Proprietà dei gas

Dr. Daniele Toffoli

Dipartimento di Scienze Chimiche e Farmaceutiche, UniTS

Outline

- Il gas ideale
- 2 Teoria cinetica-molecolare del gas ideale
- Collisioni molecolari
- Oistribuzione di Maxwell delle velocità molecolari
- I gas reali

- Il gas ideale
- 2 Teoria cinetica-molecolare del gas ideale
- Collisioni molecolari
- 4 Distribuzione di Maxwell delle velocità molecolar
- 6 I gas reali

Legge di Boyle

pressione

 Rapporto tra componente della forza normale alla superficie e area superficiale

$$\mathbf{F} = p\mathbf{S} \Longrightarrow p = \frac{F}{S}$$

- quantità scalare
- $[p] = \frac{N}{m^2} = Pa$

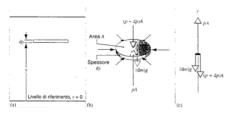
Table 1A.1 Pressure units*

Name	Symbol	Value
pascal	1 Pa	1 N m ⁻² , 1 kg m ⁻¹ s ⁻²
bar	1 bar	105 Pa
atmosphere	1 atm	101.325 kPa
torr	1 Torr	(101 325/760) Pa=133.32 Pa
millimetres of mercury	1 mmHg	133.322 Pa
pounds per square inch	1 psi	6.894 757 kPa

^{*} Values in bold are exact.

Legge di Boyle

variazione di pressione di un fluido a riposo



- Forze normali alla superficie
- Forze risultanti sono nulle
 - fluido a riposo
- Condizione di equilibrio:

$$pA = (p + dp)A + \rho gAdy \Longrightarrow dp = -\rho gdy$$

Legge di Boyle

misura della pressione: manometri

• Integrando (liquidi o solidi omogenei):

$$\int_{p_1}^{p_2} dp = -\rho g \int_{y_1}^{y_2} dy$$

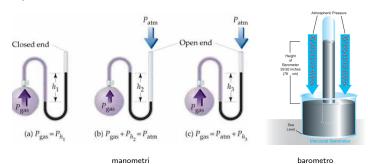
$$p_2 = p_1 - \rho g(y_2 - y_1)$$

- ullet Δp dipende solamente dalla differenza di quota
- Se $p_2 = p_0$, pressione atmosferica $(h = y_2 y_1)$:

$$p = p_0 + \rho g h$$

Legge di Boyle

misura della pressione: manometri e barometri



Legge di Boyle

esempio

• Calcolare le altezze di una colonna d'acqua e di una colonna di Hg richieste per produrre una pressione di 1.000 bar. (T=0.00°C, ρ_{Hg} =13.596 g/cm³, ρ_{w} =0.99987 g/cm³)

$$\rho_{Hg}gh_{Hg} = \rho_{w}gh_{w} \Longrightarrow \rho_{Hg}h_{Hg} = \rho_{w}h_{w}$$

$$h_{Hg} = rac{1.000 bar imes rac{100 imes 10^3 Pa}{1bar}}{133.322 rac{Pa}{mmHg}} = 750.06 mm$$

$$h_w = h_{Hg} \frac{\rho_{Hg}}{\rho_w}$$

= 10199.193 mm = 10.199 m

Robert Boyle

Joseph-Louis Gay-Lussac

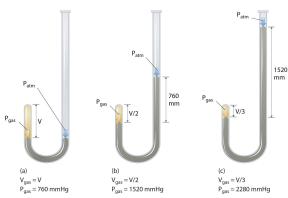
Jacques Charles

Amedeo Avogadro

Legge di Boyle

La pressione di un ammontare fisso di gas varia in misura inversamente proporzionale con il volume di gas, se la T è mantenuta costante

evidenza sperimentale

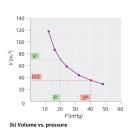


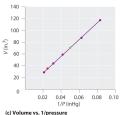
Legge di Boyle

isoterme di un gas perfetto

$$p \propto \frac{1}{V} \Longrightarrow pV = const.$$

evidenza sperimentale



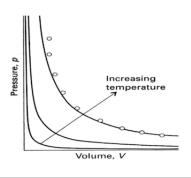


Legge di Boyle

comportamento dei gas reali

• Obbediscono alla legge di Boyle per basse pressioni:

$$\lim_{p\to 0} pV = const.$$





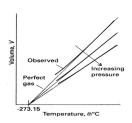
Legge di Gay-Lussac (Legge di Charles)

