [options] [arguments]

Some common Linux commands:

pwd → display the current working directory

cd → change directory

 $ls \rightarrow list$ of files and directories

mkdir → create directories

 $cp (-r) \rightarrow copy$ files and directories

 $rm(-r) \rightarrow delete files and directories$

mv → rename or move file and directories

history → chronology of commands

exit → close the session and log out

man → manual and info of commands

clear → Clears the terminal screen

Editing and working with files

Create and edit text files with vi (vim)

vim filename → open and edit files in the Vim editor

- \rightarrow i \rightarrow insert mode
- \rightarrow :wq \rightarrow save & quit
- \rightarrow :q! \rightarrow quit without saving

vimdiff filename1 filename2 → compares files line by line

Try it!

Type vimtutor and press Enter. Enjoy some tutorials.

Quickly examine files without opening an editor

cat filename → display contents of a file

head filename \rightarrow show the first 10 lines

tail filename → show the last 10 lines (tail -f follows updates)

grep "text" filename → search for text in a file

Special characters and shortcuts

- < → redirect input
- > → redirect output
- $* \longrightarrow$ wildcard: matches any number of characters
- ? wildcard: matches a single character
- $Tab \rightarrow command or filename completion$
- **Ctrl+C** → kill a running process
- **Ctrl+Z** → stop a running process
- Ctrl+A → move cursor to the beginning of the command line
- Ctrl+E → move cursor to the end of the command line

Assignment

Assignment 1

Problem 1

Two XYZ files are provided in ~/gianluca/assignment1/:

- molecule1.xyz
- molecule2.xyz

Note: The first line of an XYZ file contains the number of atoms, the second line is a comment, and subsequent lines contain the Cartesian positions of the atoms, one atom per line: Element x y z.

- (a) In your personal course directory on the Linux machine, create a subdirectory assignment1. Copy the two files from ~/gianluca/assignment1/ into your assignment1 folder.
- (b) Extract the number of atoms for each XYZ file without opening the files with a text editor. Report the number of atoms in a text file (e.g. assignment1.txt) with two lines (for this task you can use the text editor vim):

```
molecule1.xyz: <N1> atoms
molecule2.xyz: <N2> atoms
```

- (c) Extract only the nitrogen atoms (lines starting with "N") from molecule1 and save them to a file.
- (d) Use vimdiff to compare molecule1.xyz and molecule2.xyz. Briefly describe the differences you observe (e.g., atom counts, elements, coordinates).