INFORMATICA

A.A. 2025-26

Ing. Paolo Querci

INF-01

Lezione 1 – 14 ottobre 2025

CHI SONO

- Da maggio 2025: Direttore SC "Innovazione, Programmazione e Controllo di Gestione -Internal auditing".
- Da maggio 2024 Direttore SC "Innovazione e sviluppo organizzativo Internal auditing".
- Da maggio 2023 Dirigente Ingegnere presso ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina).
- Per 3 anni Ingegnere gestionale "UOC Innovazione e sviluppo processi", mobility manager e fleet manager presso AUSL Toscana sud est.
- Per 14 anni responsabile qualità e specialista assistenza tecnica clienti/fornitori nel settore siderurgico.
- Per 4 anni capo reparto area qualità e ingegnere di processo nel settore elettronico/chimico.
- Per 3 anni responsabile di stabilimento nel settore elettronico/tlc.
- Ingegnere abilitato nei settori Industriale e dell'Informazione.
- Laurea in Ing. elettronica e Ing. gestionale.

Perché un Ingegnere

[...] l'attività dell'Ingegnere è una risorsa [...] che implica doveri e responsabilità nei confronti della collettività e dell'ambiente ed è decisiva per il raggiungimento dello sviluppo sostenibile e per la sicurezza, il benessere delle persone, il corretto utilizzo delle risorse e la qualità della vita.

Consiglio Nazionale degli Ingegneri – Codice deontologico

NOTE OPERATIVE

La **verifica dell'apprendimento** si svolge mediante un test scritto della durata di un'ora, articolato in due parti: una prima sezione con 10 quesiti a risposta multipla, che attribuiscono 1,5 punti per ogni risposta corretta, e una seconda sezione con 3 domande aperte, valutate fino a 5 punti ciascuna.

Il punteggio massimo conseguibile è pari a 30/30 e la prova si considera superata con almeno 18/30.

La lode potrà essere attribuita agli studenti che, oltre a aggiungere il punteggio massimo, dimostrino particolare chiarezza espositiva, padronanza del linguaggio tecnico e capacità critica nelle risposte alle domande aperte.

Il **ricevimento** sarà effettuato su appuntamento mediante email all'indirizzo:

p.querci@gmail.com

si svolgerà presso l'ufficio di via Farneto (stanza 223), se non diversamente comunicato.

COSA VEDREMO IN QUESTO CORSO

- Introduzione e basi
- Architettura del computer
- Sistemi operativi
- Videoscrittura
- Presentazioni
- Fogli di calcolo
- Navigazione e ricerca su Internet
- Elementi di sicurezza informatica
- Cenni sull'intelligenza artificiale
- Strumenti cloud e per la condivisione

Informazione

Informazione

L'**informazione** è l'insieme di dati, correlati tra loro, con cui un'idea o un fatto prende forma ed è comunicata.

L'INFORMATICA: L'ELABORAZIONE DELLE INFORMAZIONI

Il termine italiano "informatica" deriva da quello francese "informatique", contrazione di *informat(ion) (automat)ique*, coniato da Philippe Dreyfus nel 1962. Il primo utilizzo italiano risale al 1968.

L'informazione, in ingegneria, può essere rappresentata in modo:

- Analogico (i valori utili che la rappresentano sono in stretta "analogia" con il fenomeno che li genera e spesso sono continui e infiniti)
- **Digitale** (viene rappresentata come sequenza di numeri presi da un insieme di valori discreti)

L'informatica è la disciplina scientifica che si occupa dello studio dell'elaborazione delle informazioni e delle sue applicazioni pratiche.

L'informatica gestisce l'informazione in forma **Digitale**.

RAPPRESENTAZIONE DELLE INFORMAZIONI

Tutte le informazioni digitali sono rappresentate da bit (0 e 1).

Byte = 8 bit, unità base per memorizzare caratteri e valori.

Con più bit si possono rappresentare numeri, lettere, immagini, suoni.

I computer lavorano in sistema binario: il numero decimale 13 diventa 1101 in base 2.

Conversione inversa: il binario 1010 corrisponde al decimale 10.

CONVERSIONE DECIMALE - BINARIO

Da decimale a binario

Si divide il numero decimale per 2, prendendo ogni volta il resto (0 o 1).