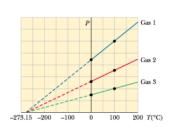
Dato un particolare valore della temperature θ (T in °C) e un volume fisso di gas V_0 a $\theta_0=0$ °C, esiste una relazione lineare tra V e θ seguita da tutti i gas:

$$V = V_0(1 + \alpha\theta)$$

• α : coefficiente di espansione cubica $(\alpha = \frac{1}{273.15} [{}^{\circ}C]^{-1})$

evidenza sperimentale





Legge di Gay-Lussac (Legge di Charles)

scala assoluta delle T

• Definiamo una nuova scala di temperatura (temperatura assoluta):

$$T[K] = \theta[^{\circ}C] + 273.15$$

- $T \ge 0$ (V non può essere negativo)
- La legge di Gay-Lussac assume una forma semplice:

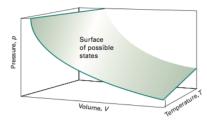
$$V \propto T \Longrightarrow \frac{V}{T} = const.$$

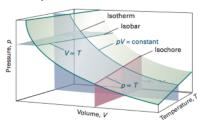
ullet Gas reali seguono bene la legge per medie-alte ${\sf T}$ e basse p (\sim 1atm)

stati unici del gas perfetto

diagramma p-V-T

- I gas perfetti seguono le leggi di Boyle e Gay-Lussac in tutti i regimi di p e T
- Stati unici del gas rappresentati da una superficie





Il termometro a gas ideale

definizione pratica di temperatura

- Molte proprietà fisiche dipendono dalla nostra percezione fisiologica di T:
 - volume di un fluido
 - lunghezza di una barra
 - resistenza elettrica di un filo
 - volume di un gas a p costante
 - pressione di un gas a V costante
 - colore di un filamento di lampada
 - ...
- Determinata dalle scelte di:
 - sostanza termometrica
 - proprietà termometrica, X
 - relazione funzionale X = X(T) monotona

Il termometro a gas ideale

definizione pratica di temperatura

- Una particolare scelta definisce una scala di T:
 - scale diverse non si accordano necessariamente tra loro
- Necessita di una scelta universale della sostanza, X, e X = X(T)
- è conveniente una relazione lineare, T(X) = aX:
 - $\Delta T = a\Delta X$
 - $\frac{T(X_1)}{T(X_2)} = \frac{X_1}{X_2}$
- Determinazione di a: taratura del termometro
- Punto fisso campione:
 - punto triplo dell'acqua (p=4.58 mmHg)
 - convenzionalmente T=273.16 K
 - maggiore riproducibilità

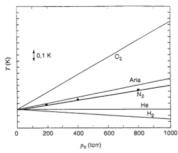
Il termometro a gas ideale

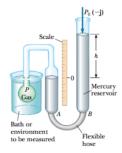
definizione pratica di temperatura

• Per qualunque termometro: $T(X) = 273.16K\frac{X}{X_{tr}}$

• gas a pressione costante: $T(V) = 273.16K \frac{V}{V_{tr}}$

• gas a volume costante: $T(p) = 273.16K \frac{p}{p_{tr}}$





Il termometro a gas ideale

definizione pratica di temperatura

• Il valore estrapolato di T non dipende dalla natura del gas:

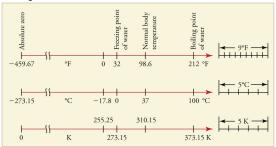
$$T = 273.16K \times \lim_{p \to 0} \left(\frac{p}{p_{tr}}\right)$$

• limite inferiore di T \sim 1K (termometro a He)

Scale di T di uso corrente

relazione tra scala assoluta, Celsius e Fahrenheit

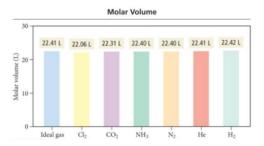
- $\theta = T 273.15$ (scala Celsius)
- $T_F = 32^{\circ}F + \frac{9}{5}\theta$ (scala Fahrenheit)



Equazione di stato del gas ideale

ipotesi di Avogadro

- Un dato volume di ogni gas, a fisse T e p contiene lo stesso numero di particelle indipendenti
- pV ∝ nT



Equazione di stato del gas ideale

unità SI dell'ammontare di una sostanza: mole

Ammontare di qualsiasi sostanza che contiene lo stesso numero di particelle elementari quante ce ne sono in 0.012 kg di C-12

$$N = 6.022137 \times 10^{23} mol^{-1}$$

pV = nRT

Table 1A.2 The gas constant $(R=N_Ak)$

R	
8.314 47	$J K^{-1} mol^{-1}$
8.205 74×10 ⁻²	dm^3 atm K^{-1} mol^{-1}
8.314 47×10 ⁻²	dm3 bar K-1 mol-1
8.314 47	Pa m ³ K ⁻¹ mol ⁻¹
62.364	dm3 Torr K-1 mol-1
1.987 21	cal K ⁻¹ mol ⁻¹

Equazione di stato del gas ideale

Esempio

• Calcolare la massa molare media dell'aria a livello del mare e $T=0.00^{\circ}C$, data $\rho_{air}=1.29 \text{ kg/m}^3$

$$M = \rho_{air} \frac{RT}{p}$$

= $1.29 kgm^{-3} \times \frac{8.31451 JK^{-1} mol^{-1} \times 273.15 K}{101325 Nm^{-2}}$
= $28.914 g/mol$

