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5. Smirnov/Lagrangian/Ambrosio representation

Consider the PDE

ρt + div(bρ) = µ, (5.1)

with the assumptions

ρ ∈ M+
b (R

d+1), b ∈ L1(ρ), µ ∈ M(Rd+1). (5.2)

Because of

ρ(Rd+1) <∞,

it follows that

µ = µ+ − µ−, µ+(Rd+1) = µ−(Rd+1).

By scaling we assume that

µ±(Rd+1) = 1.

Remark 5.1. For the transport equation for t > 0

ρt + divx(ρb) = 0, ρ(t = 0) = ρ0,

we can arrive to the same formulation by setting

ρ̃ =

{

0 t ≤ 0,

ρ t > 0,

and for all smooth function φ

divt,x(ρφ(1,b)) = ρ(1,b) · ∇t,xφ+ φρ0 × δt=0.

In this way we consider only the trajectories inside the support of φ in {t > 0}.

Lemma 5.2. The space

C̃ =
{

γ ∈ C(Iγ ,R
d)
}

, d̃(γ, γ′) = |t−γ − t−γ′ |+ |t+γ − t+γ′ |+ ‖γ − γ′‖C0(Iγ∩Iγ′ ),

is Polish.

Proof. Exercise. �

Definition 5.3 (Superposition solution). If b is a representative in the L1(ρ)-class, a trajectory of
b is an a.c. function R ⊃ I ∋ t 7→ γ(t) ∈ R

d, I open interval, such that

dγ

dt
= b(t, γ(t)) t a.e..

If η is a probability measure on C̃ concentrated on trajectories γ of the Borel vector field b such that
ˆ

[
ˆ

Iγ

|γ̇(t)|dt

]

η(dγ) <∞

then the measure defined by

ρ(t, dx) =

ˆ

t∈Iγ

δγ(t)(dx)η(dγ),

ˆ

φ(x)ρ(t, dx) =

ˆ

1It∈Iγφ(t, γ(t))η(dγ),

is a superposition solution.

Proposition 5.4. A superposition solution is a solution to (5.1).

Proof. First of all, for η-a.e. γ it holds
ˆ

Iγ

|γ̇(t)| <∞,

so that there are η-measurable maps (exercise)

γ 7→ γ(t±γ ).
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Also,
ˆ

|b(t, x)|ρ(t, dx)L 1(dt) =

ˆ

[
ˆ

Iγ

|b(t, γ(t)|dt

]

η(dγ)

=

ˆ

[
ˆ

Iγ

|γ̇|L 1

]

η(dγ) <∞,

so that the PDE is meaningful.
By computation for every test function φ

ˆ ˆ

(1,b) · ∇t,xφ(t, x)ρ(t, dx)dt =

ˆ

(
ˆ

(1,b) · ∇t,xφ(t, γ(t))η(dγ)

)

dt

=

ˆ

[
ˆ

Iγ

d

dt
φ(t, γ(t))dt

]

η(dγ)

=

ˆ

[

− φ(t−γ , γ(t
−
γ )) + φ(t+γ , γ(t

+
γ ))

]

η(dγ)

= −

ˆ

φµ̃− +

ˆ ˆ

φµ̃+,

where we have defined

µ̃± = γ(t−γ )♯
(

1It±γ ∈R
η(dγ)

)

.

Note that being η a probability, then µ̃±(Rd+1) ≤ 1. The PDE is satisfied with µ = µ̃− − µ̃+. �

Remark 5.5. Note that there maybe trajectories which goes to ∞ in finite time or such that Iγ is
unbounded. These trajectories will not contribute to the measure µ, and are not present if the measure
is locally finite. This is the reason why we assume (5.2).

Note moreover that in this construction it may happen that µ̃+ ⊥ µ̃− is false, so that some trajectories
may stop in the points where another one starts. In this case µ+(Rd+1) = µ−(Rd+1) < 1.

Also the set of trajectories depends on the representative b in this construction. We will see below
that any representative of b gives the same η, which means that the trajectories differ on an η-negligible
set.

Now we prove the converse: we are given a solution to the PDE (5.1) with the localization assumptions
(5.2) and construct a decomposition.

We start with the smooth case.

Proposition 5.6. If b is smooth and ρ is smooth positive in L1(Rd+1), then there exists a Smirnov
decomposition.

