Numeri Quantici degli Elettroni

n = numero quantico principale ($n \ge 1$): energia, grandezza

I = numero quantico (del momento angolare) orbitale: forma I = 0, 1, 2, 3, 4...n-1 (in totale n valori interi) La grandezza del momento angolare orbitale è data da $h/2\pi \times \sqrt{I(I+1)}$

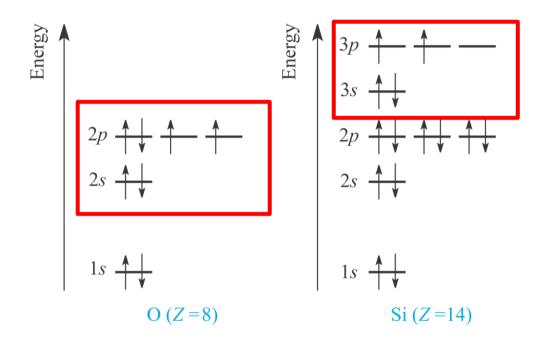
 m_l = **numero quantico magnetico**: orientazione m_l = -l, -l+1,0,...l-1, l (in totale 2l+1 valori interi)

s = **numero quantico di spin**: definisce il momento angolare di spin $s = \frac{1}{2}$

La grandezza del vettore momento angolare di spin è data da h/2 π × $\sqrt{s(s+1)}$

 m_s = **numero quantico magnetico di spin**: orientazione del momento angolare di spin

$$m_s = -1/2, +1/2$$


Un orbitale atomico è definito in maniera univoca da 3 numeri quantici n, l, e m_l . **Un elettrone** in un orbitale atomico è definito in maniera univoca da 4 numeri quantici: n, l, m_l , m_s .

Atomi Polielettronici

Principio di esclusione di Pauli

in un dato atomo non vi possono essere 2 elettroni con la stessa quaterna di numeri quantici, cioè ogni orbitale può contenere al massimo 2 elettroni con spin **opposto** (spin accoppiati)

Negli atomi polielettronici l'energia dipende da n e da l

Per un certo valore di *n*, si trova che l'energia degli orbitali segue l'ordine

s

che non è altro che l'ordine della penetrazione dei vari orbitali

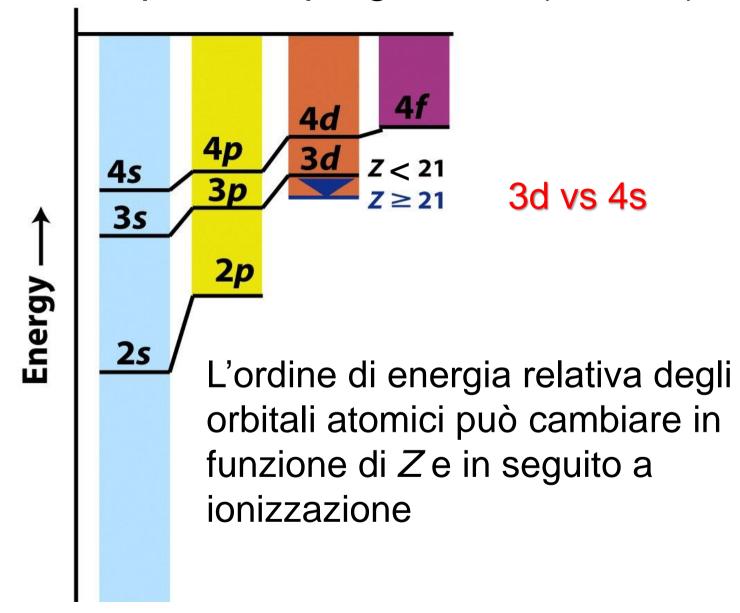
Regola di Hund o della massima molteplicità in un set di orbitali degeneri gli elettroni non possono avere spin accoppiati in un orbitale finché ogni orbitale nel set non contenga un elettrone, tutti con spin parallelo

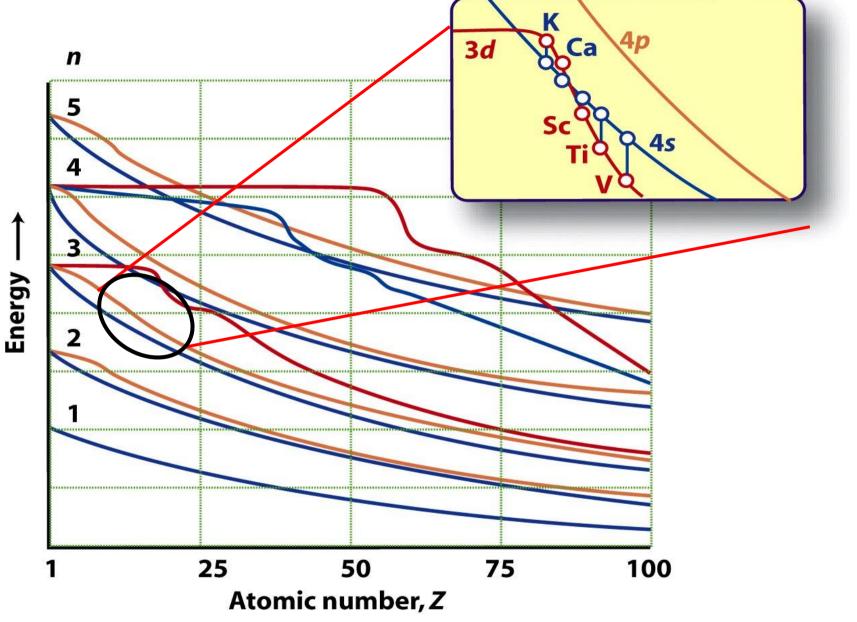
Energia di correlazione di spin Energia di scambio

correlazione di spin: due elettroni che occupano regioni di spazio diverse con spin paralleli tendono a stare lontani l'uno dall'altro e quindi si respingono meno elettrostaticamente. L'energia associata a questo effetto viene chiamata energia di correlazione o correlazione di scambio

La massima **energia di scambio** si ottiene nei gusci semipieni, nei quali si ha il massimo numero di elettroni a spin paralleli.

