

An introduction to Smart Grid and Switching Converter Fundamentals of Modern Power Systems A.Y. 2025 - 2026

Prof. Alessandro Massi Pavan – apavan@units.it

Smart grid (SG)

- The hybrid centralized/distributed system established in the 1890s faces challenges: increasing demand for electricity (50% by 2050), integration of intermittent renewables (90% by 2050), bidirectional flow, the need to respond to emerging loads such as e-vehicles (opportunity too), varying demand patterns, energy saving policies make it obsolete
- These challenges force drivers to transform the current power system into a smarter grid

Smart grid

- It is an **emerging area** of engineering and technology integrating electricity, communication and information infrastructures
- Ensure an efficient, clean, reliable and economic supply
- It is a complex field with different engineering areas such as the SG architecture (smart powers systems, communication systems, information technology, security and microgrid), renewables, energy storages and power electronics
- Active participation of customers, new products, services, markets and industries

Smart grid

- Fundamentals applications: energy management strategies, reliability models, security, privacy and the promotion of demand-side management
- Emerging applications: the deployment of electric vehicles
- Crucial tools: Big Data management and analytics, cloud management and monitoring, consumer engagement, artificial intelligence and business models

Smart grid

A smart grid is the electric power grid which establishes a communication network between power suppliers and power consumers with the help of smart sensors, smart meters, electric vehicles, and power-generating utilities Smart grid includes an energy management system that helps in balancing the energy demand and supply to produce and consume electricity efficiently at a lower cost

Smart grid design

Traditional versus Smart grid

Characteristic	Traditional grid	Smart grid
Technology	 Electromechanical metering No communication between devices Little internal regulation 	 Digital metering Increased communication between devices Remote control and self-regulation
Flow of power and communication	 One way Power flow starts from centralized power plants 	Two waysPower flow from and to various grid users
Generation	Centralized	Distributed
Fault location	Hard to determine	Can be detected remotely as well as predicted
Monitoring	Manual	Self-monitoring
Control	Limited	Pervasive control
Operation and maintenance	Manual checks	Remotely monitor equipment

Smart grid architecture

S. S. Refaat et al.
Smart grid and enabling technologies

- Five main layers
- Multiple stakeholders
- Different vendors need interoperability
 requirements
- Real-time dynamic control and management systems
- Intelligent appliances

Smart grid elements

S. S. Refaat et al.Smart grid and enabling technologies

- role in sharing energy patterns, local RES production, strong and energy sharing
- Sensors and PMU: collecting data, monitoring states and health status, customer awareness
- Demand response: capability
 of changing the load profile
 from normal patterns (changes
 in electricity price or incentive
 payments)

Cellular and satellite communication

Integrated communication: fiber optics, WLAN, cellular, WiMAX, PLC

M. Kamran Fundamentals of smart grid systems

SG elements: Smart meters and control

- Two-way communicators, real-time sensors, power outage notification, power quality monitoring
- Remote consumer price signals
- Enhance energy diagnostic and profiling
- Collect, store and report users' consumption
- Obtain location and degree outages remotely
- Possibility for remote connection/disconnection
- Control systems provide timely response and enables detection,
 prediction, disconnection and self-healing

Users' consumption

Fascia 3

Users' profiling

SG elements: Distributed generators

Small-scale decentralized power generators

- Modular, flexible, usually closed to the load
- Mostly RES-based
- Can be controlled and coordinated within a smart grid
- Make the grid bidirectional
- Offer benefits to the grid
- May be part of an isolated grid, of a microgrid or grid-connected
- Support in reducing losses and delivering RS
- Increase the complexity

S. S. Refaat et al.

Smart grid and enabling technologies

SG elements: Energy storage

More in "Materials and Systems for the Energy Transition" and "Electrical Energy Storage"

- To settle peaks and valleys of supply
- Combined with power electronics
- Grid support: grid's voltage and frequency, spinning reserve, resilience ...
- Financial benefits (automatic pricing signals
- Power congestion avoiding upgrades in the grid
- Challenges: policies, business models, financing mechanisms

S. S. Refaat et al.
Smart grid and enabling technologies

Smart grid characteristics

- Flexibility: various types of generation, storage, loads, EV, ...
- Efficiency: energy efficiency, product innovation, distributed energy allows for smaller transmission and distribution losses
- Smart transportation: smart EVs compensate the infrastructure expansion V2G, V2B, V2X
- Reliability and power quality: reliable supply of electricity and minimized vulnerability to attacks or natural disasters
- Market enabling: aggregated supply, ancillary services
- (Customers' acceptance and engagement prosumers)

Smart grid enabling technologies

S. S. Refaat et al. Smart grid and enabling technologies

- Electrification: more RES, more loads (heating and transportation) away
 from fossil fuels, more efficiency
- Digitalization: enhancing the grid's utilization,
 optimization and management

