CHAPTER 1

First order PDE (Evans PDE 3.1 3.2)

The PDE we consider here is
F(Du,u,z) =0, F:R{xRxU —R, (0.1)

with U C R? open, and we assume that F' is smooth.
The initial/boundary condition is that we require

uLr=grr, I CU,g given, (0.2)

being I' a smooth d — 1-dimensional surface.

1. Construction of solutions

DEFINITION 1.1. A C? function U x A 3 (x,a) — u(z,a), U, A C R? open, is a complete integral in
U x Aif:

e u(-,a) solves the PDE (0.1) for all a € A4;
e rank(Dyu, D2,u) = d.

REMARK 1.2. The last condition requires that the solution v depends on the full parameters a.
ExXAMPLE 1.3. For
z-Du+ f(Du)=u
take
u=a-z+ f(a).
ExAMPLE 1.4. For the HJ equation
H(Du) =0
take
u=a-x+0b, H(a)=0,
assuming the non degeneracy condition that {H = 0} is a smooth d — 1 surface. For example
|Du|—1=0
gives
aesS¥! beR.
ExAMPLE 1.5. For the HJ equation
ug+ H(Du) =0
a complete family of solutions is
u(t,x;a,b) =a-x —tH(a)+b.
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1.1. Envelopes. The envelope v of the family of functions u(z,a) is given by inverting (whenever
possible)

Dou(z,a) =0 = a=¢(z),
and then defining

Sometimes, it is called singular integral.
LEMMA 1.6. If the envelope exists and is C*, then v solves (0.1).
ProOOF. Just compute

F(Dyv,v,x) = F(Dxu(ﬂc, @) + Dou(z, ) Dy, u(z, gb(ac)),x)
= F(Dyu(z, ¢(2)), u(z, ¢(z)),z) = 0. O

ExampLE 1.7. Consider
u*(1+ |Dul?) —1 =0,
whose complete integral is
u(z,a) =+y/1—|z—al?, |z—a| <]l
Then
Dau::Fﬁ:O, a=uz,
so the singular integral is
u = =+1.
A second construction is by considering for a smooth function A : R*~! — R and setting
v(t,a") = u(t, (a’, h(a)).
Assume that v is C': inverting when possible
Dyv(t,a’) =0= Dyu-(id,h) =0, o =d'(z),
we obtain again
Dy v(t,d'(z)) = Dyu + Dou(id, h')Dya' = Dyu,

so that being the PDE of first order we still have a solution.

ExaMPLE 1.8. Counsider H(p) = %, us + H(p) = 0, and the complete integral

a2
u(t,:ma):a-x—?t—&—b.

We have
Dy pyu = (z —ta,l)

which is never 0 so that we cannot find an the envelope solution
If instead we fix b, then

Dyu=x—-ta=0, a= e
and the envelope is

2 2 2
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2. Characteristics
We want to convert (0.1) into a system of ODEs. Let
R > s 2(s) € RY
be a smooth curve, and let
z(s) = u(z(s)), p(s) = Du(x(s)). (2.1)
By differentiating, one obtains
i=Du-i=p-&, p=D?ui.
Differentiating the PDE
D,F - D*u+ F,Du+ D,F =0,
so that if now
i = D,F, (2.2)
then we obtain the following:
Z:p-DpF, p:_up_DmF7
DEFINITION 2.1. The characteristic equations are
‘,t = DLDF(p7Z7x)7
Z.’/:DPF(paZa‘/L')'p’ (23)
p = _D.LF(pa Z7x) - Fz(p7 2, x)pa
with the requirement that the initial data (zo, 20, po) satisfy F(po, 20, 2o) = 0.
LEMMA 2.2. If F(po, 20, %0) = 0, then the solution (x, z,p)(s) to (2.3) satisfies F(p,z,z) = 0.
PRrROOF. From the definition of (x, z,p), it follows that disF(p(s), z(s),z(s)) = 0 by substitution. O

It is also immediate to check that

PROPOSITION 2.3. If u is a C? solution to (0.1), then the variables z,p given by (2.1) satisfy (2.3)
(where x(s) is defined there).

REMARK 2.4. Note that we require C? because we take the derivative of the PDE to compute the
ODE for p. In fact, to define a classical solution u, it is required only to be C'. When we construct a
local solution, we will see that s — u(z(s)) is of regularity C?, that is, it has two directional derivatives
along the flow, even if u may only be C1.