Si prosegue fino ad arrivare a quoziente (risultato della divisione) 0.

Il numero binario si ottiene leggendo i resti dal basso verso l'alto.

Esempio: $13 \div 2 \rightarrow resti\ 1,0,1,1 \rightarrow binario = 1101$.

Da binario a decimale

Si moltiplica ogni cifra binaria per una potenza di 2, a partire da destra.

Si sommano tutti i valori.

Esempio: $1101 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 13$.

RAPPRESENTAZIONE DI CARATTERI

Tutti i caratteri digitali — lettere, numeri, simboli, spazi — sono codificati usando numeri.

Il sistema più noto è **ASCII (American Standard Code for Information Interchange)**, che usa 7 bit per rappresentare 128 caratteri base (lettere latine, numeri, punteggiatura). Venne definito negli anni **1960** come standard universale per computer e periferiche.

Oggi quasi tutti usano **UTF-8** (**Unicode Transformation Format a 8 bit**), una codifica più moderna: mantiene piena compatibilità con ASCII per i primi 128 caratteri, ma usa fino a 4 byte per rappresentare qualsiasi carattere di tutte le lingue del mondo.

Binario	<u>Oct</u>	Dec	Hex	Glifo	Binario	<u>Oct</u>	Dec	Hex	Glifo	Binario	<u>Oct</u>	Dec	Hex	Glifo
010 0000	040	32	20	Spazio	100 0000	100	64	40	@	110 0000	140	96	60	•
010 0001	041	33	21	1	100 0001	101	65	41	Α	110 0001	141	97	61	a
010 0010	042	34	22	n.	100 0010	102	66	42	В	110 0010	142	98	62	b
010 0011	043	35	23	#	100 0011	103	67	43	С	110 0011	143	99	63	С
010 0100	044	36	24	\$	100 0100	104	68	44	D	110 0100	144	100	64	d
010 0101	045	37	25	%	100 0101	105	69	45	Е	110 0101	145	101	65	е
010 0110	046	38	26	&	100 0110	106	70	46	F	110 0110	146	102	66	f
010 0111	047	39	27		100 0111	107	71	47	G	110 0111	147	103	67	g
010 1000	050	40	28	(100 1000	110	72	48	Н	110 1000	150	104	68	h
010 1001	051	41	29)	100 1001	111	73	49	I	110 1001	151	105	69	i
010 1010	052	42	2A	*	100 1010	112	74	4A	J	110 1010	152	106	6A	j
010 1011	053	43	2B	+	100 1011	113	75	4B	K	110 1011	153	107	6B	k
010 1100	054	44	2C	2 (100 1100	114	76	4C	L	110 1100	154	108	6C	1
010 1101	055	45	2D	-	100 1101	115	77	4D	M	110 1101	155	109	6D	m
010 1110	056	46	2E		100 1110	116	78	4E	N	110 1110	156	110	6E	n
010 1111	057	47	2F	1	100 1111	117	79	4F	0	110 1111	157	111	6F	0

Unità di Misura

Il byte (simbolo **B**), oggi standard di misura, è composto da 8 bit — vale a dire 256 possibili valori informativi. Storicamente, alcuni computer usavano byte di dimensioni diverse, ma dal 1964 il byte a 8 bit è lo standard accettato

Le unità maggiori presentano un'ambiguità rischiosa:

In base decimale (Sistema Internazionale):

1 **kilobyte (kB)** = 1 000 byte

1 megabyte (MB) = 1 000 000 byte

In contesti informatici più pratici, si impiegano multipli binari:

- 1 **kibibyte (KiB)** = 1024 byte (2^{10})
- 1 mebibyte (MiB), gibibyte (GiB), ecc.

Unità di Misura

Una curiosità storica:

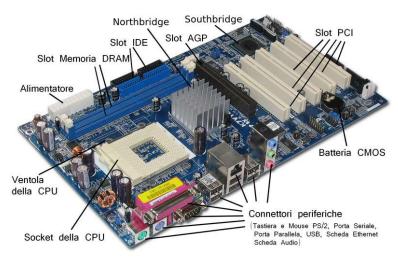
Fino al **1995** convivevano due interpretazioni concorrenti:

una basata su potenze di 10 (1 kilobyte (kB) = 1 000 byte. S.I.)

una basata su potenze di 2 (1 kibibyte (KiB) = 1 024 byte (2¹⁰))

All'epoca differenze del 2,4% erano considerate trascurabili: "un mega" sembrava già un'enormità, e si arrotondava senza pensarci troppo.