 $(\uparrow\uparrow\uparrow\uparrow\uparrow)\rightarrow(\uparrow\uparrow\uparrow\uparrow)$

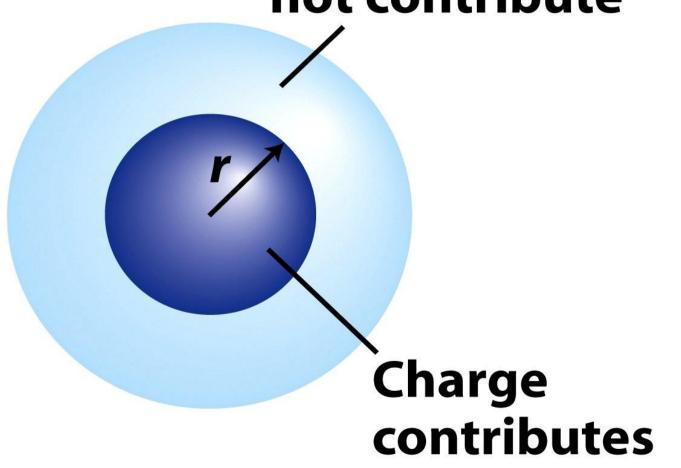

10 coppie → 6 coppie


i gusci semi-pieni, come p³, d⁵, e f⁷, sono particolarmente stabili

P. Cann, *J. Chem. Ed.* **2000**

non è che elettroni con spin paralleli si respingano fisicamente più (o meno) degli elettroni con spin appaiati (la repulsione coulombiana sarebbe la stessa per entrambi, se fossero separati dalla stessa distanza). Ma poiché il loro comportamento spaziale è descritto da una funzione d'onda che comprende anche una componente di spin (e deve essere antisimmetrica), la probabilità di trovare due elettroni a spin parallelo vicini l'un l'altro è molto minore di quella che si ha con due elettroni i cui spin sono accoppiati (cioè opposti).

Principio del riempimento progressivo (Aufbau)



la configurazione degli elementi di transizione della prima serie – per via della **repulsione interelettronica** – è **sperimentalmente** del tipo $3d^n4s^2$ (e non $3d^{n+2}4s^0$)

Penetrazione e schermatura

Charge does not contribute

Regole di Slater (ca. 1930) (empiriche) per il calcolo della **costante di schermo S**

$$Z_{\text{eff}} = Z - S$$

- 1. si scrive la configurazione elettronica dell'elemento nel seguente ordine e con questi raggruppamenti: (1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p)...
- 2. gli elettroni in ogni gruppo a destra dell'elettrone considerato non contribuiscono a S
- 3. per un elettrone in un orbitale ns o np:
- ogni altro elettrone nello stesso gruppo contribuisce S = 0.35;
- ogni elettrone nel livello n-1 contribuisce S = 0.85;
- ogni elettrone nei livelli n-2 o inferiori contribuisce S = 1
- 4. per un elettrone in un orbitale nd o nf:
- ogni altro elettrone nello stesso gruppo (nd, nf) contribuisce S
 = 0.35
- ogni elettrone in un gruppo a sinistra di quello considerato contribuisce S = 1.

Applicazione delle regole di Slater per confermare che la configurazione elettronica di K (Z=19) trovata sperimentalmente ($1s^22s^22p^63s^23p^64s^1$) è energeticamente più stabile di $1s^22s^22p^63s^23p^63d^1$

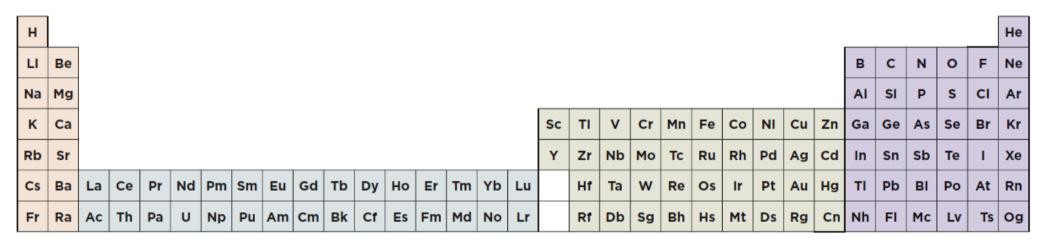
Si calcola $Z_{\text{eff}} = Z - S$ per l'elettrone più esterno, cioè 4s o 3d

Per 4s:
$$Z_{\text{eff}} = 19 - [(10 \times 1) + (8 \times 0.85)] = 2.20$$

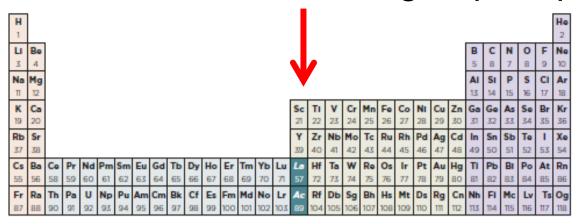
Per 3d:
$$Z_{\text{eff}} = 19 - (18 \times 1) = 1.00$$

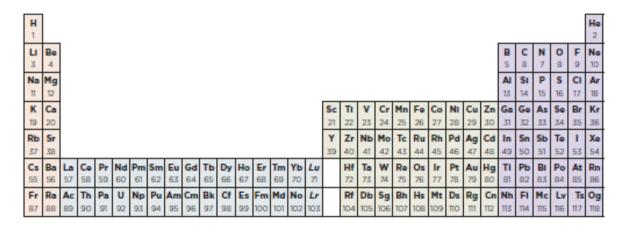
Table 1.3 Effective nuclear charges, $Z_{\rm eff}$ H He 2 Z 1 15 1.00 1.69 Li B C N Ne Be 0 Z 5 8 9 3 4 6 10 2.69 3.68 4.68 5.67 6.66 7.66 8.65 9.64 15 5.13 1.28 1.91 2.58 3.22 3.85 4.49 5.76 25 2p 2.42 3.14 3.83 4.45 5.10 5.76 Si Na Mg Al S Cl P Ar Z 11 12 13 14 15 16 17 18 11.61 12.59 14.56 16.52 15 10.63 13.57 15.54 17.51 6.57 7.39 8.21 9.02 9.82 10.63 11.43 12.23 25 9.94 10.96 2*p* 6.80 7.83 8.96 11.98 12.99 14.01 4.90 35 2.51 3.31 4.12 5.64 6.37 7.07 7.76 3*p* 4.07 4.29 4.89 5.48 6.12 6.76 0.62 0.69