2.1. Examples.
2.1.1. F linear. Assume that
F(p,z,2) = a(z) -p+b(z)z + c(z).
Then the equation for characteristics is
p=—Dc(z) — b(z)p,
i =a(2) - p= —b(@)z — c(a),
z = a(x).
The projected characteristic x(s) is thus autonomous, and the ODE for z does not depend on p. Clearly
such a solution is well defined as long as the coefficients a, b, ¢ are regular: moreover, the map

u(z(s)) = z(s)
is well defined since z(s) is invertible.
The equation for p is not needed: if X (s,y) is the flow generated by & = a(x), then

w(X(s,9)) = 2(s,9),
and differentiating w.r.t. s
Du-a(z) = 2= —b(z)z — c(x),
which is the PDE. Observe also that to give a distributional solution it is enough to have s — u(x(s)) be
differentiable, i.e. we could allow discontinuous functions to the ”solutions” (in this extended sense).



8 1. FIRST ORDER PDE (EVANS PDE 3.1 3.2)

ExXAMPLE 2.5. The PDE
T1Ugy — T2Ugy = U

gives the ODE

1= —xg, L2 =21, Z=2,
so that the solution is (2 imaginary unit, identifying R? with the complex plane)

x(s) = zpe'®, z(s) = zpe’.
With this formula one can construct the general solution if the initial data is given on a single point of
every circle.

2.2. F quasilinear (semilinear). The function F is now
F(p,z,x2) = a(z,z) - p+ b(z,u).
The ODE are now
t=a(x,z), Z=ualx,z) p=—-b(x,u).
In this case, the solution of the ODE exists locally, but it may blow up or the map

u(z(s)) = z(s)
may not be invertible because we only know that (zo, z0) — (2(s; o, 20), 2(s; Zo, 20)) is.
If F is semilinear, i.e. the coefficients of p depend only on z, the function (s,y) — z(s,y) is always
invertible, so that the local existence may occur because of the blowup of i(z(s)).

ExaMPLE 2.6. If
Uz, + Ugy = uz,
then

so that

which blows up in finite time.

ExamPLE 2.7. If
Uz, + Uy, = 0,
then the characteristics are
z=(1,2), 2=0,
so that
u(zo + (8,208)) = 20, -
However the map zo + (s, 20s) may not be invertible.

ExXAMPLE 2.8. Consider
Ugy Uz, = U
The ODE for characteristics is
T = (p27P1)7 z= 2]91]927 p =D
Hence
p=poe’, T=z0+py(e’—1), z=2z+poi1poz(e* —1).
If the data is given on
F:{£E1 :O}, uLr= mgv
then we compute from the PDE F(p, z,z) =0
u i)
P2 = Ug, = 2T, P1 = Uy, = " =5
so that the solution is along the characteristic starting from (0, y)
p(s:y) = (2y.y/2)e€”,
2s,y) =y +y° (€ — 1) = y’e™,
2(s3y) = (0,9) + (2y,y/2) (e’ = 1).
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The last equation gives

To — Y 1 T1 14 T dxo + 21
—_— - =X —_—— e = =
x1 A 2Ty 2ry — & dxy — ]
w@) = (- T (Arztar)’ _ (@t dey)?
7 dzg—a1) 16

Indeed
(.1’1 + 4332) (1‘1 + 41‘2)4 . (.1'1 + 4.272)2
8 8 B 16
Note that in this case, even if no curves passes through {z; = %}, the final formula is valid also there.

3. Initial/Boundary conditions
Aim here is to construct a local solution to
F(Du,u,z) =0, wuLr=gLr,

As a first step, assuming I' smooth, we make a change of variable such that I' = {z4 = 0} close to a point
zg €T

Let ®, ¥ = &~ ! be such a smooth mappings: then

y=2(x), I)={ya=0}, ov(y)=u(T(y)).
The PDE becomes
Du(z) = Dv(®(x))DP(x),
0 = F(Du,u,z) = F(Dv(®(z))D®(z),v(®(x)),z) = F(Dv(y)DP(¥(y)),v(y), ¥(y)) = G(Dv,v,y).

The latter is the expression of the PDE in the new coordinates, having as solutions the image of the
solutions of F'. The boundary data become

h(y) = 9(¥(y)), ye ().
We will thus consider the boundary problem

{F(Du,uw) =0,

(3.1)
’LLI_{xd:()}: h.