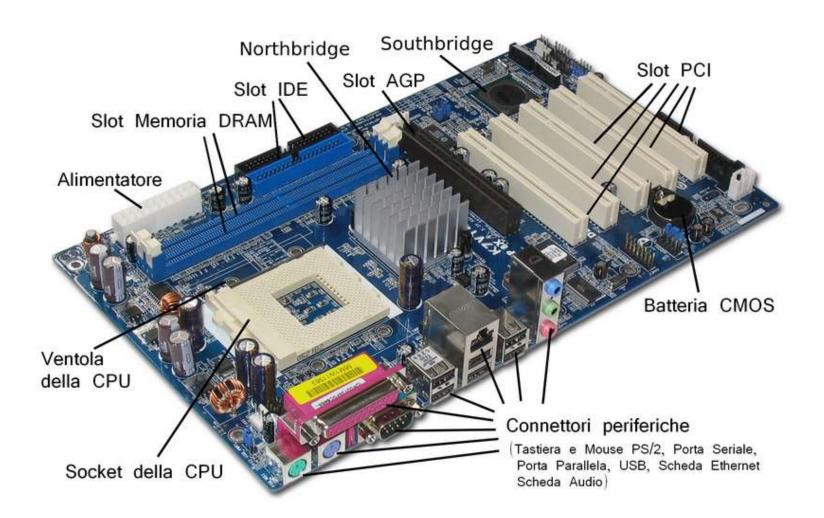
Con l'aumento delle capacità (gigabyte e oltre), l'errore relativo è diventato troppo grande e la distinzione è stata resa ufficiale.



Hardware

Parte materiale di un computer, ovvero tutte quelle parti elettroniche, elettriche, meccaniche, magnetiche, ottiche che ne consentono il funzionamento

MB (MOTHERBOARD)

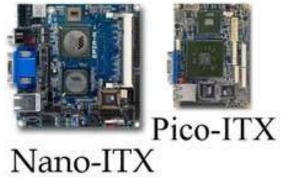

Scheda madre: è una scheda PCB (Printed Circuit Board) sulla quale è saldata (mediante lega di stagno) una parte della componentistica elettronica che costituisce il computer (principalmente: resistori, capacità, induttanze, circuiti integrati, zoccoli di connessione con altre schede PCB o circuiti integrati, tra i quali la CPU). Si tratta della "base" del computer al quale ogni altro componente si connette e fa riferimento. La scheda madre utilizza un software, chiamato BIOS (Basic Input Output System), che permette la gestione di tutti i vari componenti installati. Il **software BIOS** si trova in un piccolo chip installato sulla scheda madre stessa.

COMPONENTI PRINCIPALI DEL PERSONAL COMPUTER

- Scheda madre
- CPU
- Alimentatore
- RAM
- Hard disk
- Scheda video
- Periferiche (mouse, monitor stampanti, tastiere e drive DVD / BD, ecc.)

