Solution problem set 5

1. Find the general and the definite solution of the following differential equations. Check the validity of your answers.

a.
$$\frac{dy}{dt} + 4y = 12$$
; $y(0) = 2$

b.
$$\frac{dy}{dt} - 2y = 0$$
; $y(0) = 9$

c.
$$\frac{dy}{dt} + 10y = 15$$
; $y(0) = 0$

d.
$$2\frac{dy}{dt} + 4y = 6$$
; $y(0) = 1.5$

Solution

a. Particular integral:
$$\frac{dy}{dt} = 0 \implies y_p = 3$$

Complementary function:
$$\frac{dy}{dt} + 4y = 0 \implies y_c = Ae^{-4t}$$

General solution:
$$y = 3 + Ae^{-4t}$$

Using initial condition
$$y(0) = 2$$
: $y(0) = 3 + Ae^{-4 \cdot 0} = 2 \rightarrow A = -1$

Definite solution:
$$y = 3 - e^{-4 \cdot t}$$

b. This differential equation is homogeneous

General solution:
$$v = Ae^{2t}$$

Using initial condition
$$y(0) = 9$$
: $y(0) = Ae^{2 \cdot 0} = 9 \implies A = 9$

Definite solution:
$$y = 9e^{2 \cdot t}$$

c.Particular integral:
$$\frac{dy}{dt} = 0 \implies y_p = 1.5$$

Complementary function:
$$\frac{dy}{dt} + 10y = 0 \implies y_c = Ae^{-10t}$$

General solution:
$$y = 1.5 + Ae^{-10t}$$

Using initial condition
$$y(0) = 0$$
: $y(0) = 1.5 + Ae^{-10.0} = 0 \implies A = -1.5$

Definite solution:
$$y = 1.5 - 1.5 e^{-10 \cdot t}$$

d. Particular integral:
$$\frac{dy}{dt} = 0 \ \, \Rightarrow y_p = 1.5$$

Complementary function:
$$2\frac{dy}{dt} + 4y = 0 \implies y_c = Ae^{-2t}$$

General solution:
$$y = 1.5 + Ae^{-2t}$$

Using initial condition
$$y(0) = 1.5$$
: $y(0) = 1.5 + Ae^{-2.0} = 1.5 \rightarrow A = 0.5$

Definite solution:
$$y = 1.5$$

2. Solve the following first order linear differential equations

a.
$$\frac{dy}{dt} + 2ty = t; y(0) = 1.5$$
b.
$$\frac{dy}{dt} + t^2y = 5t^2; \ y(0) = 6$$
c.
$$2\frac{dy}{dt} + 12y + 2e^t = 0; y(0) = \frac{6}{7}$$
d.
$$\frac{dy}{dt} + y = t; y(0) = 1$$

Solution

To find the general solution, in all four differential equations, we apply th3e formula:

$$y = e^{-\int u(t)dt} (A + \int w(t)e^{\int u(t)dt} dt)$$

(the differential equation is $\frac{dy}{dt} + u(t)y = w(t)$)

a. u(t)=2t w(t)=t $\int u(t)dt=\int 2t\ dt=t^2+k_1 \ \text{where}\ k_1 \ \text{is an arbitrary constant}.$

Replacing in the formula we get:

$$y = e^{-(t^2 + k_1)} (A + \int t \, e^{(t^2 + k_1)} dt) = e^{-(t^2 + k_1)} \left(A + \frac{1}{2} e^{(t^2 + k_1)} + k_2 \right) = B e^{-t^2} + \frac{1}{2}$$
 where k_2 and B are arbitrary constants.

Using initial condition y(0) = 1.5: $y(0) = Be^0 + \frac{1}{2} = 1.5 \Rightarrow B = 17$

Definite solution: $y = e^{-t^2} + \frac{1}{2}$

b. $u(t) = t^2$ $w(t) = 5t^2$

 $\int u(t)dt = \int t^2 \ dt = {1\over 3} t^3 + k_1$ where k_1 is an arbitrary constant.

