

via A. Valerio 6/1
34127 Trieste
+390405583478
cstival@units.it

LEZIONE

Principi di illuminazione naturale

Corso di Architettura Tecnica

Illuminazione naturale

La condizione di **comfort visivo** negli ambienti interni è ottenibile mediante il corretto impiego della luce naturale, tenendo contro degli **effetti** che essa produce **sull'utenza** nelle sue forme diretta e diffusa. È possibile individuare alcuni fattori di benessere visivo:

- prestazione visiva, ossia la qualità e l'accuratezza richieste per lo svolgimento di una determinata attività, o compito visivo;
- **gradevolezza** dell'ambiente, in riferimento alla sensazione generale percepita dall'utenza all'interno di un locale, in dipendenza dalle caratteristiche dello spazio e dalla qualità dell'illuminazione fornita.

OBIETTIVI DELLA PROGETTAZIONE DELL'ILLUMINAZIONE DEGLI AMBIENTI

La determinazione dei livelli di illuminazione minimi per gli organismi edilizi residenziali, in particolare per gli spazi primari, è tutt'ora affidata al **Decreto Ministeriale** 5 luglio 1975.

All'articolo 5 è stabilito che nei locali di abitazione, ad eccezione di quelli destinati a servizi igienici, disimpegni, corridoi, vani (fascia funzionale scale, ripostigli secondaria), il valore minimo per il fattore medio di luce diurna sia fissato al 2%, e comunque si impone che l'area della superficie finestrata apribile non sia comunque inferiore a 1/8 della superficie utile del pavimento; la legge fa dunque esplicito riferimento al cosiddetto rapporto aeroilluminante, nel quale a numeratore compare la superficie apribile (associabile alla ventilazione) e non la superficie trasparente.

È opportuno evidenziare che non tutte le norme che disciplinano l'edilizia residenziale (ad esempio i Regolamenti Edilizi) richiamano la prima condizione, relativa al fattore medio di luce diurna, limitandosi ad introdurre la seconda sul rapporto aeroilluminante.

Destinazioni d'uso		FLD _{M,MIN} [%]
Residenze	spazi primari	2
TIGOIGGIZG	spazi accessori	-
	degenze; diagnostica; laboratori	3
Ospedali	palestre; refettori	2
	uffici; spazi di distribuzione	1
	ambienti ad uso didattico	3
Scuole	palestre; refettori	2
	uffici; spazi di distribuzione	1

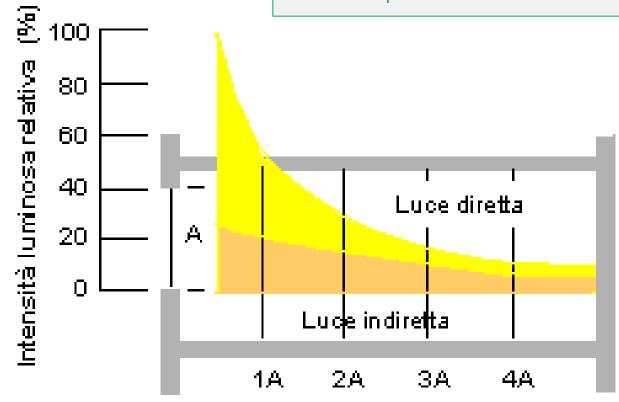
Valutazione dell'illuminazione naturale

La Circ. M. LL. PP. N. 3151/1967 definisce il Fattore Medio di Luce Diurna FLDM secondo l'espressione:

$$FLD_{M} = \frac{A_{g} \cdot \tau \cdot \varepsilon \cdot \psi}{S_{TOT} \cdot (1 - \rho_{M})} [\%]$$

in cui compaiono:

- la sola **superficie trasparente** della chiusura A_q;
- la trasmittanza luminosa τ del vetro;
- il fattore finestra ε relativo alla porzione di volta celeste visibile dalla finestra (effetto delle ostruzioni);
- il fattore ψ che tiene conto dell'arretramento della superficie trasparente rispetto al filo esterno della chiusura opaca;
- l'area totale S_{TOT} delle superfici interne che delimitano il volume del locale;
- il coefficiente medio pesato di riflessione ρ_M delle superfici interne.

