Solution problem set 5

1. Find the general and the definite solution of the following differential equations. Check the validity of your answers.
a. $\frac{d y}{d t}+4 y=12 ; \quad y(0)=2$
b. $\frac{d y}{d t}-2 y=0 ; \quad y(0)=9$
c. $\quad \frac{d y}{d t}+10 y=15 ; \quad y(0)=0$
d. $2 \frac{d y}{d t}+4 y=6 ; \quad y(0)=1.5$

Solution

a. Particular integral:

$$
\begin{aligned}
& \frac{d y}{d t}=0 \rightarrow y_{p}=3 \\
& \frac{d y}{d t}+4 y=0 \rightarrow y_{c}=A e^{-4 t} \\
& y=3+A e^{-4 t} \\
& y(0)=3+A e^{-4 \cdot 0}=2 \rightarrow A=-1 \\
& y=3-e^{-4 \cdot t}
\end{aligned}
$$

b. This differential equation is homogeneous
General solution:

$$
\begin{aligned}
& y=A e^{2 t} \\
& y(0)=A e^{2 \cdot 0}=9 \rightarrow A=9 \\
& y=9 e^{2 \cdot t}
\end{aligned}
$$

Using initial condition $y(0)=9$:
Definite solution:
c.Particular integral:

Complementary function:
General solution:
Using initial condition $y(0)=0$:
Definite solution:
d. Particular integral:

Complementary function:
General solution:
Using initial condition $y(0)=1.5$:
Definite solution:

$$
\frac{d y}{d t}=0 \rightarrow y_{p}=1.5
$$

$\frac{d y}{d t}+10 y=0 \rightarrow y_{c}=A e^{-10 t}$
$y=1.5+A e^{-10 t}$
$y(0)=1.5+A e^{-10 \cdot 0}=0 \rightarrow A=-1.5$
$y=1.5-1.5 e^{-10 \cdot t}$

$$
\begin{aligned}
& \quad \frac{d y}{d t}=0 \rightarrow y_{p}=1.5 \\
& 2 \frac{d y}{d t}+4 y=0 \rightarrow y_{c}=A e^{-2 t} \\
& y=1.5+A e^{-2 t} \\
& y(0)=1.5+A e^{-2.0}=1.5 \rightarrow A=0.5 \\
& y=1.5
\end{aligned}
$$

2. Solve the following first order linear differential equations
a. $\frac{d y}{d t}+2 t y=t ; y(0)=1.5$
b. $\quad \frac{d y}{d t}+t^{2} y=5 t^{2} ; y(0)=6$
c. $2 \frac{d y}{d t}+12 y+2 e^{t}=0 ; y(0)=\frac{6}{7}$
d. $\quad \frac{d y}{d t}+y=t ; \mathrm{y}(0)=1$

Solution

To find the general solution, in all four differential equations, we apply th3e formula:

