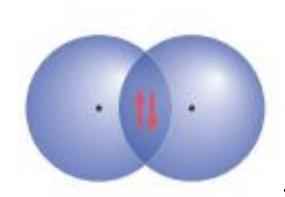
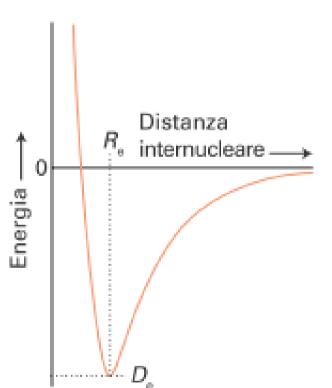

Teoria di Lewis (1916)

Regole di Lewis per gli elettroni di valenza in una molecola (legami covalenti):


- di solito per formare un legame si appaiano 2 elettroni (conseguenza del principio di esclusione di Pauli), indicati con due punti o una linea;
- per la maggior parte degli atomi ci saranno al massimo 8 elettroni nel guscio di valenza (regola dell'ottetto);
- per gli elementi con orbitali d accessibili il guscio di valenza può essere espanso oltre l'ottetto.
- le molecole cercheranno di avere l'energia più bassa possibile, e quindi si formerà il maggior numero di legami possibile e si formeranno i legami più forti possibili e la disposizione degli atomi nelle molecole sarà tale da minimizzare le energie di repulsione.

Le strutture di Lewis danno la connettività degli atomi in una molecola, l'ordine dei legami e il numero di coppie solitarie, ma non dice nulla sulla geometria della molecola. Si possono utilizzare i dati delle strutture di Lewis per derivare strutture molecolari tramite la teoria VSEPR.


BF₄

Teoria del legame di valenza (VB)

(L. Pauling)

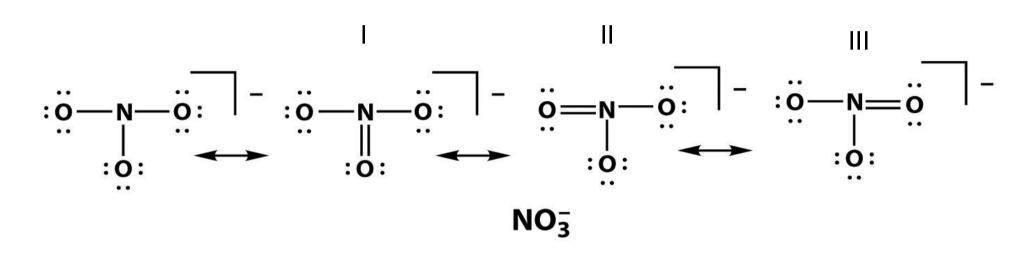
La teoria VB tratta la formazione di una molecola come derivante dall'avvicinamento di atomi completi

$$\Psi_{cov} = \Psi_{A(1)} \Psi_{B(2)} + \Psi_{A(2)} \Psi_{B(1)}$$

303 kJ mol⁻¹ a 87 pm

$$\Psi = a\Psi_{cov} + c\Psi_{A}^{-}\Psi_{B}^{+} + c\Psi_{A}^{+}\Psi_{B}^{-} = a\Psi_{cov} + c\Psi_{ion}$$

398 kJ mol⁻¹ a 75 pm


$$H-H \leftrightarrow H^-H^+ \leftrightarrow H^+H^-$$

Ibrido di Risonanza fra strutture canoniche

$$\Psi = (1 - \lambda)\Psi_{cov} + \lambda\Psi_{ion}$$

Risonanza

Il concetto di risonanza è tipico della teoria VB

$$\Psi = a\Psi_{\parallel} + b\Psi_{\parallel} + c\Psi_{\parallel\parallel} \text{ (con } a = b = c\text{)}$$

Strutture canoniche

L'energia della funzione d'onda risultante è inferiore a quella di ognuna delle funzioni contribuenti (**strutture canoniche**) e la differenza è detta **energia di risonanza**

Affinché una struttura canonica proponibile contribuisca in modo significativo alla risonanza, essa deve avere il massimo numero di legami possibili e la distribuzione delle cariche formali deve essere ragionevole.