3.1. Compatibility of the initial data. In order to use the characteristic ODE to construct a
solution, one has to find the appropriate initial data. Now, given h, we know the quantities

xo = (26,0), 20 =u(z0), Us (7o) = hs,(x0) for i # d.
The last identity is the PDE by Proposition 2.3, i.e.
F(haCl (Qfo), Tt h$d71 (330)’ Uz gs u(l‘o), 370) = 0.

In general, it may happen that u,, does not exists or it is not unique.
3.1.1. Noncharacteristic initial data. In order to construct a solution in a neighborhood of zg, we
need

e there exists a unique (local) solution wug(zg) to

F(hg (x0), .-, hay_, (%0), Uy, , u(x0), zo) = 0; (3.2)
e the flow
R x R¥1 3 (s,9) — x(s,y)
generated by
&= DyF(p,z,x), yeT,
is invertible in a neighborhood of (0, zg).

Assume that there is a local solution to (3.2), i.e. a function

Y= po(y) = (e ()s - hay () pa(y),  F(po(y),uo(y), (¥,0)) =0,
and let (po(y,0), z0(y,0), (y,0)) be the triple corresponding to this solution.
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LEmMmA 3.1. If
Op, F(po(z0), 20(w0), x0) #0 at (y,0) = xo,
then there is a local solution to the characteristic ODE.

Proor. By the Implicit Function Theorem, there is a unique smooth function
pao(y)s F@' pa 2z x)=0.
Then, since we now know the initial data for the ODEs, the solution is defined locally for every initial
point on I' = {z4 = 0}. O
REMARK 3.2. In the original coordinates, the non characteristic condition is
Dy F(po, z0,20)D®(x0) #0 < DyF(po, 20, 20) - n(z0) # 0,
where n is the unit normal to I'.

3.2. Local solution. Still it is not know if the flow is invertible. Assume that the non characteristic
condition holds, and let

x(s,y),  2(s,9), p(s,y)
be the solution of the ODE starting from the point y € I': s is the time-parametrization of the trajectory.

LEMMA 3.3. The equation
R x R¥™1 3 (s,9) — z(s,y) € R?

is locally invertible.

PROOF. The map is smooth, and the derivative at (0,yq) is
D,y F idg—
2(s,y) = (y,0) + (Dy F, DyF)s + 0(y,s), Dsyz(0,90) = { ) d-1 }

D, F 0
which by the non characteristic condition is non singular. O
REMARK 3.4. Another proof is that since D), F' # 0, we can use x4 as the time coordinates, obtaining
dx _ DyF
drq Dy, F ’

In particular the characteristics are flowing transversally through T'.

Hence we can write

s=s(x), y=y(),

and the solution to the PDE as a function of z:
u(z) = u(s(z),y(x)), p(z)=p(s(z),y(r)). (33)

THEOREM 3.5. The function given by (3.3) is a solution of the PDE problem (3.1).
PrOOF. We have to prove two things: the PDE is satisfied and p id the gradient of w.
First of all, by Lemma 2.2 we have that

F(p(z),u(x),z) =0

in a neighborhood of xg.
It remains to prove that

p(z(s)) = Dyu(z).

Set

r=Dsyz—p-Dsyx = (Dyu—p)Ds .
For the s direction we have that rs = 0, because it corresponds to the ODE for z,

2s=t=p-DyF =p-2=p-xs.
For the other directions, taking a derivative in s
Ty = Dyz — pDyx — pD, 7.

Since by the ODE

D,z = Dypt +pDyx, p=—F,p—D,F



4. EXERCISES

we obtain
Py = Dypt — pDyax = DypDpF' — (—=F,p — D, F)Dyx.
Differentiating F(p, z,2) = 0 by y
D,FDyp+ F.Dyz+ D,FD,x =0,
so that
7= F,(pDyx — Dyz) = —F.r.

On I' this quantity is 0 by the choice of the initial data, so we deduce that r = 0, i.e. p = Du.

4. Exercises
1) Find a solution to
Uy +uy =u, u(0,y) =sin(y).
2) For which initial data there exists a global solution to
Uy +uy =u?,  u(z,0) =v(z)?
3) For the HJ equation
ug + H(Du) =0, u(0,z) = up(x)
find the existence time of the smooth solution.
4) Find the existence time of a smooth solution for the quasilinear equation
ug + AMw)uge =0, w(0,2) = up(x).
5) Consider the PDE
Uy, = 07 ‘(1‘1,-732)' < 17
u(cos(6,sin(0)) = ug(0).
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(In this case the data are more like boundary data.) Determine the conditions on ug for there is a solution.

Verify that the local existence theorem holds.