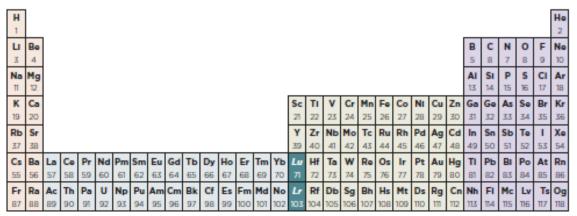
s-block e	element	S			C	d-block (element	ents p-block elements									
Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group	Group
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
Н																	He
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La–Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89–103	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac–Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub						


f-block elements

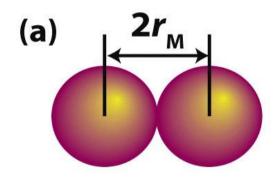
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanoids	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinoids	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr


Mendeleev, 1849

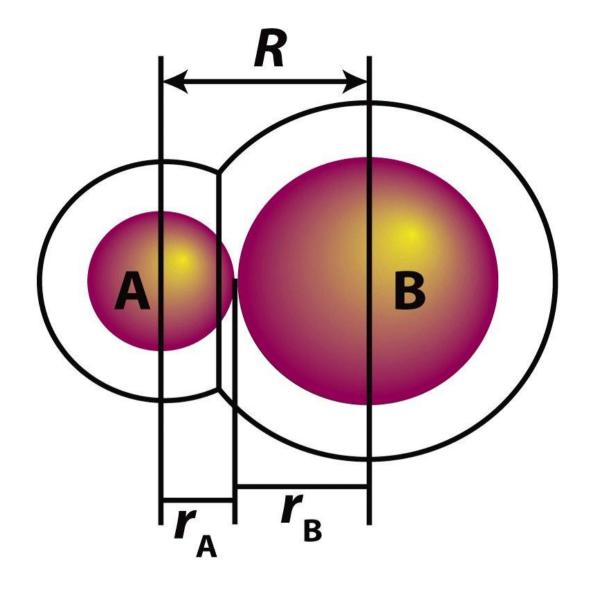

Д. Менделеев.


The 32-column version of the periodic table published by IUPAC

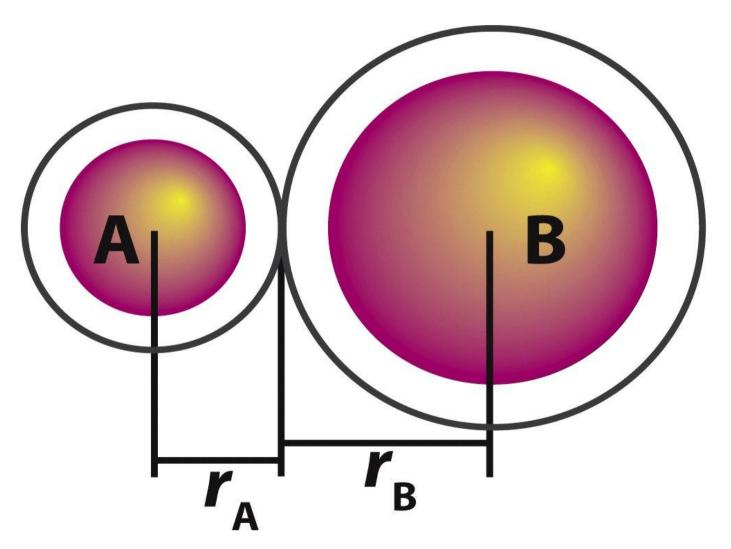
The group 13 problem



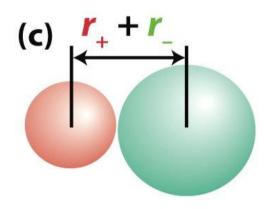
(E. Scerri, Chem. Int. 2019, 41, 16-20)


Raggio Atomico

Raggio metallico



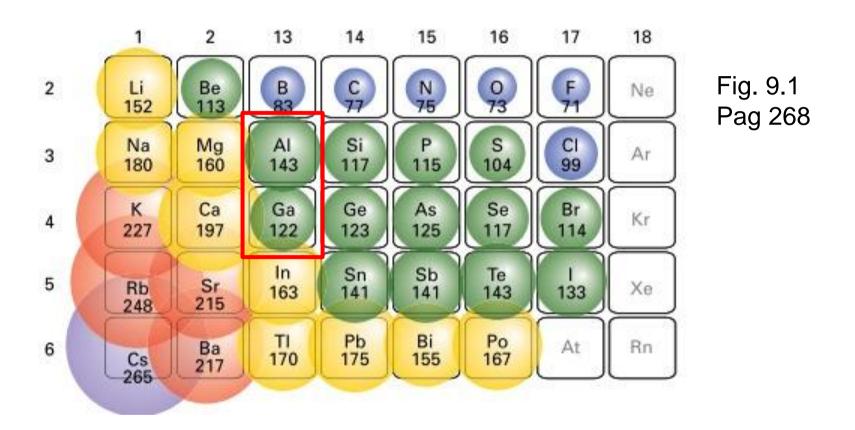
Raggio covalente


Raggio covalente

Atomi non legati



Raggio di van der Waals


Raggio Ionico

$$r O^{2-} = 140 \text{ pm}$$

Raggi atomici

Chimica Inorganica, Zanichelli, II edizione

La Chimica Inorganica di Atkins, Zanichelli, III edizione

TABELLA 1.3 Raggi atomici, r/pm*.

Li	Be											В	C	N	0	F
157	112											88	77	74	73	71
Na	Mg											Al	Si	Р	S	Cl
191	160											125	118	110	104	99
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
235	197	164	147	135	129	137	126	125	125	128	137	140	122	122	117	114
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	1
250	215	182	160	147	140	135	134	134	137	144	152	150	140	141	135	133
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	Tİ	Pb	Bi		
272	224	188	159	147	141	137	135	136	139	144	155	155	154	152		

^{*} Dati da A.F. Wells, Structural inorganic chemistry, Clarendon Press, Oxford, 1984. Per i metalli i valori si riferiscono al raggio metallico per il numero di coordinazione 12, per gli altri elementi al raggio covalente.

