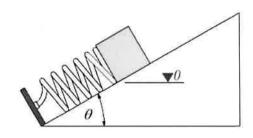

UNIVERSITÀ DEGLI STUDI DI TRIESTE


Corso di Laurea in Fisioterapia - C.I. 050ME - Fisica A.A. 2024/2025 Sessione Estiva – IV Prova Scritta – 30.07.2025

Tempo a	dispo	sizione:	2	h
---------	-------	----------	---	---

	Cognome				No	me					
Istruzioni:	I problemi	vanno	dapprima	svolti	per	esteso	nei	fogli	protocollo	а	quadretti.
Successivan i) ii)	nente, per ciascui (ove possibile) i il corrispondent	a grandezza	incognita ric	hiesta es _l	oressa si	mbolicam	ente in	funzione	delle grandezz		
do	n elettrone con ve viene acce = 4·10 ⁸ m/s. (lerato da ι						_	-	•	•
a)	la sua accelera	azione a , so v_1 - 2 d	supposta co	stante, d	lovuta :				. 10 18	'n	1/52
b)	il rannorto tra	la sua acc	relerazione	a e l'acc	releraz	ione di o	ravità	σ			

i) $\frac{a}{g} =$ ii) $\frac{a}{g} =$ $7, 7 \cdot 10^{7}$

Si calcoli la distanza D (rispetto ad O) che verrà percorsa dal blocco lungo il piano inclinato prima di fermarsi.

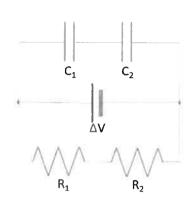
i)
$$D = \frac{\left(\frac{K\Delta X}{MQ} - 1\right)\Delta X}{\text{ii) } D = \frac{61.4 \text{ cm}}{\text{cm}}$$

ii)
$$D = 61.4$$
 cm

- 3) Un liquido ha viscosità $\eta = 2.5$ P (ove P sta per Poise, unità di misura della viscosità nel sistema cgs; la conversione in unità SI è data da 1 P = 0.1 Pa·s). Tale liquido scorre con flusso laminare e stazionario in un tubicino orizzontale clindrico, di lunghezza l = 50 cm e di raggio R = 7.0 mm. con una velocità media $v_m = 6.5$ cm/s. Determinare:
 - a) La portata Q del flusso del liquido viscoso.

i)
$$Q = II R^2 v_m$$

ii)
$$Q = 10 \text{ cm}^3/\text{s}$$


b) La differenza di pressione $\Delta p = p_{a}$ p_b tra l'ingresso (a) e l'uscita (b) del tubicino.

$$i) \Delta p = \frac{8 \eta \, \text{Um} \, \ell}{R^2} \qquad \qquad ii) \Delta p = \frac{1,33}{10^3} \, \text{Pa}$$

ii)
$$\Delta p = 1,33 \cdot 10^3 \text{ Pa}$$

4) Nel circuito in figura, i due condensatori hanno capacità $C_1 = 1.0 \mu F$ e $C_2 = 2.0 \mu F$, mentre i due resistori hanno resistenze $R_1 = 10 \ \Omega \ e \ R_2 = 20 \ \Omega.$

Il sistema di condensatori e quello di resistori sono entrambi connessi a una batteria in grado di erogare una differenza di potenziale $\Delta V = 30 \text{ V}$.

Determinare:

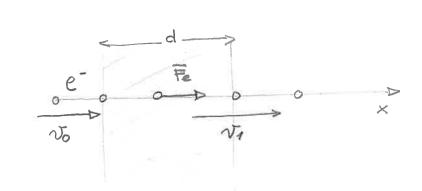
a) la capacità equivalente C del sistema di condensatori:

i)
$$C = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} = \frac{2}{3} C_1$$

b) la resistenza equivalente R del sistema di resistori

c) la carica Q_I immagazzinata nel condensatore C_I :

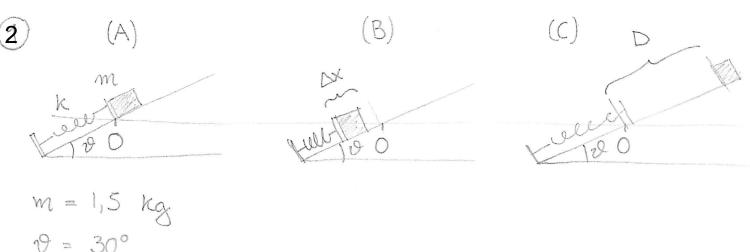
i)
$$Q_1 = Q_2 = Q_{eq} = C_{eq} \cdot \Delta V$$
 ii) $Q_1 = 20 \mu C$


ii)
$$Q_1 = 20 \mu C$$

d) la differenza di potenziale ΔV_1 e ΔV_2 ai capi rispettivamente del condensatore C_1 e C_2 :