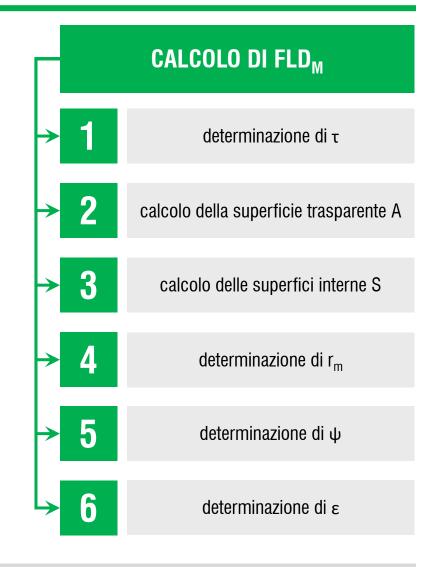

Altri decreti stabiliscono i valori minimi del fattore medio di luce diurna da garantire per edifici a destinazione d'uso diversa da quella residenziale. Si citano in merito:

- la Circolare del Ministero dei Lavori Pubblici n.
 13011/1974, che stabilisce alcuni requisiti per gli organismi edilizi ospedalieri;
- il Decreto Ministeriale 18/12/1975 per l'edilizia scolastica.

Il FLD_M è una grandezza deputata alla valutazione della **qualità dell'illuminazione naturale** in un punto dell'ambiente confinato e **diminuisce all'aumentare della distanza dalla finestra**; indica sostanzialmente il rapporto intercorrente tra l'illuminamento E_i nel punto e quello che si manifesta nello stesso istante su un piano orizzontale E_e posto all'esterno, illuminato dalla volta celeste in assenza di ostruzioni.

Il Fattore di Luce Diurna FLD varia in ogni punto dell'ambiente e diminuisce esponenzialmente all'aumentare della distanza dalla finestra.

Distanza dalla finestra



Il FLD_M si riferisce ad un **piano** che si trova **a 0,85 ml** di **quota** rispetto al **pavimento** (**tavolo di lavoro**) e dista circa 1 ml dalla chiusura trasparente.

Il metodo di calcolo che fa riferimento al FLD_M è applicabile nel caso in cui si verifichino entrambe le condizioni seguenti:

- spazi di forma regolare con profondità, misurata ortogonalmente al piano della finestra, non superiore a 2,5 volte la distanza tra la quota del pavimento e la quota più alta del componente trasparente dell'infisso;
- **finestra** giacente su un piano **verticale**.

Valutazione dell'illuminazione naturale

Tipo di vetro	Fattore solare g [-]	Trasmittanza termica U [W/m² K]	Trasmissione luminosa τ_L [-]
Vetrocamera mm (4+15+4) Intercapedine: aria	0,77	2,80	0,81
Vetrocamera mm (4+15+4) Intercapedine: argon 85%	0,77	2,60	0,81
Vetrocamera low-e (1) mm (4+15+4) Intercapedine: aria	0,72	1,40	0,79
Vetrocamera low-e (1) mm (4+15+4) Intercapedine: argon 85%	0,72	1,20	0,79
Vetrocamera low-e (2) mm (2,4+15+4) Intercapedine: aria	0,41	1,40	0,71
Vetrocamera low-e (2) mm (2,4+15+4) Intercapedine: argon 85%	0,41	1,10	0,71
Vetrocamera a basso fattore solare mm (1,6+15+4) Intercapedine: aria	0,34	2,70	0,39
Vetrocamera selettivo mm (2,4+15+4) Intercapedine: argon 85%	0,32	1,10	0,50

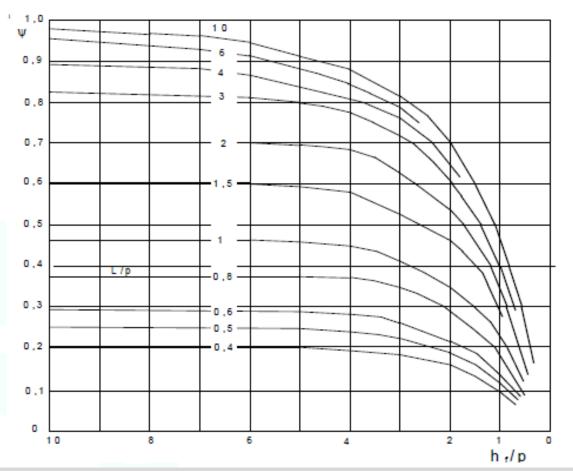
⁽¹⁾ Il rivestimento basso emissivo è applicato sulla lastra float interna, sulla superficie rivolta verso l'intercapedine.

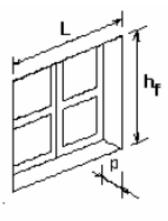
⁽²⁾ Il rivestimento basso emissivo è applicato sulla lastra float esterna, sulla superficie rivolta verso l'intercapedine.

