
CHAPTER 1

First order PDE (Evans PDE 3.1 3.2)

The PDE we consider here is

F (Du, u, x) = 0, F : Rd × R× U → R, (0.1)

with U ⊂ Rd open, and we assume that F is smooth.
The initial/boundary condition is that we require

u⌞Γ= g⌞Γ, Γ ⊂ U, g given, (0.2)

being Γ a smooth d 1-dimensional surface.

1. Construction of solutions

Definition 1.1. A C2 function U × A ∋ (x, a) → u(x, a), U,A ⊂ Rd open, is a complete integral in
U × A if:

• u(·, a) solves the PDE (0.1) for all a  A;
• rank(Dau,D

2
xau) = d.

Remark 1.2. The last condition requires that the solution u depends on the full parameters a.

Example 1.3. For

x ·Du+ f(Du) = u

take

u = a · x+ f(a)

Example 1.4. For the HJ equation

H(Du) = 0

take

u = a · x+ b, H(a) = 0,

assuming the non degeneracy condition that H = 0 is a smooth d 1 surface. For example

Du  1 = 0

gives

a  Sd−1, b  R

Example 1.5. For the HJ equation

ut +H(Du) = 0

a complete family of solutions is

u(t, x; a, b) = a · x tH(a) + b
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1.1. Envelopes. The envelope v of the family of functions u(x, a) is given by inverting (whenever
possible)

Dau(x, a) = 0 ⇒ a = ϕ(x),

and then dening

v(x) = u(x,ϕ(x))

Sometimes, it is called singular integral.

Lemma 1.6. If the envelope exists and is C1, then v solves (0.1).

Proof. Just compute

F (Dxv, v, x) = F

Dxu(x,ϕ) +Dau(x,ϕ)Dxϕ, u(x,ϕ(x)), x



= F (Dxu(x,ϕ(x)), u(x,ϕ(x)), x) = 0 □

Example 1.7. Consider

u2(1 + Du2) 1 = 0,

whose complete integral is

u(x, a) = ±


1 x a2, x a < 1

Then

Dau =  x a
1 x a2

= 0, a = x,

so the singular integral is

u = ±1

A second construction is by considering for a smooth function h : Rd−1 → R and setting

v(t, a′) = u(t, (a′, h(a′))

Assume that v is C1: inverting when possible

Da′v(t, a′) = 0 = Dau · (id, h′) = 0, a′ = a′(x),

we obtain again

Dxv(t, a
′(x)) = Dxu+Dau(id, h

′)Dxa
′ = Dxu,

so that being the PDE of rst order we still have a solution.

Example 1.8. Consider H(p) = p2

2 , ut +H(p) = 0, and the complete integral

u(t, x, a) = a · x a2

2
t+ b

We have

Da,bu = (x ta, 1)

which is never 0 so that we cannot nd an the envelope solution
If instead we x b, then

Dau = x ta = 0, a =
x

t
,

and the envelope is

u(t, x) =
x2

t
 x2

2t
+ b =

x2

2t
+ b
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2. Characteristics

We want to convert (0.1) into a system of ODEs. Let

R ∋ s → x(s)  Rd

be a smooth curve, and let
z(s) = u(x(s)), p(s) = Du(x(s)) (2.1)

By dierentiating, one obtains
ż = Du · ẋ = p · ẋ, ṗ = D2uẋ

Dierentiating the PDE
DpF ·D2u+ FuDu+DxF = 0,

so that if now
ẋ = DpF, (2.2)

then we obtain the following:
ż = p ·DpF, ṗ = FupDxF,

Definition 2.1. The characteristic equations are




ẋ = DpF (p, z, x),

ż = DpF (p, z, x) · p,
ṗ = DxF (p, z, x) Fz(p, z, x)p,

(2.3)

with the requirement that the initial data (x0, z0, p0) satisfy F (p0, z0, x0) = 0.

Lemma 2.2. If F (p0, z0, x0) = 0, then the solution (x, z, p)(s) to (2.3) satises F (p, z, x) = 0.

Proof. From the denition of (̇x, z, p), it follows that d
dsF (p(s), z(s), x(s)) = 0 by substitution. □

It is also immediate to check that

Proposition 2.3. If u is a C2 solution to (0.1), then the variables z, p given by (2.1) satisfy (2.3)
(where x(s) is dened there).

Remark 2.4. Note that we require C2 because we take the derivative of the PDE to compute the
ODE for p. In fact, to dene a classical solution u, it is required only to be C1. When we construct a
local solution, we will see that s → u(x(s)) is of regularity C2, that is, it has two directional derivatives
along the ow, even if u may only be C1.