Carica formale: la carica che un atomo dovrebbe avere in una molecola se tutti gli atomi avessero la stessa <u>elettronegatività</u>

Elettronegatività = la capacità di un atomo in una molecola di attirare elettroni su di sé

Elettronegatività di Pauling, χ^P

Н	$D(X-Y)_{misurata} > \frac{1}{2}[D(X-X) + D(Y-Y)]$						
2.2							
Li 1.0	Be 1.6		B 2.0	C 2.6	N 3.0	O 3.4	F 4.0
Na 0.9	Mg 1.3		Al(III) 1.6	Si 1.9	P 2.2	S 2.6	C1 3.2
K 0.8	Ca 1.0		Ga(III) 1.8	Ge(IV) 2.0	As(III) 2.2	Se 2.6	Br 3.0
Rb 0.8	Sr 0.9	(d-block elements)	In(III) 1.8	Sn(II) 1.8 Sn(IV) 2.0	Sb 2.1	Te 2.1	I 2.7
Cs 0.8	Ba 0.9		Tl(I) 1.6 Tl(III) 2.0	Pb(II) 1.9 Pb(IV) 2.3	Bi 2.0	Po 2.0	At 2.2

$$\Delta \chi = \chi^{P}(Y) - \chi^{P}(X) = \sqrt{\Delta D}$$
 (D in eV)

Stimare l'energia di legame di Br-F, D(Br-F)

$$D(F-F) = 158 \text{ kJ mol}^{-1}$$
 $D(Br-Br) = 224 \text{ kJ mol}^{-1}$ $\chi^{P}(F) = 4.0$ $\chi^{P}(Br) = 3.0$
$$\Delta D = [D(Br-F)_{\text{sperimentale}}] - \frac{1}{2} \{ [D(Br-Br)] + [D(F-F)] \}$$

$$250.2 \text{ kJ mol}^{-1}$$

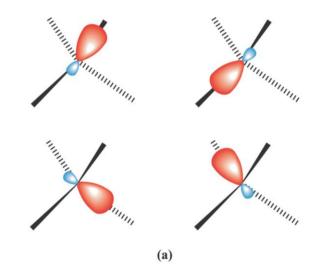
$$\sqrt{\Delta D} = \chi^{P}(F) - \chi^{P}(Br) = 1.0$$

$$\Delta D = 1.0 \text{ eV} = 96.5 \text{ kJ mol}^{-1}$$

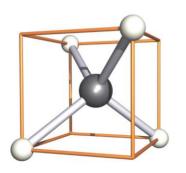
$$[D(Br-F)_{\text{stimato}}] = \Delta D + \frac{1}{2} \{ [D(Br-Br)] + [D(F-F)] \}$$

$$[D(Br-F)_{\text{stimato}}] = 96.5 + \frac{1}{2} \{ 224 + 158 \} = 287.5 \text{ kJ mol}^{-1}$$

Cariche Formali (Q_F)


La struttura di Lewis con energia più bassa è quella con le più basse cariche formali sugli atomi (perché tale struttura corrisponde al minimo riarrangiamento degli elettroni)

16 elettroni


Promozione e Ibridizzazione

(il problema della direzionalità degli orbitali atomici dell'atomo centrale)

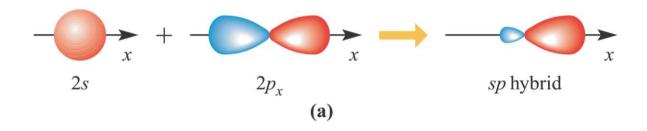
ground state [He]2s²2p_x¹2p_y¹ \rightarrow state eccitate **di valenza** [He] 2s¹2p_x¹2p_y¹2p_z¹
406 kJ mol⁻¹