$$
y=e^{-\int u(t) d t}\left(A+\int w(t) e^{\int u(t) d t} d t\right)
$$

(the differential equation is $\frac{d y}{d t}+u(t) y=w(t)$)
a. $\quad u(t)=2 t \quad w(t)=t$
$\int u(t) d t=\int 2 t d t=t^{2}+k_{1}$ where k_{1} is an arbitrary constant.
Replacing in the formula we get:
$y=e^{-\left(t^{2}+k_{1}\right)}\left(A+\int t e^{\left(t^{2}+k_{1}\right)} d t\right)=e^{-\left(t^{2}+k_{1}\right)}\left(A+\frac{1}{2} e^{\left(t^{2}+k_{1}\right)}+k_{2}\right)=B e^{-t^{2}}+\frac{1}{2}$ where k_{2} and B are arbitrary constants.
Using initial condition $y(0)=1.5: \quad y(0)=B e^{0}+\frac{1}{2}=1.5 \rightarrow B=17$
Definite solution: $y=e^{-t^{2}}+\frac{1}{2}$
b. $u(t)=t^{2} \quad w(t)=5 t^{2}$
$\int u(t) d t=\int t^{2} d t=\frac{1}{3} t^{3}+k_{1}$ where k_{1} is an arbitrary constant.
Replacing in the formula we get:
$y=e^{-\left(\frac{1}{3} t^{3}+k_{1}\right)}\left(A+\int 5 t^{2} e^{\left(\frac{1}{3} t^{3}+k_{1}\right)} d t\right)=e^{-\left(\frac{1}{3} t^{3}+k_{1}\right)}\left(A+5 e^{\left(\frac{1}{3} t^{3}+k_{1}\right)}+k_{2}\right)=B e^{-\frac{1}{3} t^{3}}+5$
where k_{2} and B are arbitrary constants.
Using initial condition $y(0)=6: \quad y(0)=B e^{-\frac{1}{3} 0^{3}}+5=6 \rightarrow B=1$
Definite solution: $y=e^{-\frac{1}{3} t^{2}}+5$
c. We rewrite the equation as: $\frac{d y}{d t}+6 y=-e^{t}$.
$u(t)=6 \quad w(t)=-e^{t}$
$\int u(t) d t=\int 6 d t=6 t+k_{1}$ where k_{1} is an arbitrary constant.
Replacing in the formula we get:
$y=e^{-\left(6 t+k_{1}\right)}\left(A-\int e^{t} e^{\left(6 t+k_{1}\right)} d t\right)=e^{-\left(6 t+k_{1}\right)} t\left(A-\frac{1}{7} e^{\left(7 t+k_{1}\right)}+k_{2}\right)=B e^{-6 t}-\frac{1}{7} e^{t}$
where k_{2} and B are arbitrary constants.
Using initial condition $y(0)=\frac{6}{7}: \quad y(0)=B e^{-6 \cdot 0}-\frac{1}{7} e^{0}=\frac{6}{7} \rightarrow B=1$
Definite solution: $y=e^{-6 t}-\frac{1}{7} e^{t}$
d. $\quad u(t)=1 \quad w(t)=t$
$\int u(t) d t=\int 1 d t=t+k_{1}$ where k_{1} is an arbitrary constant.
Replacing in the formula we get:
$y=e^{-\left(t+k_{1}\right)}\left(A+\int t e^{\left(t+k_{1}\right)} d t\right)=e^{-\left(t+k_{1}\right)}\left(A+(t-1) e^{\left(t+k_{1}\right)}+k_{2}\right)=B e^{-t}+(t-1)$
where k_{2} and B are arbitrary constants (hint: the first integral is solved using integration by parts)
Using initial condition $y(0)=1$: $\quad y(0)=B e^{-0}+(0-1)=1 \rightarrow B=2$
Definite solution: $y=2 e^{-t}+(t-1)$
3. Verify that each of the following differential equation is exact, then solve it.
a. $\quad 3 y^{2} t d y+\left(y^{3}+2 t\right) d t=0$
b. $\quad t(1+2 y) d y+y(1+y) d t=0$
c. $\quad \frac{d y}{d t}+\frac{2 y^{4} t+3 t^{2}}{4 y^{3} t^{2}}=0$

Solution

a. $\quad M=3 y^{2} t \quad N=y^{3}+2 t$

$$
\begin{array}{r}
\frac{d M}{d t}=3 y^{2} \frac{d N}{d y}=3 y^{2} \rightarrow \text { then it is an exact differential equation } \\
\qquad \begin{array}{r}
F(y, t)=\int 3 y^{2} t d y=y^{3} t+g(t) \\
N=\frac{d F(y, t)}{d t}=y^{3}+g^{\prime}(t) \\
y^{3}+g^{\prime}(t)=y^{3}+2 t \\
g^{\prime}(t)=2 t
\end{array} \\
g(t)=\int g^{\prime}(t) d t=\int 2 t d t=t^{2}+k \\
F(y, t)=y^{3} t+t^{2}+k=c \\
y=\sqrt{\frac{K-t^{2}}{t}}
\end{array}
$$

where $\mathrm{k}, \mathrm{c}, \mathrm{K}$ are arbitrary constants.
b. $=t(1+2 y) \quad N=y(1+y)$