i)
$$\Delta V_1 = \frac{Q_1/C_1}{Q_2/C_2}$$

ii)
$$\Delta V_I = 20 \ \lor$$


i)
$$\Delta V_2 = \frac{Q_2}{C_2}$$

$$v_0 = 10^8 \text{ m/s}$$
 $v_1 = 4 \cdot 10^8 \text{ m/s} = 4 v_0$
 $cl = 1 \text{ cm}$

a) Il moto è uniformemente accelerato. L'accelerazione a, date vi e vo, si ricava da:

b) L'acceleratione a $\bar{\epsilon}$ enorme rispetto a g^{\pm} $\frac{a}{g} = \frac{7.5 \cdot 10^8 \text{ m/sz}}{9.8 \text{ m/sz}} = 0.77 \cdot 10^8 = 7.7 \cdot 10^7$

 $\theta = 30^{\circ}$ $K = 1800 \, N_{M}$ $\Delta x = 7.5 \, cm = 7.5 \cdot 10^{-2} \, m$

La prima osservatione è che non c'è atrito » lavorano solo la forta elastica e la forta di gravita » il sistema è conservativo » l'energia meccanica si auserva Possianuo distinguere 3 momenti:

(A) Sistema in equilaborio.

(B) Holla compressa di Ax reispetto all'equilibrio

(C) La massa si ferma a distanta D da O, prima di invertire il suo moto

in totie
3 i momente
m é ferma,
quindi
K=0

Un'altra organistique preliminare è che, esse do il piano inclinento di 30°, alla distanta l' percasa sul piano conisponde una variatione di alterta h

10 h h = e seno = 1 e.

Per la solutione del problèma, conviene confrontare i momente (B) e (C). Server qui l'energia potentiale con réfuiments ad A, ouvers U(A) = 0

 $U^{(8)} = U_e^{(B)} + U_g^{(8)} = \frac{1}{2}k\Delta x^2 - mg\Delta x$

Rispettorad (A): la molla é compressa di DX

la massa si é abbassata eti AX/2

$$U^{(c)} = U_g^{(c)} = mg \frac{D}{2}$$

P la massa si è alterta ai $\frac{D}{2}$.

$$U^{(8)} = U^{(c)}$$

$$1/(\Lambda)^2 = 1/(M\Lambda) = 1/(M\Lambda)$$

Si trova:
$$D = \frac{k}{mg} \Delta x^2 - \Delta x$$

$$= \frac{(K\Delta x - 1)}{mq} \Delta x$$

$$= \frac{1800 M}{1,5 kg} \cdot 9.8 M}{1,5 kg} - 1 + 7.5 cm$$

3)
$$\eta = 2.5 P = 0.25 R \cdot s$$
 Pa
 Pa
 Pb

$$\ell = 50 \text{ cm}$$

 $R = 7.0 \text{ mm} = 9.7 \text{ cm}$
 $v_m = 6.5 \text{ cm/s}$

a)
$$Q = S v_m = \pi R^2 v_m$$

usando unita cgs.
$$= \pi (0,70 \text{ cm})^2 \cdot 6.5 \text{ cm} = 10 \text{ cm}^3$$

$$Q = \frac{T}{8} \frac{R^{4}}{7} \cdot \frac{\Delta p}{\ell}$$

$$\Delta p = \frac{8}{17} \cdot \frac{1}{R^{4}} \cdot Q \cdot \ell = \frac{8}{17} \cdot \frac{1}{R^{4}} \cdot \frac{1}{R^{4}$$

usando in questo casor le enità SI, si ha:

$$\Delta p = 8.025 \text{ R. S. } 6.5 \cdot 10^{-2} \text{ Ws. } 0.5 \text{ m}$$

$$= \frac{6.5 \cdot 10^{-2} \text{ m}^2 \text{ Pa}}{49 \cdot 10^{-6} \text{ m}^2} = 1.33 \cdot 10^{+3} \text{ Pa}$$

RI R

$$C_1 = 1.0 \mu F$$
 $C_2 = 2.C_1 = 2.0 \mu F$
 $R_1 = 10 \Omega$
 $R_2 = 2.R_1 = 20 \Omega$
 $\Delta V = 30 V$

a) I due condensatori sono in serie:

$$Ceq = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} = \left(\frac{1}{C_1} + \frac{1}{2C_1}\right)^{-1} = \left(\frac{2+1}{2C_1}\right)^{-1} = \frac{2}{3}C_1 = 0.66 \mu F$$

b) Le due resistente sour in serie:

c) Poiché i consensatori sono in serie, si ha:

d) Dalla definitione di capacità, si ha:

$$\Delta V_1 = \frac{Q_1}{C_1} = \frac{20 \, \mu C}{10 \, \mu F} = 20 \, V$$

$$\Delta V_2 = \frac{Q_2}{C_2} = \frac{Q_1}{2C_1} = \frac{1}{2} \Delta V_1 = 10 \text{ V}$$

Naturalmente, DV1+DV2 = 30 V = DV