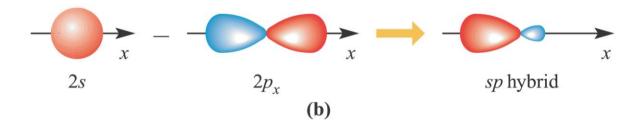
Obiettivo: individuare la simmetria degli orbitali ibridi che servono per descrivere la geometria della molecola (in questo caso un tetraedro)

E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_{\rm d}$
4	1	0	0	2

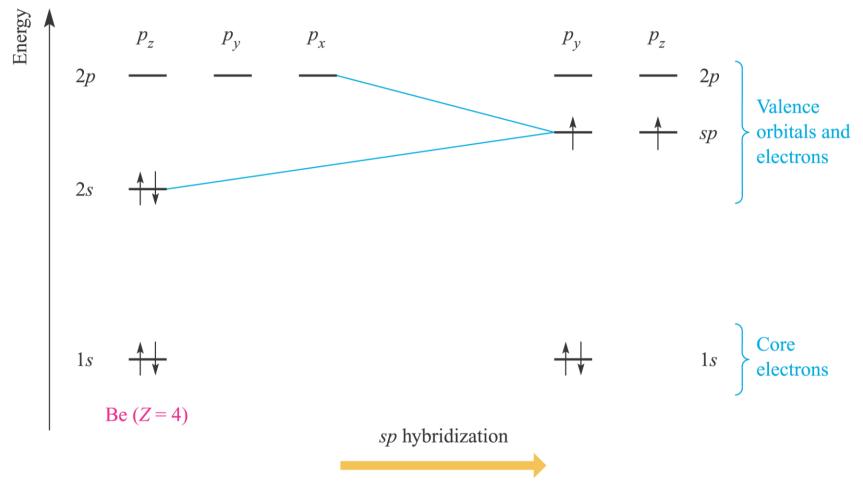
 $A_1 + T_2$

Tabella dei caratteri per il gruppo puntuale $T_{\rm D}$

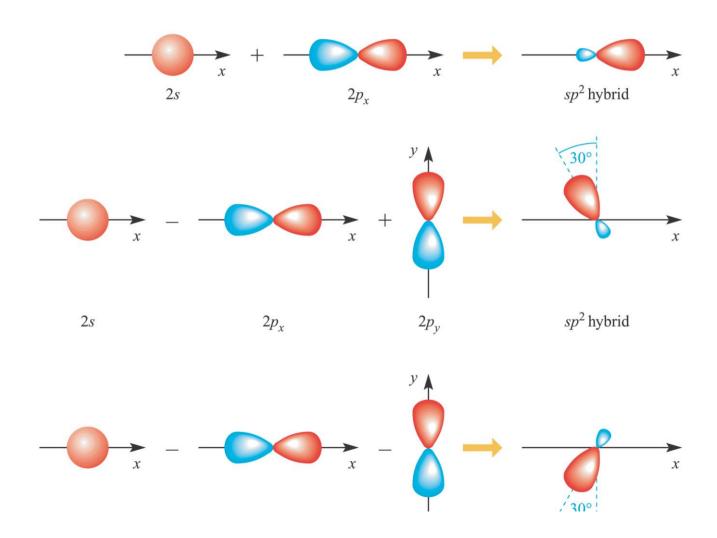

	E	8C ₃	3C ₂	6S ₄	6σ _d	linear, rotations	quadratic
A_1	1	1	1	1	1		$x^2+y^2+z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T ₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