$$
\begin{array}{r}
\frac{d M}{d t}=(1+2 y) \frac{d N}{d y}=(1+2 y) \rightarrow \text { then it is an exact differential equation } \\
F(y, t)=\int t(1+2 y) d y=t y+t y^{2}+g(t) \\
N=\frac{d F(y, t)}{d t}=y+y^{2}+g^{\prime}(t) \\
y+y^{2}+g^{\prime}(t)=y(1+y) \\
g^{\prime}(t)=0 \\
g(t)=\int g^{\prime}(t) d t=\int 0 d t=k \\
F(y, t)=t y+t y^{2}+k=c
\end{array}
$$

where k is an arbitrary constant.
Solving by y we get the general solution.
c. The equation is rewritten as:

$$
d y+\frac{2 y^{4} t+3 t^{2}}{4 y^{3} t^{2}} d t=0
$$

Then $M=1$ and $N=\frac{2 y^{4} t+3 t^{2}}{4 y^{3} t^{2}}$
It is straightforward that $\frac{d M}{d t}=0$ and $\frac{d N}{d y} \neq 0$ then the equation is not exact.
4. Are the following differential equations exact? If not try y, t, y^{2} as possible integrating factors
a. $2\left(t^{3}+1\right) d y+3 y t^{2} d t=0$
b. $4 y^{3} t d y+\left(2 y^{4}+3 t\right) d t=0$

Solution

a. $\quad M=2\left(t^{3}+1\right) \quad N=3 y t^{2}$
$\frac{d M}{d t}=6 t^{2} \quad \frac{d N}{d y}=3 t^{2}$ then, it is not exact
Integrating factor y
$M=2\left(t^{3}+1\right) y \quad N=3 y^{2} t^{2}$
$\frac{d M}{d t}=6 y t^{2} \quad \frac{d N}{d y}=6 y t^{2} \quad$ then, it is exact
Integrating factor t
$M=2\left(t^{4}+t\right) \quad N=3 y t^{3}$
$\frac{d M}{d t}=8 t^{3}+2 \quad \frac{d N}{d y}=3 t^{3}$ then, it is not exact
Integrating factor y^{2}
$M=2 y^{2}\left(t^{3}+1\right) \quad N=3 y^{3} t^{2}$
$\frac{d M}{d t}=6 y^{2} t^{2} \quad \frac{d N}{d y}=9 y^{2} t^{2} \quad$ then, it is not exact
b. $\quad M=4 y^{3} t \quad N=2 y^{4}+3 t$
$\frac{d M}{d t}=4 y^{3} \frac{d N}{d y}=8 y^{3}$ then, it is not exact
Integrating factor y
$M=4 y^{4} t \quad N=2 y^{5}+3 t y$
$\frac{d M}{d t}=4 y^{4} \quad \frac{d N}{d y}=10 y^{4}+3 t$ then, it is not exact
Integrating factor t
$M=4 y^{3} t^{2} \quad N=2 y^{4} t+3 t^{2}$
$\frac{d M}{d t}=8 y^{3} t \quad \frac{d N}{d y}=8 y^{3} \mathrm{t}$ then, it is exact
Integrating factor y^{2}

$$
\begin{array}{ll}
M=4 y^{5} t & N=2 y^{6}+3 t y^{2} \\
\frac{d M}{d t}=4 y^{5} & \frac{d N}{d y}=12 y^{5}+6 t y \text { then, it is not exact }
\end{array}
$$

5. Applying the method to solve an exact differential equation to the general exact differential equation $M d y+N d t=0$ derive the following formula for the general solution of an exact differential equation $\int M d y+\int N d t-\int \frac{d \int M d y}{d t} d t=c$. Verify that this formula is the solution of exact differential equation $M d y+N d t=0$

- $F(y, t)=\int M d y+g(t)$
- $\frac{d F}{d t}=\frac{d \int M d y}{d t}+g^{\prime}(t)=N$
- $g^{\prime}(t)=N-\frac{d \int M d y}{d t}$
- $g(t)=\int g^{\prime}(t) d t=\int N d t-\int \frac{d \int M d y}{d t} d t$

Replacing in the first line

- $F(y, t)=\int M d y+\int N d t-\int \frac{d \int M d y}{d t} d t$

Then the solution is given by:

$$
\int M d y+\int N d t-\int \frac{d \int M d y}{d t} d t=c
$$