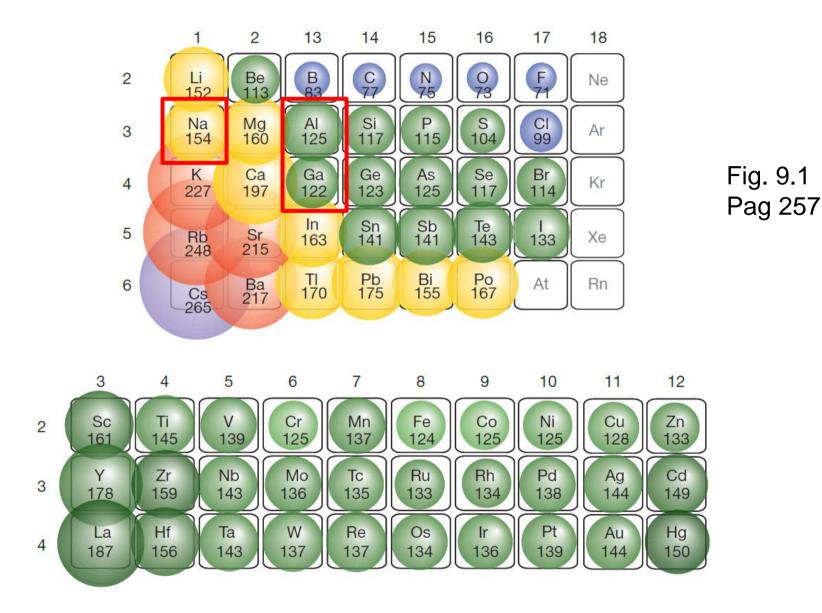
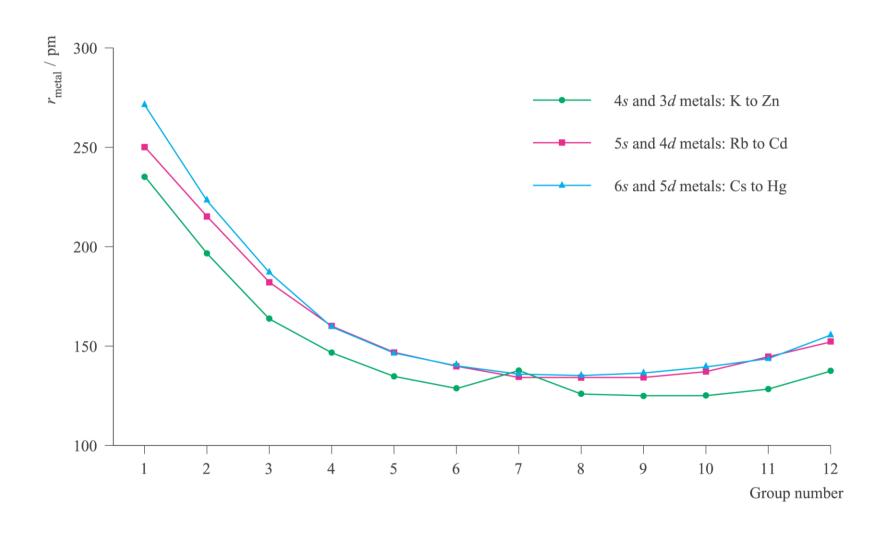
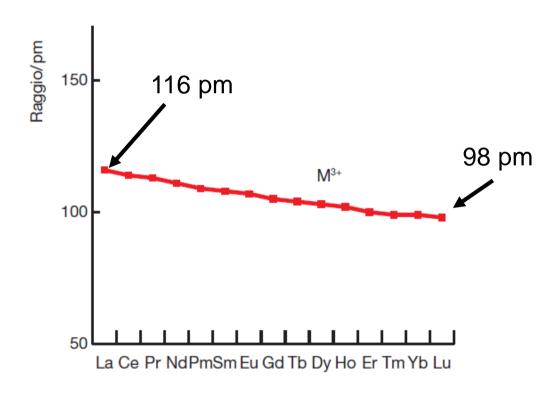

TABELLA 13.1 Proprietà rappresentative degli elementi.

TABELLA 15.1 Flopheta Tappresentative degli elemen	u.				
	В	Al	Ga	ln .	Tİ
Raggio covalente/pm	80	125	125	150	155
Raggio metallico/pm		143	141	166	171
Raggio ionico, r(M³+)/pm*	27	53	62	80	89
Punto di fusione/°C	2300	660	30	157	304
Punto di ebollizione/°C	3930	2470	2403	2072	1473
Energia di prima ionizzazione, I ₁ /kJ mol ⁻¹	799	577	577	556	590
Energia di seconda ionizzazione, I ₂ /kJ mol ⁻¹	2427	1817	1979	1821	1971
Energia di terza ionizzazione, I ₃ /kJ mol ⁻¹	3660	2745	2963	2704	2878
Affinità elettronica, E ₃ /kJ mol ⁻¹	26,7	42,5	28,9	28,9	19,2
Elettronegatività di Pauling	2,0	1,6	1,8	1,8	2,0
<i>E</i> [⊕] (M³+,M)/V	-0,89	-1,68	-0,53	-0,34	+0,72

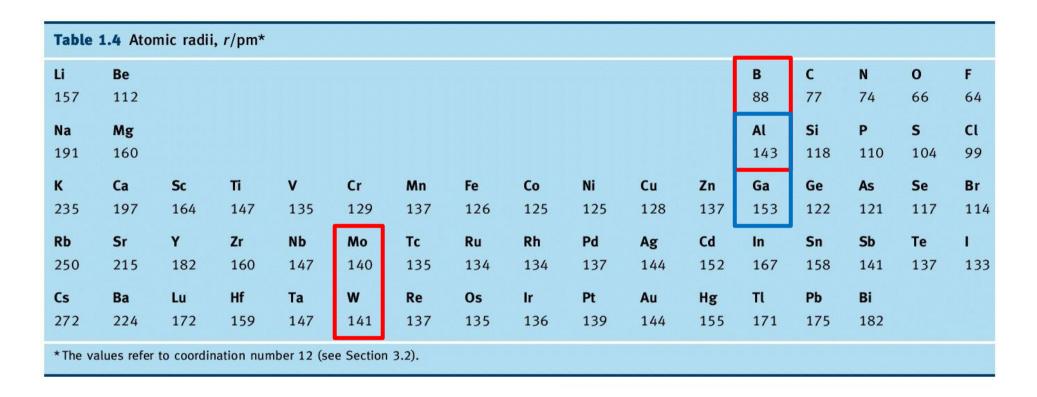
^{*} Per numero di coordinazione 6.