2.1. Examples.
2.1.1. F linear. Assume that

F (p, z, x) = a(x) · p+ b(x)z + c(x)

Then the equation for characteristics is




ṗ = Dc(x) b(x)p,

ż = a(x) · p = b(x)z  c(x),

ẋ = a(x)

The projected characteristic x(s) is thus autonomous, and the ODE for z does not depend on p. Clearly
such a solution is well dened as long as the coecients a, b, c are regular: moreover, the map

u(x(s)) = z(s)

is well dened since x(s) is invertible.
The equation for p is not needed: if X(s, y) is the ow generated by ẋ = a(x), then

u(X(s, y)) = z(s, y),

and dierentiating w.r.t. s
Du · a(x) = ż = b(x)z  c(x),

which is the PDE. Observe also that to give a distributional solution it is enough to have s → u(x(s)) be
dierentiable, i.e. we could allow discontinuous functions to the ”solutions” (in this extended sense).
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Example 2.5. The PDE
x1ux2

 x2ux1
= u

gives the ODE
ẋ1 = x2, ẋ2 = x1, ż = z,

so that the solution is (ı imaginary unit, identifying R2 with the complex plane)

x(s) = x0e
ıs, z(s) = z0e

s

With this formula one can construct the general solution if the initial data is given on a single point of
every circle.

2.2. F quasilinear (semilinear). The function F is now

F (p, z, x) = a(x, z) · p+ b(x, u)

The ODE are now
ẋ = a(x, z), ż = a(x, z) · p = b(x, u)

In this case, the solution of the ODE exists locally, but it may blow up or the map

u(x(s)) = z(s)

may not be invertible because we only know that (x0, z0) → (x(s;x0, z0), z(s;x0, z0)) is.
If F is semilinear, i.e. the coecients of p depend only on x, the function (s, y) → x(s, y) is always

invertible, so that the local existence may occur because of the blowup of i(x(s)).

Example 2.6. If
ux1

+ ux2
= u2,

then
ẋ = (1, 1), ż = z2,

so that

u

x0 + (s, s)


=

1
1
z0

 s
,

which blows up in nite time.

Example 2.7. If
ux1

+ uux2
= 0,

then the characteristics are
ẋ = (1, z), ż = 0,

so that
u(x0 + (s, z0s)) = z0, 

However the map x0 + (s, z0s) may not be invertible.

Example 2.8. Consider
ux1

ux2
= u

The ODE for characteristics is
ẋ = (p2, p1), ż = 2p1p2, ṗ = p

Hence
p = p0e

s, x = x0 + p⊥0 (e
s  1), z = z0 + p0,1p0,2(e

2s  1)

If the data is given on
Γ = x1 = 0, u⌞Γ= x2

2,

then we compute from the PDE F (p, z, x) = 0

p2 = ux2
= 2x2, p1 = ux1

=
u

ux2

=
x2

2
,

so that the solution is along the characteristic starting from (0, y)

p(s; y) =

2y, y2


es,

z(s, y) = y2 + y2(e2s  1) = y2e2s,

x(s; y) = (0, y) +

2y, y2


(es  1)
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The last equation gives

x2  y

x1
=

1

4
, y = x2 

x1

4
, es = 1 +

x1

2x2  x1

2

=
4x2 + x1

4x2  x1
,

u(x) =


x2 

x1

4

2
4x2 + x1

4x2  x1

2

=
(x1 + 4x2)

2

16


Indeed
(x1 + 4x2)

8

(x1 + 4x2)4

8
=

(x1 + 4x2)
2

16


Note that in this case, even if no curves passes through x2 = x1

4 , the nal formula is valid also there.

3. Initial/Boundary conditions

Aim here is to construct a local solution to

F (Du, u, x) = 0, u⌞Γ= g⌞Γ,
As a rst step, assuming Γ smooth, we make a change of variable such that Γ = xd = 0 close to a point
x0  Γ.

Let Φ,Ψ = Φ−1 be such a smooth mappings: then

y = Φ(x), Φ(Γ) = yd = 0, v(y) = u(Ψ(y))

The PDE becomes

Du(x) = Dv(Φ(x))DΦ(x),

0 = F (Du, u, x) = F

Dv(Φ(x))DΦ(x), v(Φ(x)), x


= F


Dv(y)DΦ(Ψ(y)), v(y),Ψ(y)) = G(Dv, v, y)

The latter is the expression of the PDE in the new coordinates, having as solutions the image of the
solutions of F . The boundary data become

h(y) = g(Ψ(y)), y  Φ(Γ)

We will thus consider the boundary problem

F (Du, u, x) = 0,

u⌞xd=0= h
(3.1)

3.1. Compatibility of the initial data. In order to use the characteristic ODE to construct a
solution, one has to nd the appropriate initial data. Now, given h, we know the quantities

x0 = (x′
0, 0), z0 = u(x0), uxi

(x0) = hxi
(x0) for i ̸= d

The last identity is the PDE by Proposition 2.3, i.e.