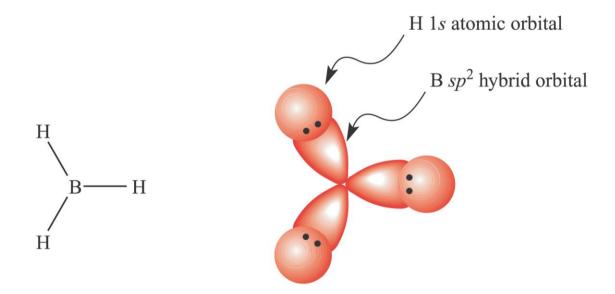

Criteri per l'ibridizzazione

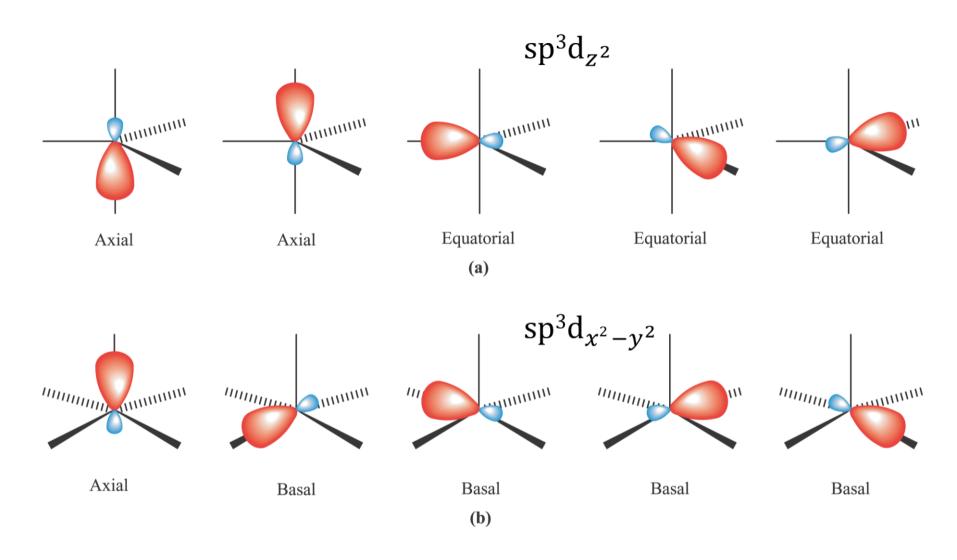
Le funzioni d'onda degli orbitali atomici ibridizzati devono avere:


- simmetria appropriata
- energia simile

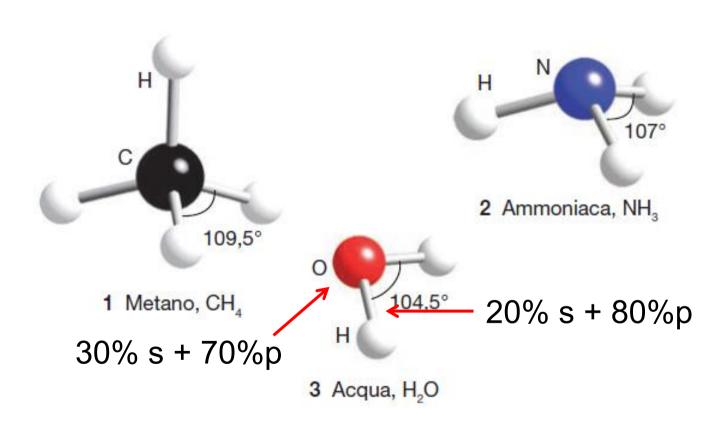
Ibridi sp





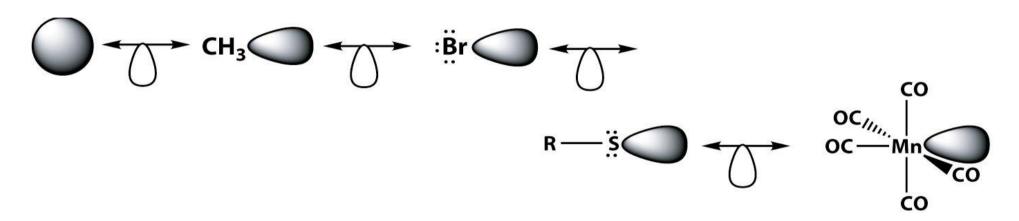

BeCl₂

Ibridi sp²



bipiramide trigonale e piramide a base quadrata

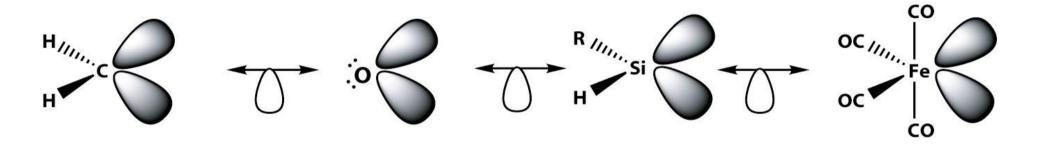
Negli ibridi spⁿ non necessariamente tutti gli orbitali contribuiscono in modo eguale all'ibrido

