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Agenda (about 3 lectures)

One-parameter models

General approach to Bayesian data modelling
A first example
Note on accumulation of evidence
Binomial model
Note on impact of more evidence
Summarizing posterior distributions
Conjugacy
Interplay between priors and data
Normal model
Poisson model
Other models
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General approach to Bayesian data modelling

A Bayesianly justifiable analysis is one that

“treats known values as observed values of random variables,
treats unknown values as unobserved random variables, and
calculates the conditional distribution of unknowns given knowns
and model specifications using Bayes’ theorem.”

-- Rubin (1984, p. 1152)
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3-Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables ( y ) and unobservables ( θ ) in accordance with all
that is known about the problem

p(y, θ) ∝ p(y | θ)p(θ)

p(y | θ) ∝ L(θ) = (L(θ, y)) is the model for the conditional probability of
the data, that is (proportional to) the likelihood
p(θ) is the prior distribution for the unknown parameters, reflecting
what is believed about the situation

2. Condition on the observed data ( x ), calculate the conditional probability
distribution for the unobservable entities ( θ ) of interest given the
observed data: the posterior distribution

p(θ | y) =
p(y, θ)
p(y)

=
p(y | θ)p(θ)

p(y)
∝ p(y | θ)p(θ)

3. Examine fit of the model, tenability/sensitivity of assumptions, reasonable
conclusions?, respecify, summarize results, etc.

See ambiguous notation
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Notation

The main characters:

We denote with Greek letters, typically, θ, the parameter(s), unobservable
quantities. θ can be a scalar or a vector.

The observed data are denoted by y, if data are gathered on n units:

y = (y1, …, yn)

where yi can be a scalar or a vector (if more than one variable is observed
on each unit). y can then be a scalar, a vector, or a matrix.

We will also use unknown but potentially observable quantities, that is,
future observations, these will be denoted as ỹ.

If covariates are available, these will be denoted by x.
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Model Specification

Specifying a Bayesian model means specifying:

The distribution of y conditional on the parameter θ : y | θ ∼ p(y | θ)

The prior distribution on θ : θ ∼ p(θ)

Putting these together, we have specified the joint distribution of (y, θ):

p(y, θ) = p(y | θ)p(θ)

and we can obtain the marginal distribution of y as:

p(y) = ∫Θp(y, θ)dθ = ∫Θp(y | θ)p(θ)dθ
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Posterior distribution

Inference on θ will be based on the posterior distribution, which is derived
through a straightforward application of Bayes theorem

p(θ | y) =
p(y, θ)
p(y)

=
p(y | θ)p(θ)

p(y)

The posterior distribution contains all the information on θ we have (from the
data and prior to observing the data).

The work will have to do is to understand

how to summarize the information in p(θ | y), to obtain for instance point
and interval estimates or to perform hypotheses testing;

how to explore the distribution, but for simple examples p(y) is difficult to
derive (impossible to derive analytically), so exploration of the posterior
will be based on computational machinery (MCMC and other stuff) whose
starting point is

p(θ | y) ∝ p(y | θ)p(θ)
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Predictive Distribution

We are sometimes interested in "unknown but potentially observable
quantities" ỹ (e.g., prediction of y on new statistical units).

We assume that they behave like the data y, that is:

ỹ | θ ∼ p(ỹ | θ)

Hence, unconditionally, the distribution of ỹ is:

p(ỹ) = ∫Θp(ỹ | θ)p(θ)dθ

which is the same as y. This is also called the prior predictive distribution. After
the data y have been observed, we can compute the posterior predictive
distribution:

p(ỹ | y) = ∫Θp(ỹ, θ | y)dθ = ∫Θp(ỹ | θ, y)p(θ | y)dθ = ∫Θp(ỹ | θ)p(θ | y)dθ

where we note that the conditional iid assumption implies that:

p(ỹ | θ, y) = p(ỹ | θ).
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Exchangeability

A common hypothesis in statistical inference is that observations are
independent and identically distributed (iid), meaning we collect y1, …, yn and
assume these are iid.

In Bayesian inference, where the inference process is fully probabilistic.
independence of observations would imply that we cannot learn about future
observations from past ones (since yn+ 1 would be independent of y1, …, yn).