Pag 340

Pag 20



La Chimica Inorganica di Atkins, Zanichelli, III edizione

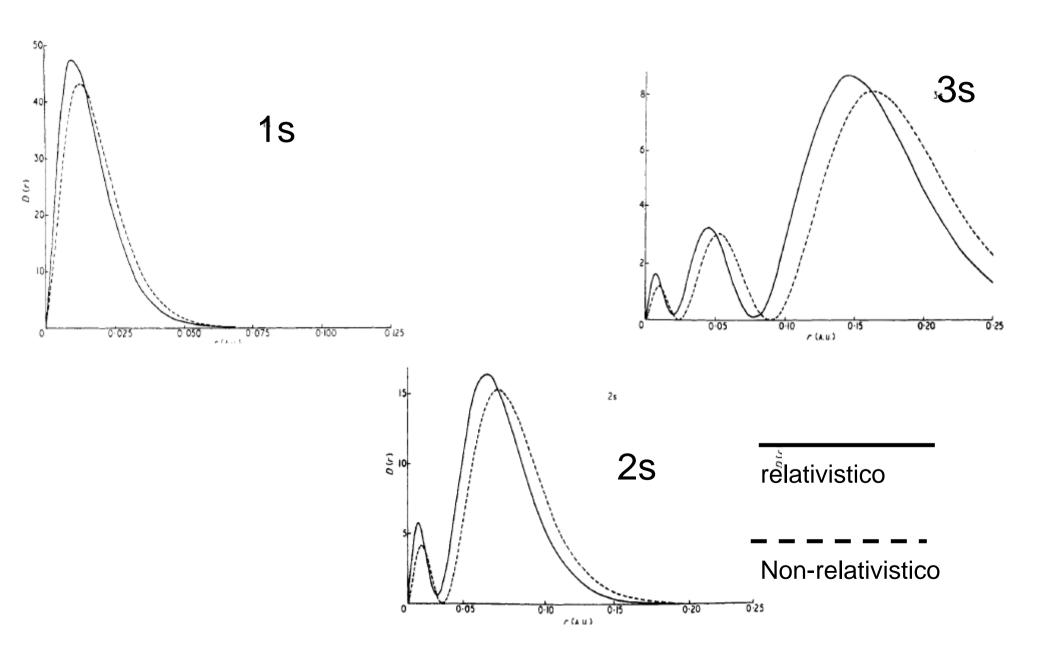

Raggio metallico: blocco d

Contrazione lantanidica

Conseguenze della contrazione lantanidica

Effetti relativistici

Al crescere della carica nucleare, aumenta la velocità degli elettroni, soprattutto di quelli in orbitali più penetranti.


$$m_{\rm rel} = m_{\rm rest} / \sqrt{(1 - (v/c)^2)}$$

Al crescere della velocità degli elettroni, la loro massa relativistica aumenta rispetto a quella a riposo (formula di Einstein)

$$a_0 = (4\pi\epsilon_0)(\hbar^2/me^2)$$

L'aumento di massa comporta una **contrazione dell'orbitale**, che per gli atomi pesanti come Au e Hg può arrivare al 20%

Funzioni di distribuzione radiale per Z = 80

Effetto della coppia inerte

L'effetto della coppia inerte 6s² riguarda gli elementi più pesanti del blocco p (gruppi 13 – 15) e consiste in un aumento della stabilità di uno stato di ossidazione che è di 2 unità minore del numero di ossidazione del gruppo.

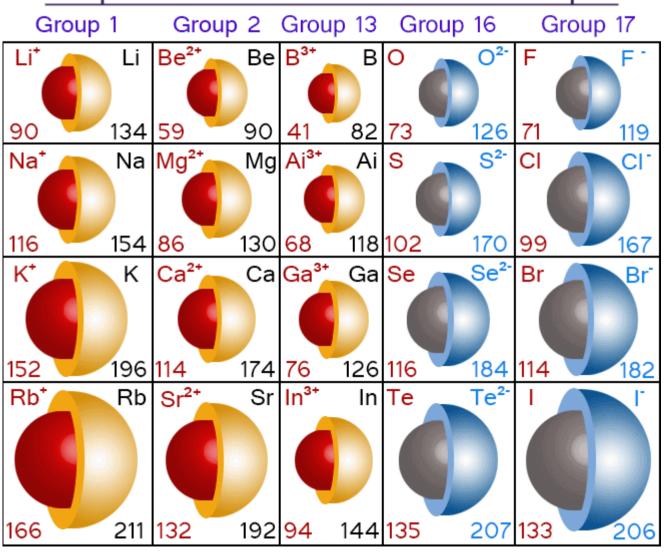
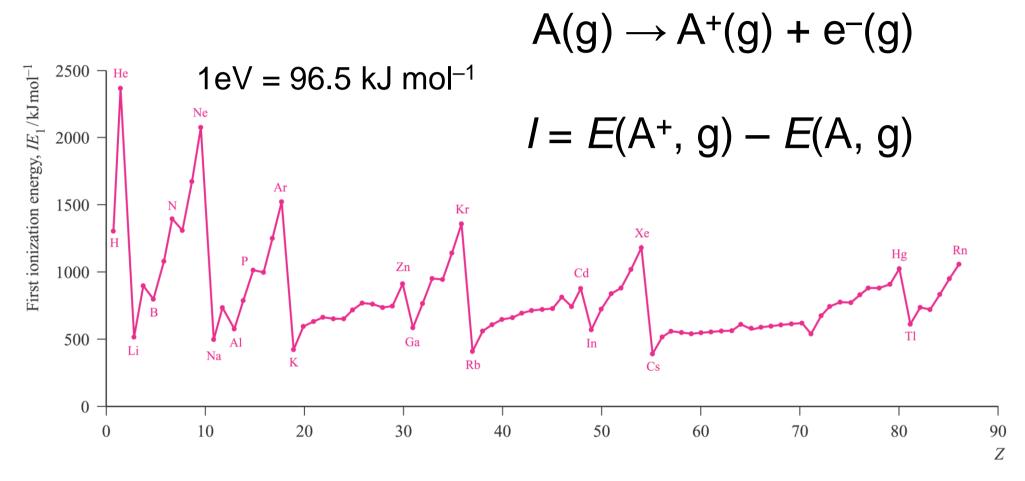
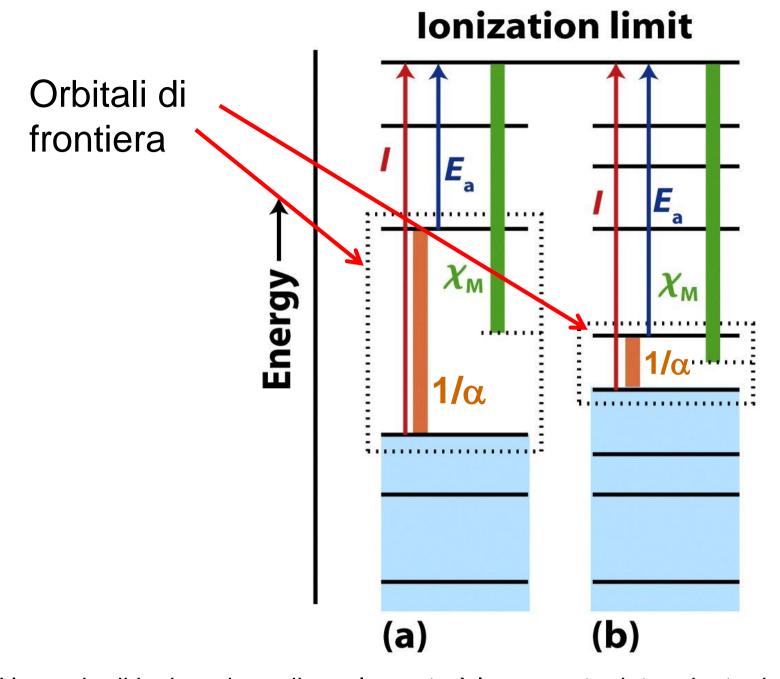