- 2
- Si calcola, attraverso relazioni geometriche, la superficie trasparente A della chiusura trasparente in funzione del telaio installato.
- 3
- Si calcola la somma delle superfici interne S dell'ambiente da valutare (pavimento, soffitto e pareti interne ed esterne comprese le finestre).
- 4

Si calcola il coefficiente di riflessione medio r_m come media pesata dei coefficienti di riflessione delle singole superfici interne dell'ambiente.

Materiale e natura della superficie	Coefficiente di riflessione luminosa
Intonaco comune bianco (latte di calce o simili) recente o carta	0,8
Intonaco comune o carta di colore molto chiaro (avorio, giallo, grigio)	0,7
Intonaco comune o carta di colore chiaro (grigio perla, avorio, giallo limone, rosa chiaro)	0,6 ÷ 0,5
Intonaco comune o carta di colore medio (verde chiaro, azzurro chiaro, marrone chiaro)	0,5 ÷ 0,3
Intonaco comune o carta di colore scuro (verde oliva, rosso)	0,3 ÷ 0,1
Mattone chiaro	0,4
Mattone scuro, cemento grezzo, legno scuro, pavimenti di tinta scura	0,2
Pavimenti di tinta chiara	0,6 ÷ 0,4
Alluminio	0,8 ÷ 0,9





Valutazione dell'illuminazione naturale

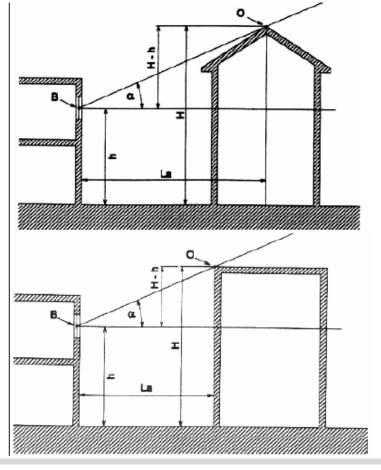
5

Si determina ψ mediante normogramma.

ascisse: h_f/p

ordinate: ψ

curve: L / p

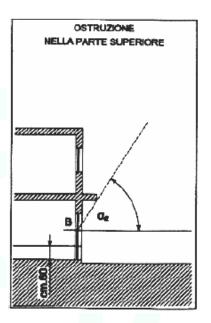


6

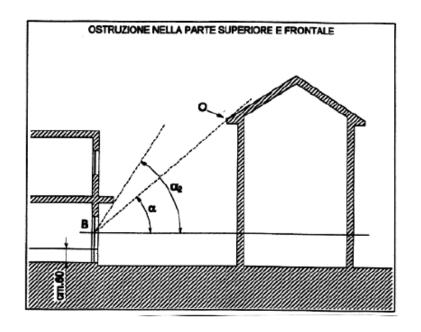
Si determina il fattore finestra ϵ in base alle ostruzioni presenti. Si individuano dapprima le ostruzioni presenti sulla chiusura, siano esse esterne o aggetti. Nel caso in cui non vi siano ostruzioni, $\epsilon=1$.

$$\varepsilon = \frac{1 - \sin \alpha}{2}$$

- h = altezza dal baricentro B della finestra al piano stradale
- H = altezza del fabbricato contrapposto dal piano stradale
- La = distanza tra il fabbricato contrapposto (o comunque dell'ostacolo) e la finestra



Valutazione dell'illuminazione naturale


6

Si determina il fattore finestra ε in base alle ostruzioni presenti. Si individuano dapprima le ostruzioni presenti sulla chiusura, siano esse esterne o aggetti. Nel caso in cui non vi siano ostruzioni, $\varepsilon=1$.

$$\varepsilon = \frac{\sin \alpha_2}{2}$$

$$\varepsilon = \frac{\sin \alpha_2 - \sin \alpha}{2}$$

Soluzioni per l'illuminazione naturale

Diversi sono i fattori che influenzano l'efficacia dell'illuminazione naturale, sia in termini di organizzazione spaziale che di soluzioni tecnologiche.