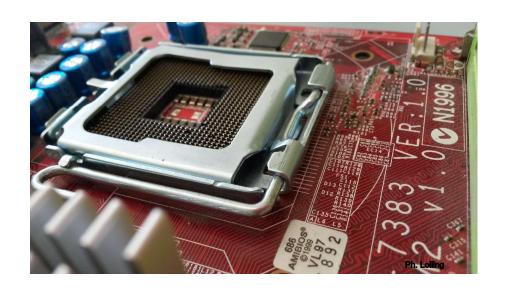
STRUTTURA DI UNA MOTHERBOARD

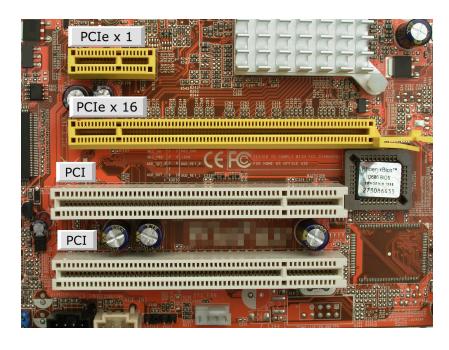
FORMATI STANDARD ATX SCHEDA MADRE

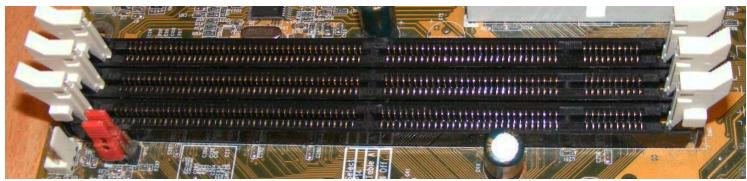


Standard-ATX

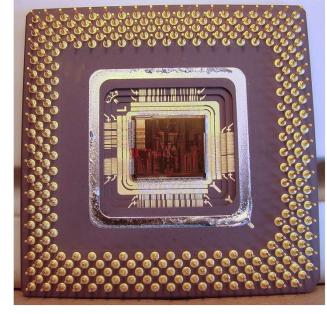
Micro-ATX





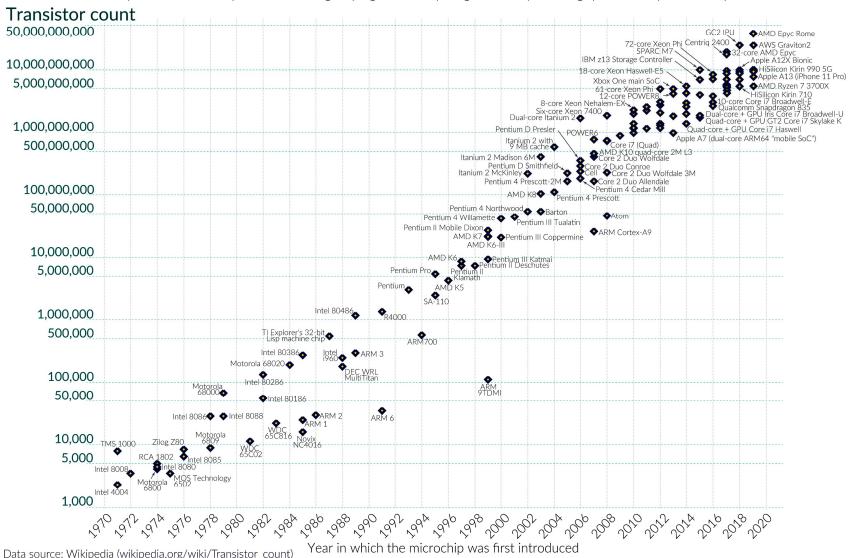

Mini-ITX

Modularità / Espandibilità interna



CPU (CENTRAL PROCESSING UNIT)

Il processore o unità di elaborazione centrale (CPU) è il "cervello" del computer. La CPU elabora la maggior parte dei dati e coordina le altre unità (chip) di elaborazione, esegue calcoli matematici e la maggior parte delle istruzioni software. La CPU ha la forma di un chip quadrato o più raramente rettangolare, da un lato è caratterizzato da una serie di "piedini" o di piazzole metalliche che servono per l'ancoraggio con un apposito zoccolo saldato alla scheda madre.



Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

OurWorldinData.org – Research and data to make progress against the world's largest problems.

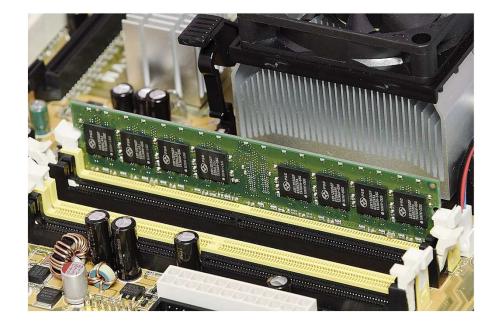
Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

CPU (CENTRAL PROCESSING UNIT) E DISSIPATORE

Sopra il processore si trova solitamente un **dissipatore**, che serve per raffreddare la CPU ed evitarne pericolosi surriscaldamenti.

PSU (POWER SUPPLY UNIT)

L'alimentatore o unità di alimentazione (PSU) è invece l'elemento che permette l'alimentazione elettrica della scheda madre e di tutte le periferiche (schede di espansione, drive DVD / BD, prese USB, ecc.), effettua quindi la conversione tra la tensione di rete (230 V, 50 Hz) alle tensioni di alimentazioni continue desiderate (3,3 V, 5 V, 12 V, ecc.). E' normalmente anch'esso dotato di ventola.