Raggi ionici

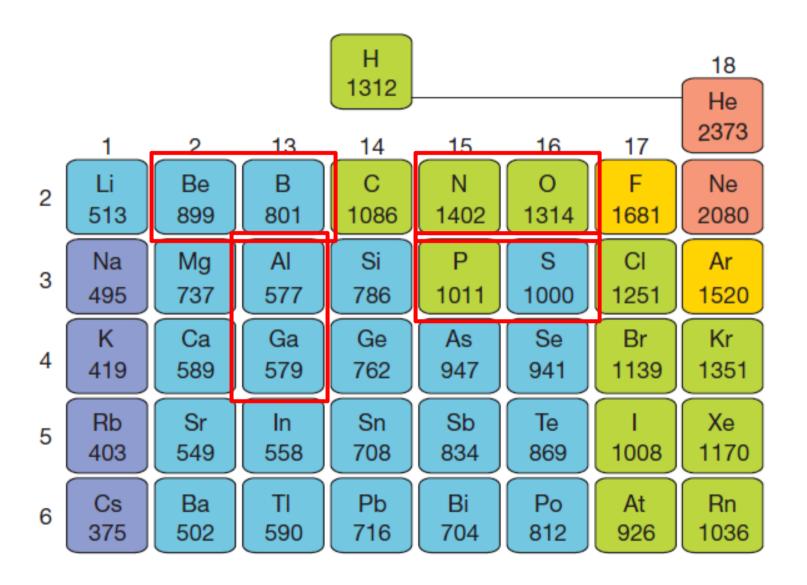
Table 1	.5 Ionic radii, r_i	/pm*					
Li+	Be ²⁺	B ³⁺			N ³⁻	0^{2-}	F
59(4)	27(4)	11(4)			146	135(2)	128(2)
76(6)						138(4)	131(4)
						140(6)	133(6)
						142(8)	
Na ⁺	Mg ²⁺	Al ³⁺			P ³⁻	S ²⁻	Cl ⁻
99(4)	49(4)	39(4)			212	184(6)	181(6)
102(6)	72(6)	53(6)					
118(8)	89(8)						
K ⁺	Ca ²⁺	Ga ³⁺			As ³⁻	Se ²⁻	Br ⁻
138(6)	100(6)	62(6)			222	198(6)	196(6)
151(8)	112(8)						
159(10)	123(10)						
160(12)	134(12)						
Rb ⁺	Sr ²⁺	In ³⁺	Sn ²⁺	Sn ⁴⁺		Te ²⁻	Ι-
152(6)	118(6)	79(6)	83(6)	69(6)		221(6)	220(6)
160(8)	125(8)	92(8)	93(8)				
173(12)	144(12)						
Cs ⁺	Ba ²⁺	Tl ³⁺					
167(6)	149(6)	88(6)					
174(8)	156(8)	Tl ⁺					
188(12)	175(12)	164(6)					


^{*}Numbers in parentheses are the coordination number of the ion. For more values, see Resource section 1.

Raggi ionici


Steps of atoms and their ions in pm

Energia di Ionizzazione

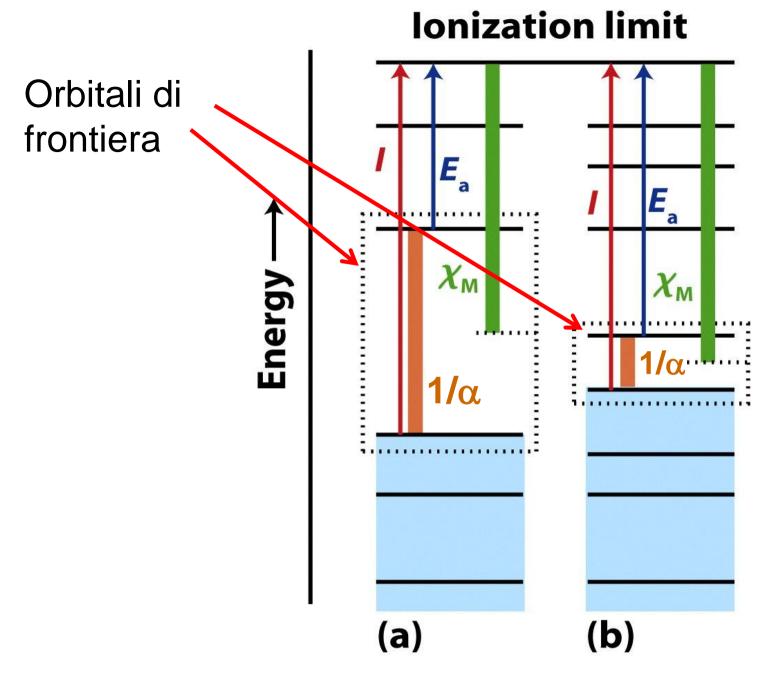


L'energia di prima ionizzazione di un atomo è largamente determinata dall'energia del suo più alto orbitale occupato nello stato fondamentale e il suo **andamento regolare** segue quelli di $Z_{\rm eff}$ e raggio atomico.

L'energia di ionizzazione di un elemento è largamente determinata dall'energia del più alto orbitale occupato (o semi-occupato) nel *ground state* dell'atomo.