Condizioni standard

temperatura e pressione standard (STP)

- p=1 atm
- $\theta = 0^{\circ}C$
 - $V_m = 22.414 \text{ Lmol}^{-1}$

temperatura e pressione ambientali standard (SATP)

- p=1 bar
- $\theta = 25^{\circ} \text{C}$
 - $V_m = 22.789 L \text{ mol}^{-1}$

- Il gas ideale
- 2 Teoria cinetica-molecolare del gas ideale
- Collisioni molecolari
- 4 Distribuzione di Maxwell delle velocità molecolari
- I gas reali

Modello microscopico del gas ideale

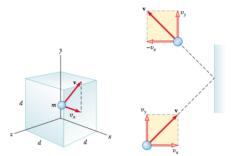
postulati della teoria

- Il numero delle particelle (identiche) è molto grande e le particelle hanno dimensioni trascurabili
 - rispetto alle distanze interparticellari
- Si muovono in maniera casuale
 - direzioni sono equiprobabili
 - distribuzione delle velocità non cambia nel tempo
- Le collisioni sono elastiche
 - tra loro e con le pareti del contenitore
 - energia cinetica e momento sono conservati
- non ci sono forze di interazioni intermolecolari

Modello microscopico del gas ideale

modello matematico

- Box cubico di lato d
- $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} (v_x, v_y, e v_z \text{ indipendenti})$
- urti elastici



Modello microscopico del gas ideale

derivazione della legge del gas ideale

- Forza media F_1 esercitata dalla parete: $F_1 \Delta t = \Delta p_x = -2mv_x$
- $\Delta t = \frac{2d}{v_x}$ (tempo tra due collisioni)
- $F_1 = -m \frac{v_x^2}{d} = -F_{1,w}$
- Forza totale esercitata sulla parete:

$$F = \frac{m}{d}(v_{x1}^2 + v_{x2}^2 + \dots + v_{xN}^2) = \frac{m}{d} \sum_{i=1}^{N} v_{xi}^2$$
$$= \frac{mN}{d} \overline{v_x^2}$$

Modello microscopico del gas ideale

derivazione della legge del gas ideale

- $v^2 = v_x^2 + v_y^2 + v_z^2$ (singola particella)
- $\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2} = \frac{\overline{v^2}}{3}$ (moto casuale)
- Forza sulla parete:

$$F = \frac{N}{3} \left(\frac{m\overline{v^2}}{d} \right)$$

• Pressione sulla parete:

$$p = \frac{F}{A} = \frac{1}{3} \left(\frac{N}{V} \right) m \overline{V^2}$$
$$= \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \overline{V^2} \right)$$

Modello microscopico del gas ideale

derivazione della legge del gas ideale

$$p = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \overline{V^2} \right)$$

- Provvede un legame tra proprietà macroscopiche e microscopiche:
 - $p \propto \frac{N}{V}$
 - $p \propto \frac{1}{2}m\overline{v^2}$ (energia cinetica media traslazionale)
- Stessa forma della legge di Boyle
- Consistente con la legge di Gay-Lussac
 - se $T \propto \frac{1}{2} m \overline{v^2}$

Interpretazione molecolare della temperatura

relazione tra energia cinetica e temperatura

- Energia cinetica totale del gas: $\frac{1}{2}mN\overline{v^2}$
- Energia cinetica media per molecola: $\overline{\varepsilon}_k = \frac{1}{2} m \overline{v^2}$
- $pV = \frac{Nm\overline{v^2}}{3} = \frac{2}{3}nN\overline{\varepsilon}_k = \frac{2}{3}n\overline{E}_k$
- Confrontando con $pV = nRT \Longrightarrow \overline{E}_k = \frac{3}{2}RT$

$$\overline{\varepsilon}_k = \frac{3}{2} k_B T$$

- k_B : costante di Boltzmann ($k_B = 1.380622 \times 10^{-23} \text{JK}^{-1}$)
- $\overline{\varepsilon}_k \propto T$ (indipendente dalla sostanza)

Modello microscopico del gas ideale

giustificazione dell'ipotesi di Avogadro

Dati gas differenti alle stesse T e p:

$$\frac{N_1 m_1 \overline{v_1^2}}{3 V_1} = \frac{N_2 m_2 \overline{v_2^2}}{3 V_2} = \dots \frac{N_i m_i \overline{v_i^2}}{3 V_i}$$

- $\bullet \implies \frac{N_1}{V1} = \frac{N_2}{V_2} \dots = \frac{N_i}{V_i}$
 - se $V_1 = V_2 \dots V_i \Longrightarrow N_1 = N_2 = \dots = N_i$
 - consistente con l'ipotesi di Avogadro