Decentralization: microgrid

- (Smart) Microgrid are the building blocks of Smart Grid
- Perceived by the main grid as a single element responding to appropriate controlling signals. Can operate in both grid-connected or island mode and have clearly defined electrical boundaries
- Usually contain at least a distributed generator, an electrical storage system, some (controllable) loads, an Energy Management System (EMS)
- **DC microgrid** are traditionally used in marine, automotive and avionics for power distribution. Today, data centers, manufacturing industries, ...
- Computers, LED lights, variable speed drives, house appliances, industrial
 equipment need DC power for their operation and ... most distributed
 generators produce DC power >> DC microgrids

Simplified structure of a microgrid

- Critical loads need to be supplied constantly
- The selection of DGs
 depends on local
 conditions
- EES (and EV) can be used for energy
 arbitrage
- The switch at PCC
 performs
 the grid-connection

Evolution of the power sector

Data management in smart grid

- Massive and various amount of data (electricity and information)
 new types of consumers (EVs, smart households, producers, ...)
 and new communication equipment
- Assisting utilities avoiding peak loads, understanding customers' behavior and achieve grid stability and better reliability
- Big data processing: data management and analytics
- The role of artificial intelligence is pivotal, for forecasting too
- Security challenges and privacy

Energy forecasting

- Forecasting: "a statement of what is judged likely to happen, based on information you have now" – Cambridge Dictionary
- Three types of forecasting: energy demand, energy production and price forecasting
- Various methods: persistence, linear regression, artificial intelligence

Time horizon

Electric load forecast

Name	Time Horizon
Long term	$\geq 3 \text{ years}$
Medium term	15 days to 36 months
Short term	1 to 14 days
Nowcasting	1 to 60 minutes

Term	Range	Application
Nowcast	Few sec 30'	Control & adjustment actions
\mathbf{Short}	30' - 1 day	Dispatch planning; electricity market; unit commitment
Long	1 day - 1 week	Reserve requirements; maintenance schedule

Power electronics

Power electronics

Switching converters categories

G. Spagnuolo Summer School on energy Giacomo Ciamician 2024

Application example: power supply

Components of a typical linear power supply

In real applications, waveforms are far from ideal DC and AC

DC-DC converter example

Transforms DC current/voltage in DC current/voltage

Input and output power are almost equal, different V and I

G. Spagnuolo Summer School on energy Giacomo Ciamician 2024

"Generators" Grid Transformer Solar PV DC-DC Grid Inverter Wind turbine system Converter Gearbox DC link SG AC-DC conversion DC-AC conversion **MPPT** Grid Transformer DC link DC-DC bidirectional DC-AC conversion converter Battery bank

DC-DC converter example Take a module from the market and connect it to the battery DIRECTLY! NO DC/DC converter in the middle.

P-V CURVES OF PV MODULE(370W)

G. Spagnuolo

Electrical vehicles

Hybrid systems

Hybrid systems

EVs integration

Switching devices: diode

- Current can flow in one direction only
- When the voltage
 across the diode is
 positive
- The I-V characteristic shown here is of an ideal diode
- Solar cells ...
- LED ...

Single-phase uncontrolled rectifier with resistive load

- When V_{in} is positive, current flows through the diode in the direction shown by the symbol and the voltage is "copied"
- When V_{in} is negative, no current flows at all and the voltage is zero
- Not widely used
- The AC current (I_{in}) is problematic

$$V_{out} = \frac{1}{2\pi} \int_0^{\pi} V_{in} \sin \omega t \, d(\omega t) = \frac{V_{in}}{\pi} = 0,318 V_{in}$$

Single-phase uncontrolled rectifier with inductive load

Full-wave rectifier

$$V_{out} = \frac{2V_{in}}{\pi} = 0,6366V_{in}$$

Three-phase rectifier

$$V_{out} = \frac{3\sqrt{3}}{\pi}V_{in} = 1,654V_{in}$$

Switching devices: thyristor

- Current can flow in one direction only
- When triggered
 by injecting current
 into its gate
- When the voltage
 across the thyristor
 is positive
- The I-V characteristic shown here is of an ideal thyristor

Phase-control rectifier

$$V_{out} = 0.159V_{in} \times (1 + \cos \alpha)$$

$$V_{out,eff} = \frac{V_{in}}{2}$$

$$V_{out}(t) = \sum_{n=1,3,5,\dots}^{\infty} \frac{2V_s}{n\pi} \sin n\omega t$$

$$V_{out,eff} = \frac{V_{in}}{2}$$

$$V_{out}(t) = \sum_{n=1,3,5,\dots}^{\infty} \frac{2V_s}{n\pi} \sin n\omega t$$

Sine wave and harmonics

Single-phase full bridge inverter