Energie di prima ionizzazione

Energie di ionizzazione

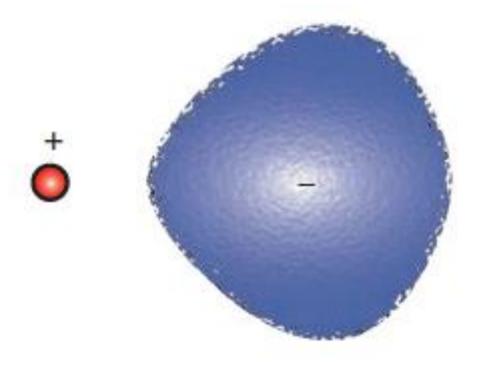

Table 1.6	First and se	cond (and so	ome higher)	ionization e	nergies of t	he elements	,
Н							He
1312							2373
							5259
Li	Be	В	C	N	0	F	Ne
513	899	801	1086	1402	1314	1681	2080
7297	1757	2426	2352	2855	3386	3375	3952
11809	14844	3660	4619	4577	5300	6050	6122
		25018					
Na	Mg	Al	Si	P	S	Cl	Ar
495	737	577	786	1011	1000	1251	1520
4562	1476	1816	1577	1903	2251	2296	2665
6911	7732	2744	3231	2911	3361	3826	3928
		11574					
K	Ca	Ga	Ge	As	Se	Br	Kr
419	589	579	762	947	941	1139	1351
3051	1145	1979	1537	1798	2044	2103	3314
4410	4910	2963	3302	2734	2974	3500	3565
Rb	Sr	In	Sn	Sb	Te	1	Xe
403	549	558	708	834	869	1008	1170
2632	1064	1821	1412	1794	1795	1846	2045
3900	4210	2704	2943	2443	2698	3197	3097
Cs	Ва	π	Pb	Bi	Po	At	Rn
375	502	590	716	704	812	926	1036
2420	965	1971	1450	1610	1800	1600	
3400	3619	2878	3080	2466	2700	2900	

Affinità elettronica

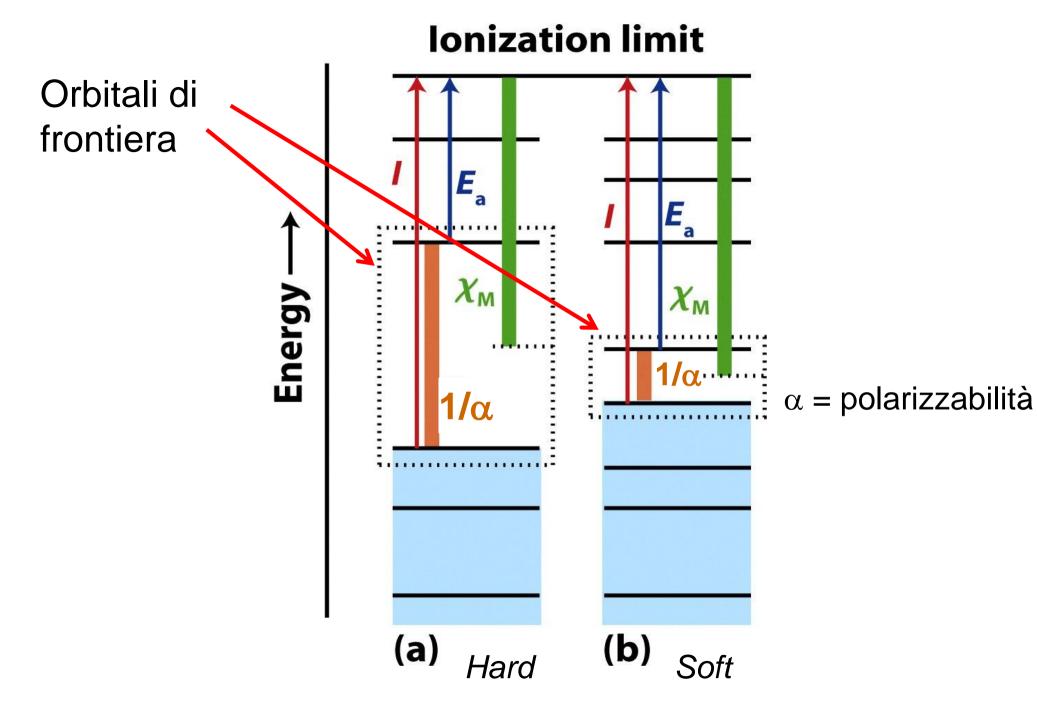
Table	Table 1.7 Electron affinities of the main-group elements, $E_a/(kJ \text{ mol}^{-1})*$												
Н		А	(g) + e	$-(g) \rightarrow A$	\ −(g)		He						
72	$E_a = E(A, g) - E(A^-, g)$												
Li	Be B C N O F												
60	≤0	27	122	-8	141	328	-116						
					-780								
Na	Mg	Al	Si	P	S	Cl	Ar						
53	≤0	43	134	72	200	349	-96						
					-492								
K	Ca	Ga	Ge	As	Se	Br	Kr						
48	2	29	116	78	195	325	-96						
Rb	Sr	In	Sn	Sb	Te	1	Xe						
47	5	29	116	103	190	295	-77						
+ - 1 C				C.1									

^{*}The first values refer to the formation of the ion X^- from the neutral atom; the second value to the formation of X^{2-} from X^- .

l'affinità elettronica ha segno opposto alla variazione di energia


L'affinità elettronica di un elemento è largamente determinata dall'energia del più basso orbitale non occupato (o semi-occupato) nel *ground state* dell'atomo.