Legge di Dalton delle pressioni parziali

Pressioni parziali dei gas in una miscela

La pressione esercitata da una miscela di gas è la somma delle pressioni parziali dei componenti della miscela

pressione parziale di un componente della miscela

- Definiamo $p_i = x_i p_t$:
 - p_t : pressione totale $(p_t = p_1 + p_2 + ... + p_N)$
 - x_i : frazione molare del componente i ($x_i = \frac{n_i}{n_t}$)
- Per una miscela di gas ideali:
 - $p_i = \frac{n_i}{n_t} p = \frac{n_i RT}{V}$

La pressione esercitata da una miscela di gas perfetti è uguale alla somma delle pressioni che i singoli gas eserciterebbero se occupassero da soli l'intero volume del contenitore

Legge di Dalton delle pressioni parziali

Pressioni parziali dei gas in una miscela

Legge di Dalton dalla teoria cinetica

Le interazioni intermolecolari sono trascurate:

$$\rho_{t} = \frac{n_{1}M_{1}\overline{v_{1}^{2}}}{3V} + \frac{n_{2}M_{2}\overline{v_{2}^{2}}}{3V} + \ldots + \frac{n_{N}M_{N}\overline{v_{N}^{2}}}{3V} \\
= (n_{1} + n_{2} + \ldots + n_{N})\frac{RT}{V}$$

- $M_1\overline{v_1^2} = M_2\overline{v_2^2} = \ldots = 3RT$
- La legge viene usata quando un gas è generato e poi raccolto su acqua
 - $p_t = p_{gas} + p_w$

Legge di Dalton delle pressioni parziali

Pressioni parziali dei gas in una miscela

Esempio

- La composizione in volume % dello standard 1976 dell'aria secca al livello del mare è 78.084% N $_2$, 20.948%O $_2$, 0.934% Ar, 0.031% CO $_2$ e 2.7 \times 10 $^{-3}$ % Ne, He, Xe, CH $_4$ e H $_2$. Calcola le pressioni parziali dei primi quattro gas quando la pressione totale è 1.0 atm.
 - per gas ideali $\frac{V_i}{V} = \frac{n_i}{n_t} = x_i$
 - $p_{N_2} = x_{N_2} p_t = 0.78084 \times 1 \text{ atm} = 0.78084 \text{ atm}$
 - ...

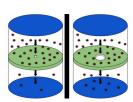
Legge di Graham di effusione

La velocità di effusione è inversamente proporzionale alla radice quadrata della massa molare del gas

$$\frac{\text{rate}(H_2)}{\text{rate}(O_2)} = \sqrt{\frac{M_{O_2}}{M_{H_2}}} \sim 4$$

• gas di massa diversa possono essere separati.

effusione



Legge di Graham di effusione

Giustificazione

Legge di Graham e teoria cinetica del gas ideale

$$\frac{\mathit{rate}_1}{\mathit{rate}_2} = \sqrt{\frac{\mathit{M}_2}{\mathit{M}_1}} = \sqrt{\frac{\rho_2}{\rho_1}}$$

- $\overline{v^2} = \frac{3RT}{M} \Longrightarrow v_{rms} = \sqrt{\overline{v^2}} \propto M^{-\frac{1}{2}}$
- ullet Da una derivazione rigorosa, rate $\propto \overline{v}$ (velocità media)
 - $\overline{v} = \sqrt{\frac{8}{3\pi}} v_{rms} \simeq 0.92132 v_{rms}$

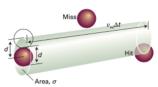
- Il gas ideale
- 2 Teoria cinetica-molecolare del gas ideale
- Collisioni molecolari
- 4 Distribuzione di Maxwell delle velocità molecolari
- 6 I gas reali

Modello microscopico

- Usando un modello a sfere rigide calcoleremo:
 - numero di collisioni di una molecola per unità di tempo
 - numero totale di collisioni per unità di tempo e volume unitario
 - cammino libero medio (distanza media percorsa tra due collisioni)

modello matematico

- Particelle A e B (B stazionarie)
- Diametro collisionale: $d_{AB} = \frac{d_A + d_B}{2}$



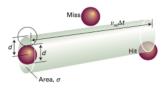
Modello microscopico

frequenza collisionale

- collisione: se il centro di B è nel cilindro
- frequenza collisionale (Z_A) :

$$Z_A = \pi d_{AB}^2 \overline{v}_A \times \frac{N_B}{V}$$

- $[Z_A] = s^{-1}$
- numero di collisioni con le molecole di B nell'unità di tempo



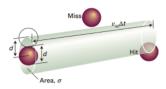
Modello microscopico

densità collisionale

• densità collisionale (Z_{AB}) :

$$Z_{AB} = \frac{N_A}{V} Z_A = \pi d_{AB}^2 \overline{v}_A \times \frac{N_A N_B}{V^2}$$