MEMORIA RAM (RANDOM ACCESS MEMORY)

La RAM (Random Access Memory), è una memoria volatile che immagazzina e fornisce in tempi brevissimi i dati alla CPU. Più la RAM è efficiente e di grandi dimensioni e maggiori saranno le prestazioni del PC.

ALTRI COMPONENTI

Hard disk

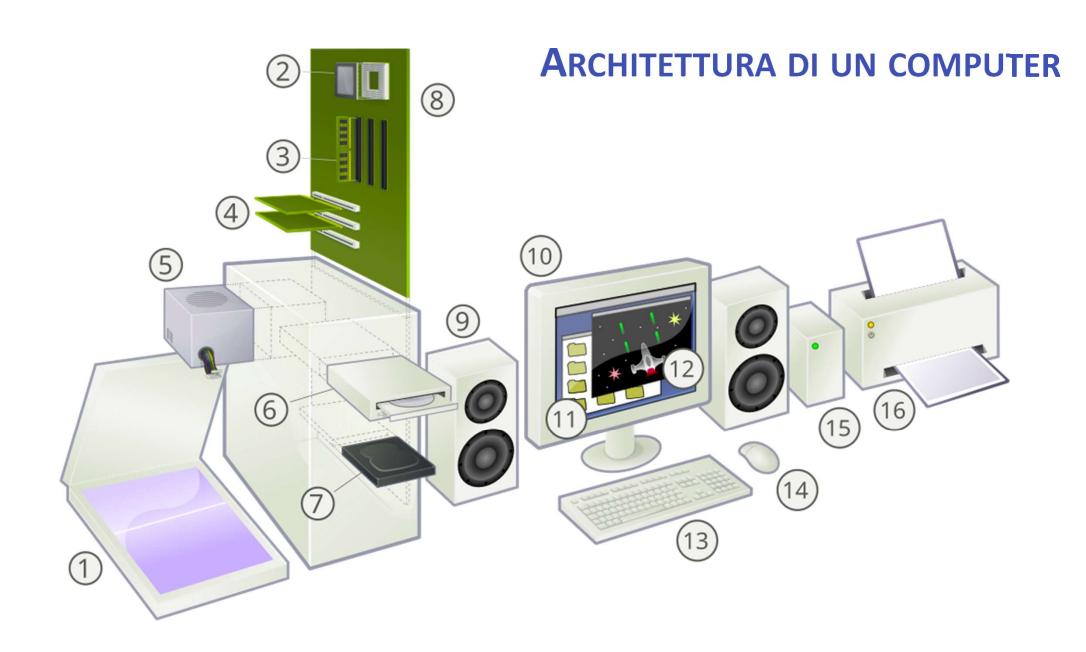
L'hard disk, o disco rigido, è un dispositivo elettromeccanico o completamente elettronico (SSD) l'elemento di tipo magnetico per l'archiviazione non volatile dei file, consente di compiere operazioni di scrittura e di lettura.

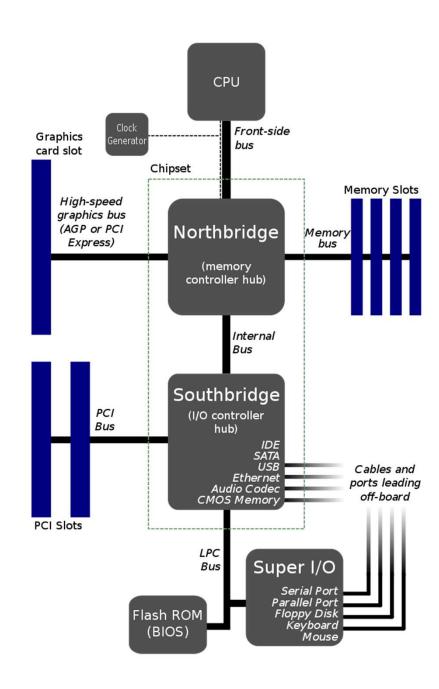
Scheda video

La scheda video consente di visualizzare le immagini sullo schermo. Esistono schede video integrate o esterne. Le prime sono implementate con la componentistica propria della scheda madre, le altre sono dei componenti che vanno montati all'interno del computer sugli appositi zoccoli di espansione.