Instead, we assume observations are exchangeable, meaning the joint
distribution of (y1, …, yn) is invariant to index permutations:

p(y1, …, yn) = p(yi1, …, yin)

for any permutation (i1, …, in) of (1, …, n).
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Exchangeability and Conditional Independence

We will usually specify the model assuming that

y1, …, yn are iid conditional on θ

θ ∼ p(θ)

This implies that y1, …, yn are exchangeable. In fact, consider the
unconditional distribution:

p(yi1, …, yin) = ∫p(yi1, …, yin | θ)p(θ) dθ

= ∫
n

∏
j= 1

p(yij | θ)p(θ) dθ

= ∫
n

∏
i= 1

p(yi | θ)p(θ) dθ = p(y1, …, yn)
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de Finetti's Theorem

For binary variables y1, …, yn, exchangeability is equivalent to conditional iid:

Theorem (de Finetti): Let Y1, Y2, …, Yn, n → ∞, be a sequence of Bernoulli r.v.,
then they are exchangeable if and only if there exists a random variable θ
valued in [0, 1] such that:

p(y1, …, yn) = ∫1
0θ

∑ yi(1 − θ)n− ∑ yidP(θ).

An extension of this theorem exists for general random variables.
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Non independence as θ unknown

The following are equivalent:

y1, …, yn are exchangeable.

y1, …, yn are iid conditional on θ.

This means:

Observations are IID if we know the data-generating mechanism.

Since we do not know it, observations are not independent. Instead:

y1 gives information about y2 because it provides information about

the data-generating mechanism θ.

12 / 27



More on Bayesian prediction interpretation

("The usual Bayesian story":) Bayesian statistics is often described as
consisting of assigning a prior on θ and using Bayes rule to compute the
posterior distribution. Obtaining the predictive distribution,

p(ỹ | y) = ∫Θp(ỹ | θ, y)dp(θ | y)

is then just a matter of computations. Bayesian statistics is deeper than that!
And a first basic concept we should recall is the interpretation of the Bayesian
predictive distribution.

Bayesian statistics is about acting under uncertainty, or incomplete information (from
the data, from domain knowledge, etc.).
If probability is the prescribed formal language to describe this (incomplete)
information, then the evolution of information, or learning, is expressed through
conditional probabilities.
In particular, learning on the next observation based on the observed is expressed
through the conditional distribution p(ỹ | y).
This leads us to the interpretation of the Bayesian predictive distribution:

it is a learning rule that formalizes, through conditional probability, how we
learn about future events given the available information.

(Thus, it is not meant as the ‘physical mechanism’ generating Ỹ given the past, like in
the classic setting).
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Exchangeability and Independence

You don’t need to understand the term exchangeability before learning
Hierarchical Bayesian Models (Chapter 5).

At this point,

we consider exchangeable models for data, y1, …, yn, in the form of

likelihoods in which the n observations are iid, given some parameter
vector θ. (Later we will consider exchangeability for parameters.)

Exchangeability is less strict condition than independence.

independence implies exchangeability
exchangeability does not imply independence

exchangeability is related to what information is available (instead of the
properties of unknown underlying data generating mechanism. See slide
on Bayesian prediction interpretation)

Often we may assume that observations are in fact dependent, but if
we can’t get information about these dependencies we may assume
those observations as exchangeable. "Ignorance implies
exchangeability."
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A first exampleA first example
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Inference about a discrete quantity

In what follows we consider a real example of the very simplest case of
Bayesian calculation.

It is not typical of statistical applications of Bayesian inference, as it deals with
the estimation of a single individual's state (gene carrier or not) - and a
very small data sample, rather than with the estimation of a parameter that
describes an entire population.

Both the estimand and the observed variable are binary.
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Inference about a Genetic Status: Prior

Human males have one X-chromosome and one Y-chromosome, whereas
females have two X-chromosomes, each chromosome being inherited from
one parent.