- $[Z_{AB}] = s^{-1}m^{-3}$
- numero di collisioni A-B nell'unità di tempo e volume unitario
- se solo A sono presenti: $Z_{AA} = \pi d_A^2 \overline{v}_A \times \frac{N_A^2}{2V^2}$



Formule esatte

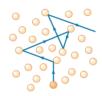
- $\overline{v}_A \Longrightarrow \overline{v}_{AB} = \sqrt{\frac{8k_BT}{\pi\mu}}$
 - $\mu = \frac{m_A m_B}{m_A + m_B}$: massa ridotta
 - $\overline{v}_{AB} = \sqrt{2}\overline{v}_A$ se B=A

Sommario

- $Z_A = \pi d_{AB}^2 \overline{v}_{AB} \times \frac{N_B}{V}$
- $Z_{AB} = \pi d_{AB}^2 \overline{v}_{AB} \times \frac{N_A N_B}{V^2}$
- $Z_A = \sqrt{2}\pi d_A^2 \overline{v}_A \times \frac{N_A}{V}$ (solo A presenti)
- $Z_{AA} = \sqrt{2}\pi d_A^2 \overline{v}_A \times \frac{N_A^2}{2V^2}$ (solo A presenti)

Cammino libero medio (λ)

- $Z_A = \sqrt{2}\pi d_A^2 \overline{v}_A \times \frac{N_A}{V}$
- $\bullet \ \lambda = \frac{\overline{v}_A}{Z_A} = \frac{V}{\sqrt{2}\pi d_A^2 N_A}$
 - $[\lambda] = m$
- Dalla conoscenza di d_A possiamo ottenere tutte le grandezze collisionali
 - unico parametro (atomico/molecolare) nel modello



Esempi

Esempio 1

- N₂ e O₂ sono racchiusi in un contenitore di V=1.00m³ a T=300 K con p_{N2}=80kPa e p_{O2}=21kPa. Se i diametri collisionali sono d_{N2}=3.74×10⁻¹⁰m e d_{O2}=3.57×10⁻¹⁰m, calcolare Z_{N2}, Z_{O2}, e Z_{AB} a 300K e a 3000K. $\overline{\nu}_{AB}$ =625 ms⁻¹ a 300K e 2062ms⁻¹ a 3000K
- Assumendo comportamento ideale, $N_i = \frac{p_i V}{k_B T}$:
 - $N_{N_2} = 1.93 \times 10^{25}$ molecole
 - $N_{O_2} = 5.070 \times 10^{24}$ molecole
 - $Z_{N_2} = 1.33 \times 10^9 \text{ s}^{-1}$
 - $Z_{O_2} = 5.07 \times 10^9 \text{ s}^{-1}$
 - $Z_{O_2,N_2} = 2.5688 \times 10^{34} \text{ a } 300 \text{K}$
 - Z_{O_2,N_2} =8.475× 10³⁴ a 3000K
 - l'effetto di T su Z è modesto $(Z \propto T^{1/2})$

Esempi

Esempio 2

- Per O_2 il diametro collisionale è d $_{O_2}$ =3.57×10⁻¹⁰m. Calcolare λ_{O_2} , a 300K e a p=101325 Pa
- Assumendo comportamento ideale ($pV = Nk_BT$), $\frac{V}{N} = \frac{k_BT}{p}$.

$$\lambda = \frac{k_B T}{\sqrt{2} \pi d_{O_2}^2 p}$$

• $\lambda_{O_2} = 7.22 \times 10^{-8} \text{m}$

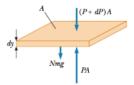
- 🕕 II gas ideale
- 2 Teoria cinetica-molecolare del gas ideale
- 3 Collisioni molecolari
- 4 Distribuzione di Maxwell delle velocità molecolari
- I gas reali

Legge di distribuzione barometrica

effetto della gravità sulle proprietà di un fluido

- Modello approssimato dell'andamento di p nell'atmosfera
- Caso speciale della legge di distribuzione di Boltzmann
- Per liquidi/solidi (difficilmente comprimibili):

$$\int_{p_0}^{p} dp = p - p_0 = -\int_{0}^{y} \rho g dy = -\rho g y$$



Legge di distribuzione barometrica

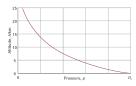
effetto della gravità sulle proprietà di un fluido

• Per un gas ideale $\rho = \frac{pM}{RT}$:

$$\int_{p_0}^{p} \frac{dp}{p} = -\int_{0}^{h} \left(g \frac{M}{RT} \right) dh$$

• Legge di distribuzione barometrica:

$$p = p_0 e^{-g\frac{M}{RT}h}$$



legge di distribuzione barometrica

$$p = p_0 e^{-g\frac{M}{RT}h} = p_0 e^{-\frac{E_p}{RT}}$$

- $E_p = Mgh$: energia potenziale gravitazionale di 1 mole di gas
- $-\frac{dp}{p}$ dipende solo da Δh ; $-\frac{dp}{p} \propto M$
- Valida anche per le pressioni parziali dei componenti
 - strati più elevati dell'atmosfera più ricchi di gas leggeri (He)
- Dal momento che $ho \propto p \Longrightarrow
 ho =
 ho_0 e^{-rac{E_p}{RT}}$

