
UNIVERSITÀ DEGLI STUDI DI TRIESTE

Corso di Laurea in Fisioterapia – C.I. 050ME - Fisica A.A. 2024/2025 Sessione Estiva – IV Prova Scritta – 30.07.2025 Tempo a disposizione: 2 h

	Co	gnome				Nc	me					
Istruzioni:	1	problemi	vanno	dapprima	svolti	per	esteso	nei	fogli	protocollo	а	quadretti.
Successiva i) ii)	(ove	e possibile) l	a grandezza	_	hiesta es _l	pressa si	imbolicame	ente in	funzione	lio: delle grandezz unità di misuro		
",	,, ec	mspomaem	e risuitato ri	iameneo, con	n correct	o manner	o ar eigre si	iginjica	inc c ic i	amed ar imsare	чаррг	priace
d	ove v		erato da u						_	spazio lung raggiungere	-	
a)	a) la sua accelerazione a, supposta costante, dovuta alla forza elettrica.											
	i) a	<i>u</i> =					ii) a	=				
b) il ra	pporto tra	la sua acc	elerazione	<i>a</i> e l'acc	celeraz	ione di g	ravità	g.			
	i) <u>a</u>	<u>'</u> =					ii) <u>a</u>	=				

2) Un blocco di massa m = 1.5 kg è inizialmente appoggiato contro una molla su un piano privo di attrito ed inclinato di $\theta = 30^{\circ}$ rispetto all'orizzontale. La molla ha costante elastica k = 1800 N/m. Il sistema si trova in equilibrio nel punto indicato con O in figura. Successivamente, la massa viene premuta contro la molla, in modo da comprimerla di una lunghezza $\Delta x = 7.5$ cm, e poi lasciata libera.

Si calcoli la distanza D (rispetto ad O) che verrà percorsa dal blocco lungo il piano inclinato prima di fermarsi.

3)	Un liquido ha viscosità $\eta = 2.5$ P (ove P sta per Poise, unità di misura della viscosità nel sistema cgs; la conversione in unità SI è data da 1 P = 0.1 Pa·s). Tale liquido scorre con flusso laminare e stazionario in un tubicino orizzontale clindrico, di lunghezza $l = 50$ cm e di raggio $R = 7.0$ mm, con una velocità media $v_m = 6.5$ cm/s. Determinare:							
	a) La portata Q del flusso del liquido viscoso.							
	i) <i>Q</i> =	ii) $Q = $						
	b) La differenza di pressione $\Delta p = p_a$ - p_b tra l'ingresso (a) e l'uscita (b) del tubicino.							
	i) <i>∆p</i> =	ii) <i>∆p</i> =						
4)	Nel circuito in figura, i due condensatori hanno capacità $C_1 = 1.0 \ \mu \text{F}$ e $C_2 = 2.0 \ \mu \text{F}$, mentre i due resistori hanno resistenze $R_1 = 10 \ \Omega$ e $R_2 = 20 \ \Omega$. Il sistema di condensatori e quello di resistori sono entrambi connessi a una batteria in grado di erogare una differenza di potenziale $\Delta V = 30 \ \text{V}$.	C_1 C_2 ΔV R_1 R_2						
De	eterminare:							
a)	la capacità equivalente C del sistema di condensatori:							
	i) <i>C</i> =	ii) <i>C</i> =						
b)	la resistenza equivalente R del sistema di resistori							
	i) <i>R</i> =	ii) <i>R</i> =						
c)	la carica Q_I immagazzinata nel condensatore C_I :							
	i) $Q_I =$	ii) $Q_I = $						
d)	la differenza di potenziale ΔV_1 e ΔV_2 ai capi rispettivamente del condensatore C_1 e C_2 :							
i) ∠	$\Delta V_I = \underline{\hspace{1cm}}$	ii) <i>∆V</i> ₁ =						

ii) $\Delta V_2 =$ _____

i) $\Delta V_2 =$ _____