Replacing in the formula we get:

$$y = e^{-\left(\frac{1}{3}t^3 + k_1\right)} \left(A + \int 5t^2 e^{\left(\frac{1}{3}t^3 + k_1\right)} dt \right) = e^{-\left(\frac{1}{3}t^3 + k_1\right)} \left(A + 5e^{\left(\frac{1}{3}t^3 + k_1\right)} + k_2 \right) = Be^{-\frac{1}{3}t^3} + 5$$

where k_2 and B are arbitrary constants.

Using initial condition y(0) = 6: $y(0) = Be^{-\frac{1}{3}0^3} + 5 = 6 \Rightarrow B = 1$

Definite solution: $y = e^{-\frac{1}{3}t^2} + 5$

c. We rewrite the equation as: $\frac{dy}{dt} + 6y = -e^t$.

$$u(t) = 6 \quad w(t) = -e^t$$

 $\int u(t)dt = \int 6 dt = 6t + k_1$ where k_1 is an arbitrary constant.

Replacing in the formula we get:

$$y = e^{-(6t + k_1)} \left(A - \int e^t \ e^{(6t + k_1)} dt \right) = e^{-(6t + k_1)} t \left(A - \frac{1}{7} e^{(7t + k_1)} + k_2 \right) = B e^{-6t} - \frac{1}{7} e^{t}$$

where k_2 and \emph{B} are arbitrary constants.

Using initial condition $y(0) = \frac{6}{7}$: $y(0) = Be^{-6.0} - \frac{1}{7}e^{0} = \frac{6}{7} \Rightarrow B = 1$

Definite solution: $y = e^{-6t} - \frac{1}{7}e^t$

d. u(t) = 1 w(t) = t

 $\int u(t)dt = \int 1 \ dt = t + k_1$ where k_1 is an arbitrary constant.

Replacing in the formula we get:

$$y = e^{-(t+k_1)} \left(A + \int t \ e^{(t+k_1)} dt \right) = e^{-(t+k_1)} \left(A + (t-1)e^{(t+k_1)} + k_2 \right) = Be^{-t} + (t-1)$$

where k_2 and B are arbitrary constants (hint: the first integral is solved using integration by parts)

Using initial condition
$$y(0) = 1$$
: $y(0) = Be^{-0} + (0-1) = 1 \rightarrow B = 2$

Definite solution: $y = 2e^{-t} + (t - 1)$

3. Verify that each of the following differential equation is exact, then solve it.

a.
$$3y^2t dy + (y^3 + 2t) dt = 0$$

b.
$$t(1+2y)dy + y(1+y) dt = 0$$

c.
$$\frac{dy}{dt} + \frac{2y^4t + 3t^2}{4y^3t^2} = 0$$

Solution

a. $M=3y^2t$ $N=y^3+2t$ $\frac{dM}{dt}=3y^2 \frac{dN}{dy}=3y^2 \implies \text{then it is an exact differential equation}$

$$F(y,t) = \int 3y^{2}t \, dy = y^{3}t + g(t)$$

$$N = \frac{d F(y,t)}{dt} = y^{3} + g'(t)$$

$$y^{3} + g'(t) = y^{3} + 2t$$

$$g'(t) = 2t$$

$$g(t) = \int g'(t) \, dt = \int 2t \, dt = t^{2} + k$$

$$F(y,t) = y^{3}t + t^{2} + k = c$$

$$y = \sqrt{\frac{K - t^{2}}{t}}$$

where k, c, K are arbitrary constants.

b.
$$= t(1+2y)$$
 $N = y(1+y)$ $\frac{dM}{dt} = (1+2y)$ $\frac{dN}{dy} = (1+2y)$ \Rightarrow then it is an exact differential equation

$$F(y,t) = \int t(1+2y) \, dy = ty + ty^2 + g(t)$$

$$N = \frac{d \, F(y,t)}{dt} = y + y^2 + g'(t)$$

$$y + y^2 + g'(t) = y(1+y)$$

$$g'(t) = 0$$

$$g(t) = \int g'(t) \, dt = \int 0 \, dt = k$$

$$F(y,t) = ty + ty^2 + k = c$$

where k is an arbitrary constant.