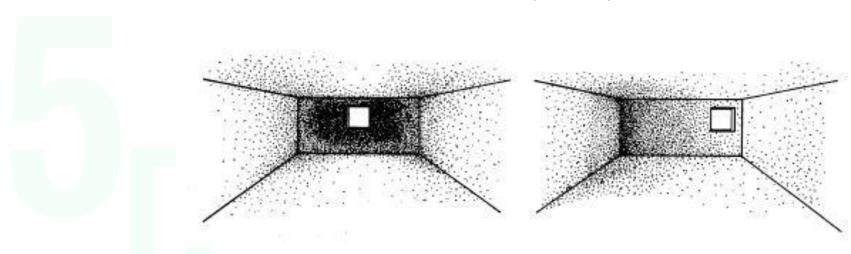
Per l'aspetto spaziale sono significativi:

- il mutuo rapporto tra gli edifici;
- la forma volumetrica complessiva dell'organismo edilizio;
- l'altezza e la profondità degli ambienti;
- l'orientamento, la dimensione e la posizione delle superfici trasparenti rispetto alle superfici da illuminare.

La geometria complessiva di un organismo edilizio comporta una conflittualità tra l'esigenza di illuminazione naturale e la necessità di contenere i consumi energetici nell'edificio. Si è visto infatti che il primo e basilare strumento per il controllo delle dispersioni termiche risiede nel conferimento di una forma compatta all'organismo edilizio, in modo da garantire un rapporto di forma S/V basso.

La penetrazione della luce naturale è invece favorita dall'articolazione planivolumetrica dell'edificio, così da disporre di una maggiore superficie per l'inserimento di aperture trasparenti.

Per quanto riguarda la configurazione delle aperture, è possibile individuare tre schemi ricorrenti in merito alla provenienza della luce e, quindi alla disposizione delle aperture.


Sidelighting

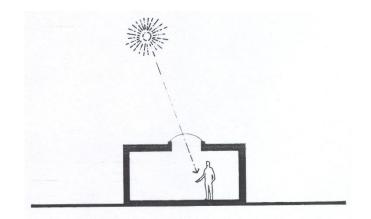
Una chiusura trasparente con giacitura verticale trasmette luce prevalentemente **diffusa** e **riflessa** (dal terreno e dalle superfici circostanti), in quanto la radiazione diretta perviene all'ambiente solo quando il sole è visibile attraverso la chiusura stessa.

L'efficacia dell'illuminazione è decisamente **influenzata** dall'esposizione che caratterizza i fronti dell'organismo edilizio.

Le aperture con orientazione **Sud** permettono una maggiore **flessibilità** di **controllo** della trasmittanza luminosa e della trasmittanza termica.

La modulazione degli apporti luminosi diviene più complessa per esposizioni **Est** ed **Ovest**: Il **sole**, in tarda primavera e in estate, **transita** su queste esposizioni con **altezza contenuta**. La modulazione della radiazione deve avvenire prevedendo **schermature mobili**, a sviluppo preferibilmente verticale, oppure ricorrendo a superfici trasparenti diffondenti.

Toplighting

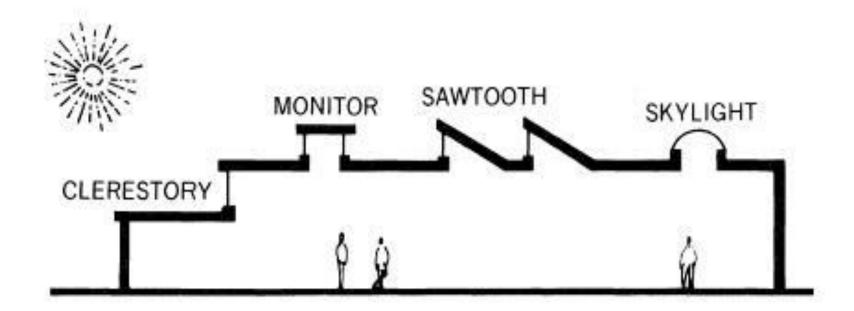

L'illuminazione dall'alto o zenitale (*toplighting*) ben si presta agli *ambienti lavorativi*, in quanto la *luce* perviene primariamente sul piano orizzontale. La giacitura delle aperture in sommità consente di superare la criticità delle aperture laterali (profondità di penetrazione della luce) e di fruire di una maggiore disponibilità di luce esterna, dovuta ad una più ampia visuale del cielo.

Sono però immediatamente riscontrabili tre criticità:

- l'illuminazione dall'alto è fruibile solo al livello superiore dell'edificio, a meno di non ricorrere ad un ambiente di altezza multipla;
- la luce proveniente dall'alto può colpire un operatore prima di raggiungere un piano di lavoro, rendendo problematica la visione e vanificando la possibilità di ottenere un illuminamento funzionale;
- le aperture zenitali non consentono di godere della vista verso l'esterno, per cui dovrebbero comunque essere integrate da aperture con giacitura verticale.