F

hx1

(x0),    , hxd−1
(x0), uxd

, u(x0), x0


= 0

In general, it may happen that uxd
does not exists or it is not unique.

3.1.1. Noncharacteristic initial data. In order to construct a solution in a neighborhood of x0, we
need

• there exists a unique (local) solution ud(x0) to

F (hx1
(x0),    , hxd−1

(x0), uxd
, u(x0), x0) = 0; (3.2)

• the ow

R× Rd−1 ∋ (s, y) → x(s, y)

generated by

ẋ = DpF (p, z, x), y  Γ,

is invertible in a neighborhood of (0, x0).

Assume that there is a local solution to (3.2), i.e. a function

y → p0(y) = (hx1
(y),    , hxd−1

(y), pd(y)), F (p0(y), u0(y), (y, 0)) = 0,

and let (p0(y, 0), z0(y, 0), (y, 0)) be the triple corresponding to this solution.
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Lemma 3.1. If
∂pd

F (p0(x0), z0(x0), x0) ̸= 0 at (y, 0) = x0,

then there is a local solution to the characteristic ODE.

Proof. By the Implicit Function Theorem, there is a unique smooth function

pd,0(y), F (p′, pd, z, x) = 0

Then, since we now know the initial data for the ODEs, the solution is dened locally for every initial
point on Γ = xd = 0. □

Remark 3.2. In the original coordinates, the non characteristic condition is

DpF (p0, z0, x0)DΦ(x0) ̸= 0 ⇔ DpF (p0, z0, x0) · n(x0) ̸= 0,

where n is the unit normal to Γ.

3.2. Local solution. Still it is not know if the ow is invertible. Assume that the non characteristic
condition holds, and let

x(s, y), z(s, y), p(s, y)

be the solution of the ODE starting from the point y  Γ: s is the time-parametrization of the trajectory.

Lemma 3.3. The equation
R× Rd−1 ∋ (s, y) → x(s, y)  Rd

is locally invertible.

Proof. The map is smooth, and the derivative at (0, y0) is

x(s, y) = (y, 0) + (Dp′F,DpF )s+ o(y, s), Ds,yx(0, y0) =


Dp′F idd−1

Dpd
F 0



which by the non characteristic condition is non singular. □
Remark 3.4. Another proof is that since Dpd

F ̸= 0, we can use xd as the time coordinates, obtaining

dx

dxd
=

DpF

Dpd
F


In particular the characteristics are owing transversally through Γ.

Hence we can write
s = s(x), y = y(x),

and the solution to the PDE as a function of x:

u(x) = u(s(x), y(x)), p(x) = p(s(x), y(x)) (3.3)

Theorem 3.5. The function given by (3.3) is a solution of the PDE problem (3.1).

Proof. We have to prove two things: the PDE is satised and p id the gradient of u.
First of all, by Lemma 2.2 we have that

F (p(x), u(x), x) = 0

in a neighborhood of x0.
It remains to prove that

p(x(s)) = Dxu(x)

Set
r = Ds,yz  p ·Ds,yx = (Dxu p)Ds,yx

For the s direction we have that rs = 0, because it corresponds to the ODE for z,

zs = ż = p ·DpF = p · ẋ = p · xs

For the other directions, taking a derivative in s

ṙy = Dy ż  ṗDyx pDyẋ

Since by the ODE
Dy ż = Dypẋ+ pDyẋ, ṗ = FzpDxF
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we obtain
ṙy = Dypẋ ṗDyx = DypDpF  (FzpDxF )Dyx

Dierentiating F (p, z, x) = 0 by y

DpFDyp+ FzDyz +DxFDyx = 0,

so that
ṙ = Fz(pDyxDyz) = Fzr

On Γ this quantity is 0 by the choice of the initial data, so we deduce that r = 0, i.e. p = Du. □

4. Exercises

1) Find a solution to
ux + uy = u, u(0, y) = sin(y)

2) For which initial data there exists a global solution to

ux + uy = u2, u(x1, 0) = v(x1)?

3) For the HJ equation
ut +H(Du) = 0, u(0, x) = u0(x)

nd the existence time of the smooth solution.
4) Find the existence time of a smooth solution for the quasilinear equation

ut + λ(u)ux = 0, u(0, x) = u0(x)

5) Consider the PDE 
ux1

= 0, (x1, x2) < 1,

u(cos(, sin()) = u0()

(In this case the data are more like boundary data.) Determine the conditions on u0 for there is a solution.
Verify that the local existence theorem holds.