La distribuzione dei moduli delle velocità molecolari (speed)

Per un gas all'equilibrio a una data T, la probabilità che la componente v_i della velocità \mathbf{v} sia $v_i \in [v_i, v_i + dv_i]$ è data da:

$$P(v_i)dv_i = Be^{-\frac{mv_i^2}{2}\beta}dv_i$$

- B, β: costanti a una data T
- Uguale alla frazione infinitesima di molecole con $v_i \in [v_i, v_i + dv_i]$, $\forall t$

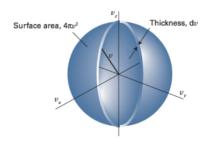
legge di distribuzione di Maxwell delle velocità molecolari

$$P(\mathbf{v})d\mathbf{v} = B^3 e^{-\frac{mv^2}{2}\beta} d\mathbf{v}$$

La distribuzione dei moduli delle velocità molecolari (speed)

• Troviamo P(v), la probabilità che $v = |\mathbf{v}| \in (v, v + dv)$:

$$P(v)dv = \int_0^{2\pi} \int_0^{\pi} B^3 e^{-\frac{mv^2}{2}\beta} v^2 dv \sin\theta d\theta d\phi$$
$$= 4\pi B^3 e^{-\frac{mv^2}{2}\beta} v^2 dv$$



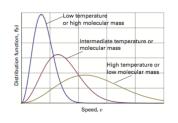
La distribuzione dei moduli delle velocità molecolari (speed)

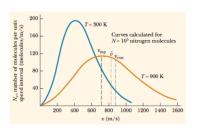
• Da
$$\int_0^\infty P(v) dv = 1 \Longrightarrow B = \sqrt{\frac{m\beta}{2\pi}}$$

• Da
$$\overline{v^2} = \int_0^\infty v^2 P(v) dv = \frac{3}{m\beta} \Longrightarrow \beta = \frac{1}{k_B T}$$

legge di distribuzione di Maxwell delle velocità molecolari

$$P(v)dv = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} e^{-\frac{mv^2}{2k_B T}} v^2 dv$$





Velocità medie

- Velocità quadratica media: $v_{rms}^2 = \left(\frac{3k_BT}{m}\right)$
- V_{rms} : $\sqrt{\frac{3k_BT}{m}}$
- Velocità media: $\overline{v} = \sqrt{\frac{8k_BT}{\pi m}}$
 - $\overline{v} = \int_0^\infty v P(v) dv$
 - $\overline{v} = \sqrt{\frac{8}{3\pi}} v_{rms} \simeq 0.92132 v_{rms}$
- Velocità più probabile: $v_{mp} = \sqrt{\frac{2k_BT}{m}}$
 - in corrispondenza del massimo $(\frac{dP(v)}{dv} = 0)$
- $v_{mp} < \overline{v} < v_{rms}$

La distribuzione della energia traslazionale

energia cinetica traslazionale media

• Da $\varepsilon = \frac{1}{2} m v^2 \longrightarrow d\varepsilon = \sqrt{2 m \varepsilon} dv$

$$P(\varepsilon)d\varepsilon = \frac{2\pi}{(\pi k_B T)^{3/2}} e^{-\frac{\varepsilon}{k_B T}} \varepsilon^{1/2} d\varepsilon$$

• L'energia cinetica traslazionale media è data da

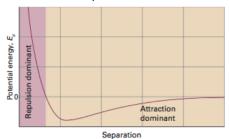
$$\overline{\varepsilon} = \int_0^\infty \varepsilon P(\varepsilon) d\varepsilon = \frac{3}{2} k_B T$$

- 1 II gas ideale
- 2 Teoria cinetica-molecolare del gas ideale
- 3 Collisioni molecolari
- 4 Distribuzione di Maxwell delle velocità molecolari
- 亙 l gas reali

Importanza delle interazioni intermolecolari

deviazioni dalla idealità

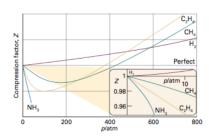
- Deviazioni dal comportamento del gas perfetto si riscontrano a basse
 T e alte p
 - forze intermolecolari
 - volume finito delle particelle
- Andamento del potenziale di interazione:



Importanza delle interazioni intermolecolari

fattore di compressione, Z

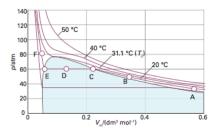
• $Z = \frac{pV_m}{RT}$ (in funzione di p o V_m)