Solving by y we get the general solution.

c. The equation is rewritten as:

$$dy + \frac{2y^4t + 3t^2}{4y^3t^2}dt = 0$$

Then
$$M = 1$$
 and $N = \frac{2y^4t + 3t^2}{4y^3t^2}$

It is straightforward that $\frac{dM}{dt}=0$ and $\frac{dN}{dy}\neq 0$ then the equation is not exact.

4. Are the following differential equations exact? If not try y, t, y^2 as possible integrating factors

a.
$$2(t^3+1) dv + 3vt^2 dt = 0$$

b.
$$4y^3t dy + (2y^4 + 3t)dt = 0$$

Solution

a.
$$M=2(t^3+1)$$
 $N=3yt^2$
$$\frac{dM}{dt}=6t^2$$
 $\frac{dN}{dy}=3t^2$ then, it is not exact

Integrating factor *y*

$$M = 2(t^3 + 1)y \quad N = 3y^2t^2$$

$$\frac{dM}{dt} = 6yt^2 \quad \frac{dN}{dy} = 6yt^2 \quad \text{then, it is exact}$$

Integrating factor t

$$M=2(t^4+t)$$
 $N=3yt^3$ $\frac{dM}{dt}=8t^3+2$ $\frac{dN}{dy}=3t^3$ then, it is not exact Integrating factor y^2

$$M=2y^2(t^3+1)$$
 $N=3y^3t^2$ $\frac{dM}{dt}=6y^2t^2$ $\frac{dN}{dy}=9y^2t^2$ then, it is not exact

b.
$$M=4y^3t$$
 $N=2y^4+3t$
$$\frac{dM}{dt}=4y^3$$
 $\frac{dN}{dy}=8y^3$ then, it is not exact Integrating factor y

$$M=4y^4t$$
 $N=2y^5+3ty$
$$\frac{dM}{dt}=4y^4$$
 $\frac{dN}{dy}=10y^4+3t$ then, it is not exact

Integrating factor t

$$M = 4y^3t^2 \quad N = 2y^4t + 3t^2$$

$$\frac{dM}{dt} = 8y^3t \quad \frac{dN}{dy} = 8y^3t \quad \text{then, it is exact}$$

Integrating factor y^2

$$M = 4y^5t \quad N = 2y^6 + 3ty^2$$

$$\frac{dM}{dt} = 4y^5$$
 $\frac{dN}{dy} = 12y^5 + 6ty$ then, it is not exact

5. Applying the method to solve an exact differential equation to the general exact differential equation M dy + N dt = 0 derive the following formula for the general solution of an exact differential equation $\int M \ dy + \int N \ dt - \int \frac{d \int M \ dy}{dt} \ dt = c.$ Verify that this formula is the solution of exact differential equation $M \ dy + N \ dt = 0$

•
$$F(y,t) = \int M dy + g(t)$$

•
$$\frac{dF}{dt} = \frac{d \int M \, dy}{dt} + g'(t) = N$$

•
$$g'(t) = N - \frac{d \int M \, dy}{dt}$$

•
$$g(t) = \int g'(t)dt = \int Ndt - \int \frac{d \int M dy}{dt} dt$$

Replacing in the first line

•
$$F(y,t) = \int M dy + \int N dt - \int \frac{d \int M dy}{dt} dt$$

Then the solution is given by:

$$\int M \, dy + \int N dt - \int \frac{d \int M \, dy}{dt} dt = c$$