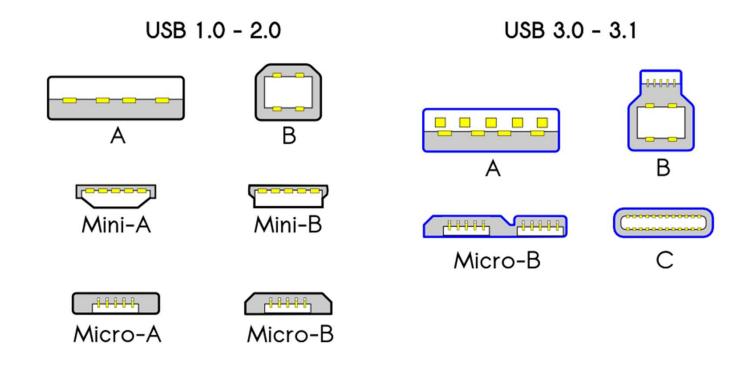
PERIFERICHE

Periferiche sono ad esempio mouse, monitor stampanti, tastiere e drive DVD / BD.





ARCHITETTURA DI UN COMPUTER


UNIVERSAL SERIAL BUS (USB)

Nome	Versione	Velocità teorica	Velocità reale	Data di pubblicazione	
Low-Speed	USB 1.0	1,5 Mbps (187,5 KB/sec)	1 Mbps (125 KB/sec)	Gennaio 1996	
Full-Speed	USB 1.1	12 Mbps (1,5 MB/sec)	7 Mbps (875 KB/sec)	Agosto 1998	
Hi-Speed	USB 2.0	480 Mbps (60 MB/sec)	280 Mbps (35 MB/sec)	Aprile 2000	
SuperSpeed USB	USB 3.1 Gen 1x1 (USB 3.0)	5,0 Gbps (625 MB/sec)	3,2 Gbps (400 MB/sec)	Settembre 2008	
SuperSpeed USB 10Gbps	USB 3.1 Gen 2x1 (USB 3.1 Gen 2)	10 Gbps (1,25 GB/sec)	7,2 Gbps (900 MB/sec)	Luglio 2013	
SuperSpeed USB 20Gbps	USB 3.2 Gen 2x2	20 Gbps (2,5 GB/sec)	N/A	Settembre 2017	
	USB4	40 Gbps	N/A	Agosto 2019	
	USB4 2.0	120 Gbps	N/A	Settembre 2022	

UNIVERSAL SERIAL BUS (USB)

STRUTTURA DELLO STANDARD USB

- Massimo numero di dispositivi: 127 (compresi host e hub)
- Massima lunghezza di un segmento: 5m (USB 2.0)
- Massimo numero di livelli gerarchici: 7

ARCHIVIAZIONE DATI

- HDD e SSD
- Chiavette USB e memory card
- Dischi ottici
- Servizi di cloud-storage
- Network-attached storage (NAS) e Storage Area Network (SAN)
- Nastri

PERDITA DATI

- Cancellazione accidentale
- Errore software
- Virus informatico
- Guasto hardware
- Smarrimento
- Furto
- Danneggiamento intenzionale
- Incendio / calamità naturali
- Sollecitazioni meccaniche oltre specifica

MTBF = Tempo Totale di operatività (uptime) / Numero totale di fermi macchina (N. di downtime)

BACKUP DATI

Con backup, nella sicurezza informatica, si indica un processo di disaster recovery ovvero, in particolare, la messa in sicurezza delle informazioni di un sistema informatico (o un semplice computer) attraverso la creazione di ridondanza delle informazioni stesse (una o più copie di riserva dei dati), da utilizzare come recupero (ripristino) dei dati stessi in caso di eventi malevoli accidentali o intenzionali o semplice manutenzione del sistema.

GRAZIE PER L'ATTENZIONE

Immagini tratte (ove non diversamente specificato) da Wikipedia e Wikimedia Commons, utilizzate a fini didattici e non commerciali. Tutte le immagini restano soggette alle rispettive licenze libere (CC BY, CC BY-SA, CCO o pubblico dominio).