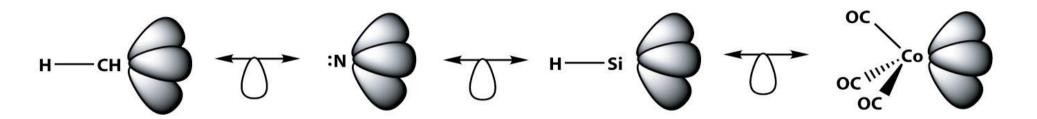


Sovrapposizione

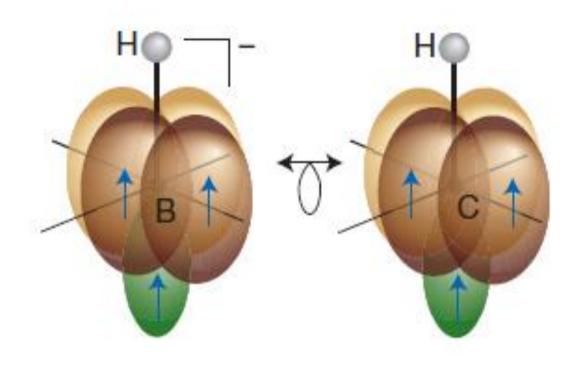
La forza di un legame sarà circa proporzionale all'entità della sovrapposizione degli orbitali atomici (puri o ibridi) dei due atomi. Gli orbitali ibridi danno sovrapposizioni più efficaci rispetto agli orbitali atomici puri (sono più direzionali). La direzionalità cresce con il carattere s dell'ibrido: sp > sp² > sp³ » p

Molecola	Ibridizzazione		Lunghezza legame C-H (pm)
Acetilene	sp	500	106.1
Etilene	sp ²	400	108.6
Metano	sp ³	410	109.3

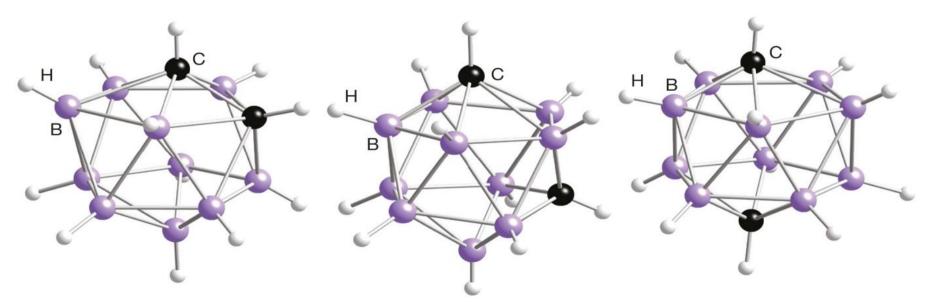

Serie di frammenti isolobali con un singolo elettrone nel lobo


I frammenti isolobali hanno:

- stessa simmetria
- energie simili
- stessa occupazione elettronica


Serie di frammenti isolobali con un singolo elettrone nei lobi

Serie di frammenti isolobali con un singolo elettrone nei lobi


Il frammento BH⁻ è isolobale a CH

Carborani

Ad esempio, un analogo di $[B_6H_6]^{2-}$ è il carborano neutro $B_4C_2H_6$. I carborani vengono spesso preparati per reazione di borani con etino:

$$B_{10}H_{14} + CH \equiv CH \rightarrow B_{10}C_2H_{12} + H_2$$

closo-1,2- $B_{10}C_2H_{12}$ closo-1,7- $B_{10}C_2H_{12}$ closo-1,12- $B_{10}C_2H_{12}$