- pendenza negativa (Z < 1): effetto delle forze attrattive
- pendenza iniziale positiva (Z > 1): forze repulsive
- per alte p, Z > 1 per tutti i gas
- $\lim_{n\to 0} Z = 1$ per tutti i gas

Diagramma di Andrews della CO₂

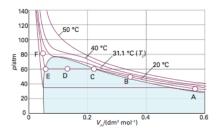
comportamento di CO₂ a T e p variabili



- a p = cost aumentando T
 - menisco tra CO₂(I) e CO₂(v) scompare a 31.1°C
 - aumentando p per T>31.1°C non si ha mai $CO_2(I)$
 - 31.1°C: temperatura critica (esiste per ogni gas)

Diagramma di Andrews della CO₂

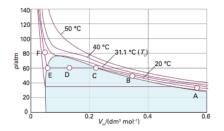
comportamento di CO_2 a T e p variabili



- isoterme T>T_c: stato gassoso
 - nessuna liquefazione aumentando solamente p
- isoterma T_c (isoterma critica) ha un punto di flesso (punto critico)
- isoterme $T < T_c$: si discostano molto da iperboli
 - linee orizzontali: tie-lines

Diagramma di Andrews della CO₂

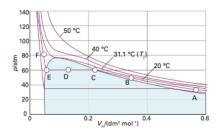
isoterma A-B-C-D-E-F



- A–B–C: stato gassoso
- C-E (tie-line): equilibrio liquido vapore:
 - pressione di vapore: valore di p corrispondente
 - V_C , V_E : volumi del gas puro e liquido puro $(\frac{DC}{\overline{ED}} = \frac{m_l}{m_v})$
- E-F: stato liquido (scarsamente comprimibile)

Diagramma di Andrews della CO₂

temperatura critica



- ullet tie-lines progressivamente più corte per $T o T_c$
- punto critico: $\left(\frac{\partial p}{\partial V}\right)_{\mathcal{T}_c}=0$, $\left(\frac{\partial^2 p}{\partial V^2}\right)_{\mathcal{T}_c}=0$
 - p_c: pressione critica
 - V_c: volume critico
- $T > T_c$: fluido supercritico

Diagramma di Andrews della CO₂

fluidi supercritici

- Proprietà molto differenti dallo stato normale
- Applicazioni industriali:
 - solventi
 - fasi mobili in cromatografie

Table 1C.2* Critical constants of gases

	p _c /atm	$V_{\rm c}/({\rm cm^3~mol^{-1}})$	$T_{\rm c}/{ m K}$	Z_c	$T_{\rm B}/{ m K}$
Ar	48.0	75.3	150.7	0.292	411.5
CO_2	72.9	94.0	304.2	0.274	714.8
He	2.26	57.8	5.2	0.305	22.64
O_2	50.14	78.0	154.8	0.308	405.9

^{*} More values are given in the Resource section.

equazioni di stato

Equazione di Van der Waals

$$(p + \frac{a}{V_m^2})(V_m - b) = RT$$

• a b: costanti (empiriche) di van der Waals (da best-fit su dati p-V-T)

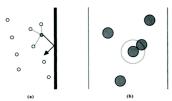
Table 1C.3* van der Waals coefficients

	$a/(atm dm^6 mol^{-2})$	$b/(10^{-2}\mathrm{dm^3mol^{-1}})$
Ar	1.337	3.20
CO_2	3.610	4.29
He	0.0341	2.38
Xe	4.137	5.16

Equazione di Van der Waals:
$$(p + \frac{a}{V_m^2})(V_m - b) = RT$$

giustificazione (molecole non polari)

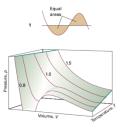
- Il liquido ha un volume finito ⇒ le molecole hanno un volume finito
 - covolume, b
- Forza netta attrattiva verso il bulk $(\propto r^{-7}, \propto \rho^2 \propto \frac{1}{V_-^2})$
 - responsabili della liquefazione
- Forze repulsive sono trascurate

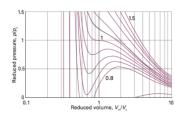


a) forze attrattive intermolecolari; b) volume finito delle particelle

Equazione di Van der Waals:
$$(p+\frac{a}{V_m^2})(V_m-b)=RT$$

isoterme del gas di van der Waals

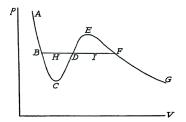




- Simili a quelle sperimentali per $T > T_c$
- L'equazione predice l'esistenza dell'isoterma critica
- Max. e Min. in corrispondenza della tie-line sperimentale:
 - equazione cubica in V_m : $pV_m^3 (bp + RT)V_m^2 + aV ab = 0$
 - 3 radici reali (o 2 complesse coniugate, 1 reale)
 - radice di molteplicità 3 a $T=T_c$