Hemophilia is due to a recessive gene in the X-chromosome, that is, if X ∗
denotes an X-chromosome with the hemophilia gene,

X ∗X ∗  is a female with the disease
X ∗X is a female without the disease but with the gene
X ∗Y is a male with the disease

Mary has

an affected brother ⇒ X ∗Y
an unaffected mother ⇒ XX ∗  or XX
an unaffected father ⇒ XY

Overall, the mother must be XX ∗ .

Let θ = 1 if Mary is a gene carrier (is XX ∗ ) and 0 otherwise (XX), then based on
the above information, prior to any observation,

P(θ = 1) =
1
2
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Inference about a Genetic Status: Data Model and Likelihood

Data consist of the status of Mary's two sons, who are not affected.

Let then yi be an indicator equal to 1 if the i-th son is affected:

P(yi = 1 | θ) =
0.5 if θ = 1
0 otherwise

The outcomes of the two sons are exchangeable and, conditional on the
unknown θ, are independent; we assume the sons are not identical twins.

The likelihood function corresponding to Mary's two sons is:

L(θ) = P(y1 = y2 = 0 | θ) =
0.25 if θ = 1
1 if θ = 0

{

{
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Inference about a Genetic Status: Prior Predictive

Data consist of the status of Mary's two sons, who are not affected.

We know that

P(y1 = y2 = 0 | θ) =
0.25 if θ = 1
1 if θ = 0

Let y = (y1 = y2 = 0), the predictive probability is

P(y) = P(y | θ = 1)P(θ = 1) + P(y | θ = 0)P(θ = 0)
= 0.25 × 0.5 + 1 × 0.5 = 0.625

{
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Inference about a Genetic Status: Posterior

Prior and likelihood are combined to obtain the posterior, let y = (y1 = y2 = 0),

P(θ = 1 | y) =
P(y | θ = 1)P(θ = 1)

P(y)

=
P(y | θ = 1)P(θ = 1)

P(y | θ = 1)P(θ = 1) + P(y | θ = 0)P(θ = 0)

=
0.25 × 0.5

0.25 × 0.5 + 1 × 0.5
= 0.20

Intuitively it is clear that if a woman has unaffected children, it is less
probable that she is a carrier.

When the parameter is discrete, the results can also be effectively described in
terms of prior and posterior odds.
The posterior odds are given by the likelihood ratio times the prior odds:
p ( θ1 | y )

p ( θ2 | y ) =
p ( y | θ1 )

p ( y | θ2 )

p ( θ1 )

p ( θ2 )

0.2
0.8

=
P(θ = 1 | y)
P(θ = 0 | y)

=
P(y | θ = 1)
P(y | θ = 0)

P(θ = 1)
P(θ = 0)

=
0.25
1

× 1
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Inference about a Genetic Status: Predictive distributions

Prior to the observations the predictive distribution is

P(y1 = 1) = P(y1 = 1 | θ = 1)P(θ = 1) + P(y1 = 1 | θ = 0)P(θ = 0)

= 0.5 × 0.5 + 0 × 0.5 = 0.25

Given the data the posterior predictive is

P(ỹ3 = 1 | y) = P(ỹ3 = 1 | θ = 1, y)P(θ = 1 | y) + P(ỹ3 = 1 | θ = 0, y)P(θ = 0 | y)

= P(ỹ3 = 1 | θ = 1)P(θ = 1 | y) + P(ỹ3 = 1 | θ = 1)P(θ = 0 | y)

= 0.5 × 0.2 + 0 × 0.8 = 0.1
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Inference about a Genetic Status: Adding More Data

Suppose a third son is born and he is not affected, that is we have a new
observation y3 = 0, in order to obtain the new posterior distribution we can

use the old posterior P(θ = 1 | y) as a prior and update it based on the likelihood
P(y3 = 0 | θ)

P(θ = 1 | y, y3 = 0) =
P(y3 = 0 | θ = 1)P(θ = 1 | y)

P(y3 = 0 | θ = 1)P(θ = 1 | y) + P(y3 = 0 | θ = 0)P(θ = 0 | y)

=
0.5 × 0.2

0.5 × 0.2 + 1 × 0.8
= 0.111

A similar mechanism works with the odds

P(θ = 1 | y, y3 = 0)

P(θ = 0 | y, y3 = 0)
=
P(y3 = 0 | θ = 1)

P(y3 = 0 | θ = 0)
P(θ = 1 | y)
P(θ = 0 | y)

1
8

=
0.5
1

1
4

The same result is obtained by starting from the prior and considering the
data y ′ = (y1 = y2 = y3 = 0).
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Sequential analysis

A key aspect of Bayesian analysis is the ease with which sequential analyses
can be performed.