Sulla base di queste osservazioni, l'illuminazione zenitale è prevista solo per **sostituire** di una non realizzabile illuminazione laterale; l'illuminazione dall'alto può inoltre rendersi necessaria in ambienti caratterizzati da **notevole altezza**.

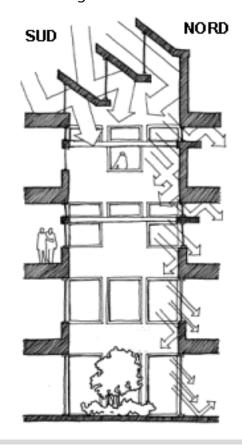
Il dimensionamento delle aperture zenitali deve tenere conto delle implicazioni nell'ambito del comfort termico. Le chiusure superiori sono maggiormente esposte al sole estivo, generando un carico termico indesiderato; queste aperture, poi, sono di solito prive di elementi schermanti esterni.



Toplighting

Risulta quindi opportuno ricorrere a particolari configurazioni delle aperture poste in copertura, accomunate dalla disposizione verticale dell'elemento trasparente. Queste speciali configurazioni sono assimilabili ad aperture verticali poste nella porzione superiore di una chiusura verticale.

A parità di superficie trasparente, la disposizione geometrica delle aperture può privilegiare la **porzione centrale** del locale da illuminare, o il suo perimetro. La prima disposizione, rispetto alla seconda, comporta una **minore uniformità** di illuminamento nel locale, a un minore costo d'installazione.

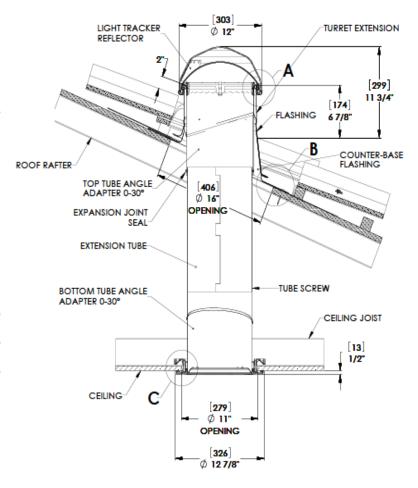

Corelighting

Il concetto di *corelighting* fa necessariamente riferimento ad uno **spazio interno** che **interseca** e **connette visivamente** tutti **i livelli** di un edificio. Se tale spazio ad altezza multipla è chiuso in sommità da una superficie trasparente, è definito atrio.

Le funzioni assolte da un **atrio** sono molteplici; oltre a garantire l'illuminazione indiretta di spazi non direttamente affacciati verso l'esterno, permette di instaurare **meccanismi** di **ventilazione naturale**, e si configura come **spazio di relazione**.

L'effetto di convogliamento della luce zenitale verso i livelli più bassi si può garantire conferendo all'atrio una sezione a tronco di piramide e, in alternativa o in sinergia, prevedendo superfici chiare nei livelli più alti allo scopo di dirigere la luce verso il basso; tale soluzione deve però essere resa priva di situazioni di abbagliamento. Si richiamano inoltre le stesse problematicità viste per il concetto di toplighting per quanto riguarda il possibile surriscaldamento estivo.

È opportuno che le superfici trasparenti poste in sommità siano apribili per consentire l'asportazione, per ventilazione notturna ed effetto camino, del calore accumulatosi durante il giorno.



Convogliamento della luce - lightpipe

I condotti luminosi, detti anche sistemi anidolici, consentono la captazione della luce naturale ed il suo convogliamento in ambienti confinati a ridotta illuminazione o non sono dotati di aperture sui fronti.

Un sistema di conduzione della luce solare è solitamente costituito da un dispositivo di norma fisso, detto **eliostato**, che capta la luce grazie ad un insieme di specchi; la luce, attraversando un sistema di trasporto dotato di **superfici altamente riflettenti** (quali argento, alluminio, pellicole microprismatiche o vernici riflettenti), perviene ai locali.

I condotti luminosi sono adatti a fornire l'illuminazione all'interno di edifici multipiano, tenendo conto che l'efficienza del sistema dipende dalla configurazione geometrica e distributiva dei condotti solari stessi: l'intensità luminosa trasmessa, infatti, diminuisce in proporzione alla lunghezza del condotto. Il condotto termina con un diffusore applicato al soffitto che traduce la luce nell'ambiente confinato in modo diffuso.

Convogliamento della luce - lightpipe