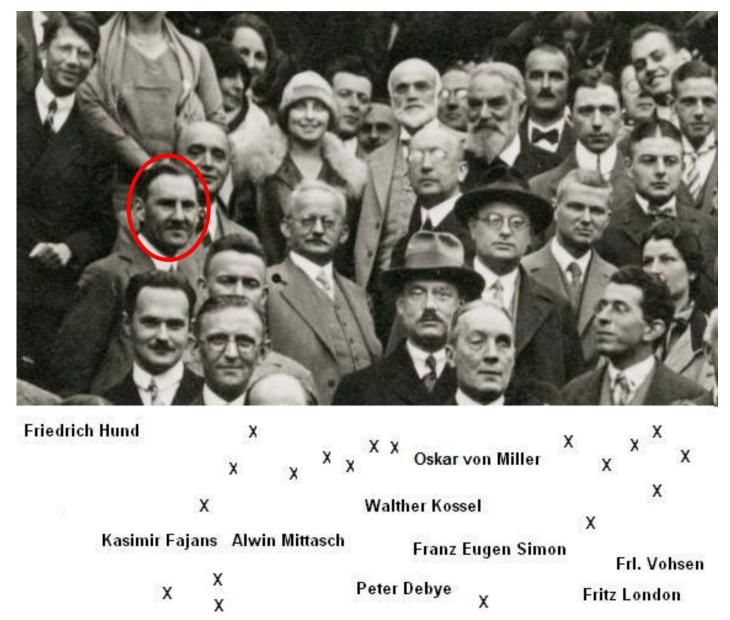
Electron affinity/kJ mol-1 0 100 200 300 400


н																	Не
Li	Ве											В	С	N	o	F	Ne
Na	Mg											Al	Si	Р	s	CI	Ar
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

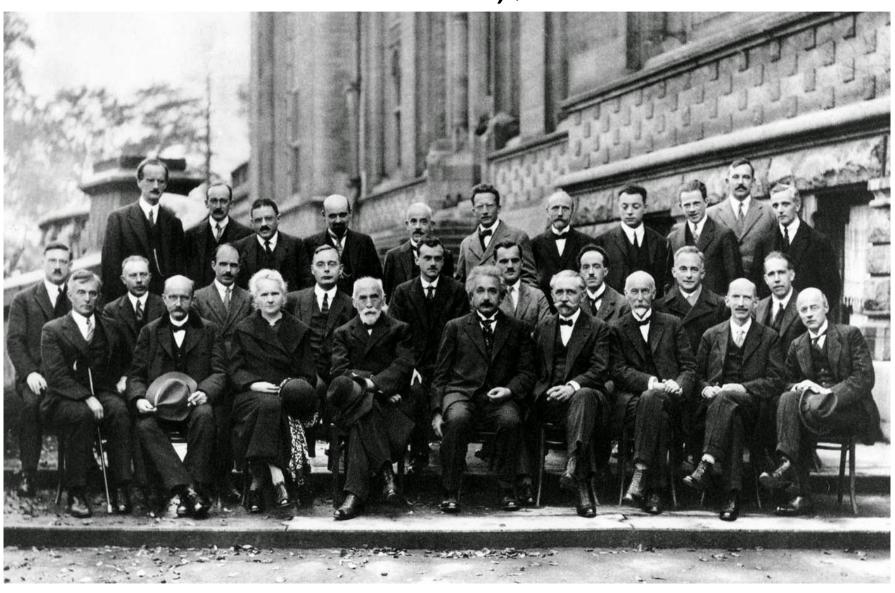
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Polarizzabilità (α)

Un atomo o ione è polarizzabile (*soft*) quando gli orbitali di frontiera sono vicini in termini di energia; atomi e ioni pesanti, di grosse dimensioni, tendono a essere altamente polarizzabili.

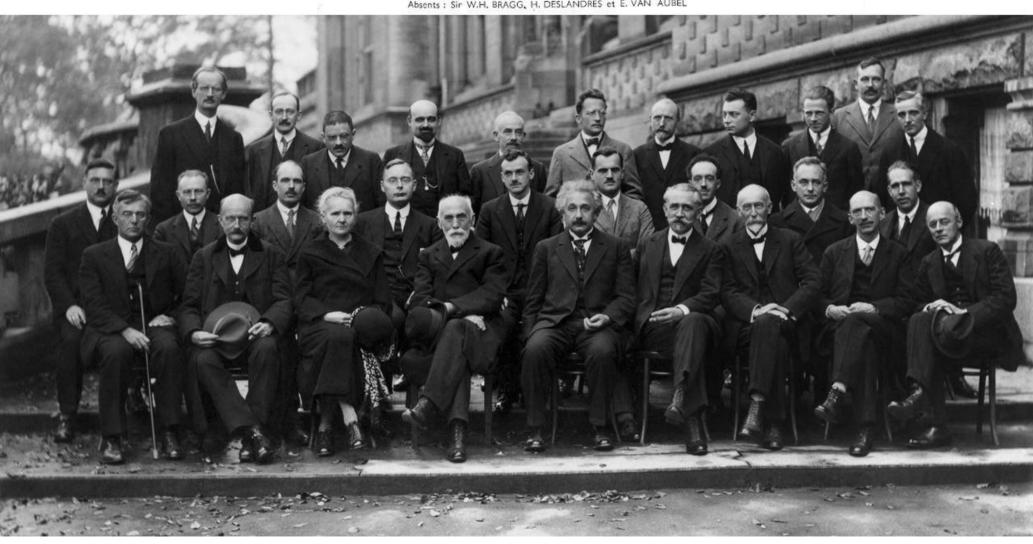

Polarizzabilità e Regole di Fajans

(per predire se un legame sarà ionico o covalente)


- 1. cationi piccoli e a carica elevata (e.g. Li⁺, Mg²⁺) hanno forte **potere polarizzante**
- 2. anioni larghi e con carica elevata sono **facilmente polarizzabili** (e.g. I⁻, Se²⁻, Te²⁻, As³⁻, P³⁻)
- 3. cationi che non hanno una configurazione elettronica di gas nobile (e.g. quasi tutti quelli dei metalli di transizione) sono **più polarizzanti** di quelli con guscio chiuso (e.g. cationi dei metalli alcalini o alcalino-terrosi) perché avranno una maggiore $Z_{\rm eff}$, cioè una carica più alta sulla loro superficie (cfr Hg²+ e Ca²+, 116 pm).

Cationi molto polarizzanti tenderanno a fare legami covalenti (e.g. Li⁺ e Mg²⁺). Non possono esistere cationi con carica troppo elevata (e.g. Si⁴⁺ o P⁵⁺).

Fajans at the Bunsen Congress, Munich, 1928



The Solvay Conference (*Electrons* and *Photons*), 1927

A. PICCARD E. HENRIOT P. EHRENFEST Ed. HERZEN Th. DE DONDER E. SCHRÖDINGER E. VERSCHAFFELT W. PAULI W. HEISENBERG R.H. FOWLER L. BRILLOUIN M. BORN P. DEBYE P.A.M. DIRAC A.H. COMPTON H.A. KRAMERS

Ch.E. GUYE C.T.R. WILSON OW. RICHARDSON I. LANGMUIR M. PLANCK P. LANGEVIN Mme CURIE H.A. LORENTZ A. EINSTEIN

29 fisici, 17 premi Nobel