Equazione di Van der Waals:
$$(p + \frac{a}{V_m^2})(V_m - b) = RT$$

isoterme del gas di van der Waals



- Tratto E-F stati fisicamente riproducibili:
 - vapore supersaturo
 - stato metastabile
- Tratto C–E non può essere riprodotto sperimentalmente

Equazione di Van der Waals:
$$(p+\frac{a}{V_m^2})(V_m-b)=RT$$

legge degli stati corrispondenti

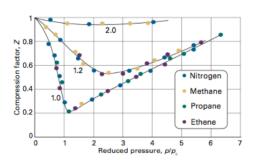
- Costanti a e b espresse in termini di p_c , V_c , T_c :
 - dalle condizioni $\left(\frac{\partial p}{\partial V}\right)_{T_c}=0, \left(\frac{\partial^2 p}{\partial V^2}\right)_{T_c}=0$
- $a = 3p_c V_c^2$, $b = \frac{V_c}{3}$, $R = \frac{8}{3} \frac{V_c p_c}{T_c}$
- Usando variabili ridotte $p_r = \frac{p}{p_c}$, $V_r = \frac{V}{V_c}$, $T_r = \frac{T}{T_c}$:

$$\left(p_r + \frac{3}{V_r^2}\right) \left(V_r - \frac{1}{3}\right) = \frac{8}{3} T_r$$

• valida per ogni gas

$$\left(p_r + \frac{3}{V_r^2}\right)\left(V_r - \frac{1}{3}\right) = \frac{8}{3}T_r$$

legge degli stati corrispondenti



• Due gas reali con uguali p_r e V_r hanno la stessa T_r

altre equazioni di stato

equazione di P.A. Daniel Berthelot

- - esplicita dipendenza da T delle forze coesive
- In termini di variabili ridotte: $p_r = \left(\frac{8T_r}{3V_r 1}\right) \frac{3}{T_r V_r^2}$
 - accurata per basse p e T

equazione di Dieterici

- $p \exp\left(\frac{a}{RTV_m}\right)(V_m b) = RT$
 - accurata vicino al punto critico
- In termini di variabili ridotte: $p_r = \frac{T_r}{2V_r 1} \exp\left(2 \frac{2}{T_r V_r}\right)$

altre equazioni di stato

equazione di Alexander, Beattie, e Bridgeman

$$p = \frac{RT\left(1 - \frac{c}{V_m T^3}\right)}{V_m^2} (V_m + B) - \frac{A}{V_m^2}$$

- $A = A_0 \left(1 \frac{a}{V_m}\right)$, $B = B_0 \left(1 \frac{b}{V_m}\right)$
 - a, A₀, b, B₀, c costanti empiriche
 - accurata per alte p

altre equazioni di stato

equazione del viriale

• Espande Z in serie di potenze di p o $\rho_m = \frac{1}{V_m}$

$$Z = 1 + B'(T)p + C'(T)p^{2} + D'(T)p^{3} + \dots$$

$$Z = 1 + B(T)\frac{1}{V_m} + C(T)\left(\frac{1}{V_m}\right)^2 + D(T)\left(\frac{1}{V_m}\right)^3 + \dots$$

- B(B'), C(C'),... secondo, terzo ... coefficiente del viriale
- dipendono solo da T (anche composizione per miscele)
- relazionati a energie potenziali intermolecolari (termodinamica statistica)

altre equazioni di stato

equazione del viriale

• A basse p (grandi V_m) la serie può essere troncata

$$\frac{1}{\rho_m}\left(\frac{p}{RT\rho_m}-1\right)=B(T)+C(T)\rho_m$$

• B(T) e C(T) ricavati da plot $\frac{1}{\rho_m}\left(\frac{p}{RT\rho_m}-1\right)$ vs ρ_m

Table 1C.1* Second virial coefficients, B/(cm3 mol-1)

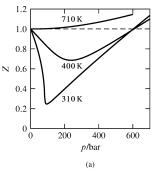
	Tempe	rature
	273 K	600 K
Ar	-21.7	11.9
CO ₂	-149.7	-12.4
N ₂	-10.5	21.7
Xe	-153.7	-19.6

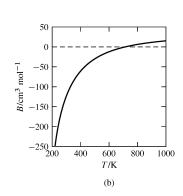
^{*} More values are given in the Resource section.

altre equazioni di stato

temperatura di Boyle (T_B)

- T_B : T alla quale B(T) = 0
- ridotte deviazioni dalla idealità





Temperatura di Boyle

esempio

 Calcola T_B in termini delle costanti A, b e R per un gas che obbedisce all'equazione di stato:

$$pV_m = RT + \left(b - \frac{A}{RT^{2/3}}\right)p$$

Riscrivendo l'equazione:

$$Z = 1 + \underbrace{\left(\frac{b - \frac{A}{RT^{2/3}}}{RT}\right)}_{B(T)} p$$

• otteniamo $T_B = \left(\frac{A}{bR}\right)^{3/2}$