As new data arrives, we need updating the information.
Considering the whole data (y1, y2)

p(θ | y1, y2) ∝ p(y1, y2 | θ)p(θ)

Posterior distribution for θ given data y1 and y2
Conditional distribution of y1 and y2 given θ
Prior for θ

Assuming conditional independence, the likelihood can be partitioned:

p(y1, y2 | θ) = p(y2 | θ)p(y1 | θ)

Then p(θ | y1, y2) ∝ p(y1, y2 | θ)p(θ) = p(y2 | θ)p(y1 | θ)p(θ)

∝ p(y2 | θ)p(θ | y1)

That is, p(θ | y1, y2) is partitioned into conditional distribution of the sole y2
given θ and posterior distribution for θ given y1 (up to a constant of

proportionality)
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Bayes’ Theorem: Accumulation of Evidence

Dataset 1: p(θ | y1) ∝ p(y1 | θ)p(θ)

Dataset 2: p(θ | y1, y2) ∝ p(y2 | θ)p(θ | y1)

Dataset 3: p(θ | y1, y2, y3) ∝ p(y3 | θ)p(θ | y1, y2)

Today’s posterior is tomorrow’s prior

Bayes’ theorem as a mechanism for accumulating evidence

Update diagnosis as symptoms, test results arrive

Update beliefs about proficiency as students complete tasks

Update beliefs about guilty as testimony is heard

Do a study, use results as basis for prior for next study

Makes Bayesian approach a natural framework for meta-analysis and
related approaches that synthesize information from datasets
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Note a margineNote a margine
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Modello e verosimiglianza

Il termine p(y | θ, M) ha due nomi diversi a seconda del caso. A causa della
notazione concisa utilizzata, si può generare confusione.

1. Il termine p(y | θ, M) è detto modello (a volte più specificamente modello di
osservazione o modello statistico) quando è usato per descrivere
l'incertezza su y dati θ e M. La notazione più lunga py(y | θ,M) mostra

esplicitamente che è una funzione di y.
2. Nella regola di Bayes, il termine p(y | θ, M) è chiamato funzione di

verosimiglianza. La distribuzione a posteriori descrive la probabilità (o
densità di probabilità) per diversi valori di θ dato un y fissato, e quindi
quando la posteriori è calcolata, i termini sul lato destro (nella regola di
Bayes) sono anche valutati come funzione di θ dato un y fissato. La
notazione più lunga pθ(y | θ,M) mostra esplicitamente che è una funzione
di θ.

Il termine ha un proprio nome (verosimiglianza) per differenziarsi rispetto al
modello. La funzione di verosimiglianza è distribuzione di probabilità non
normalizzata che descrive l'incertezza relativa a θ (ed è per questo che la
regola di Bayes ha il termine di normalizzazione per ottenere la distribuzione
a posteriori).
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Notazione ambigua in statistica

In p(y | θ)

y può essere variabile o valore,
potremmo chiarire usando p(Y | θ) o p(y | θ)

θ può essere variabile o valore,
potremmo chiarire usando p(y | Θ) o p(y | θ)

p può essere una funzione discreta o continua di y o θ
potremmo chiarire usando PY, PΘ, pY o pΘ

PY(Y | Θ = θ) è una funzione di massa di probabilità, distribuzione
campionaria, modello di osservazione
P(Y = y | Θ = θ) è una probabilità
PΘ(Y = y | Θ) è una funzione di verosimiglianza (può essere discreta o

continua)
pY(Y | Θ = θ) è una funzione di densità di probabilità, distribuzione

campionaria, modello di osservazione
p(Y = y | Θ = θ) è una densità
pΘ(Y = y | Θ) è una funzione di verosimiglianza (può essere discreta o
continua)
y e θ possono anche essere un misto di continuo e discreto

Back to 3-step general approach
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