Proof. Assume first that ρ is compactly supported. By disintegrating the weak formulation of the
PDE

ρt + div(bρ) = µ, µ = fL
d+1,

using the trajectories of the flow X(·, y)

L
d+1

xsupp ρ=

ˆ

[
ˆ

δX(t, y)

J(t, y)
dt

]

dy,

0 =

ˆ

ρ(1,b) · ∇t,xψL
d+1 +

ˆ

ψfL
d+1

=

ˆ

[
ˆ

(

ρ(t,X(t, y))

J(t, y)

dψ

dt
+
f(t,X(t, y))

J(t, y)

)

dt

]

dy,

which gives that
d

dt

ρ(t,X(t, y))

J(t, y)
=
f(t,X(t, y))

J(t, y)
.

Hence

u(t, y) =
ρ(t,X(t, y))

J(t, y)
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is a smooth positive BV function, with
ˆ

Tot.Var.(u·, y,R)dy =

ˆ

[
ˆ

|f(t,X(t, y))|

J(t, y)
dt

]

dy =

ˆ

|f(t, x)|dtdx.

A smooth positive BV function can be written as (exercise)

u(t, y) =

ˆ +∞

0

1I{u(·,y)>β}(t)dβ =

ˆ +∞

0

∑

n

1IIy,β,n
(t)dβ, {u(·, y) > β} =

⋃

n

In,β ,

so that we obtain
ˆ

ψρL d+1 =

ˆ

ψ(t,X(t, y))
ρ(t,X(t, y))

J(t, y)
dtdy

=

ˆ ˆ

∑

n

ˆ

Iy,β,n

φ(t,X(t, y))dtdβdy,

which is the Smirnov decomposition with

η =

ˆ ˆ

∑

n

ˆ

δX(t,y)1IIy,β,n
(t)dtdβdy.

It is fairly standard to see that η is a Borel measure (exercise) and that

‖η‖ ≤ ‖ρ0‖1 + ‖µ‖.

If ρ is just in L1(Rd+1), then one repeats the construction in a countable smooth partition of unity
φn : Rd+1 → [0, 1] with compact support such that

∑

n

ˆ

|∇1,xφn|(1 + |b|)ρL d+1 < +∞.

We leave the details as an exercise. �

To show that there are smooth approximations to ρ(1,b), we take the convolution of the PDE (5.1)
with a strictly positive space-time convolution kernel gǫ, e.g. the Gaussian:

ρǫ + divx(b
ǫρǫ) = µǫ, ρǫ = gǫ ∗ ρ, µǫ = gǫ ∗ µ, bǫ =

(ρb)ǫ

ρǫ
. (5.3)

We now give an estimate on tightness. We need the following characterization of uniform integrability.

Definition 5.7. If να is a family of probabilities and fα ∈ L1(να) with integral equal to 1, we say
that fα is uniformly integrable if

∀ǫ > 0 ∃δ > 0

(

ρα(A) < δ ⇒

ˆ

A

|f |ρα < ǫ

)

.

Lemma 5.8. The family fα is uniformly integrable iff there exists a convex superlinear function
ω : R+ → R

+ such that
ˆ

ω(|fα|)να < +∞.

Proof. Indeed the uniform integrability there are increasing constant yn → +∞ such that
ˆ

|fα|>yn

|fα|να < 2−n.

Define then the convex monotone function

ω(y) =
∑

n

2
n
2 [y − yn]

+

and compute
ˆ

ω(|fα|)να =
∑

n

2
n
2

ˆ

|fα|>yn

|fα|να <
∑

2−
n

2 < +∞.

The converse is elementary. �
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Proposition 5.9 (Dunford-Pettis). Assume fn ≥ 0 and that νn, fnνn ⇀ ν, fν in P(Rd). Then fn
is uniformly integrable and viceversa (up to subsequences).

Proof. Consider the measure on Rd+1 defined by

̟n = (id, fn)♯νn.

If fn are uniformly integrable, then it follows that ̟n is tight, so that up to subsequences ̟n → ̟.
The projection of ̟n is νn, which narrowly converges (up to subsequences) to ν: being the projection a
linear operation, it follows that the projection of ̟ in R

d is ν. Using the disintegration theorem

̟ =

ˆ

̟xν(dx), f(x) =

ˆ

yνx(dy),

it is easy to see that
fnνn ⇀ fν.

If fn are not uniformly integrable, then up to susbequences ̟n is not converging narrowly, which
means that there is a subsequence weakly converging to ̟ with ̟(Rd+1) < 1. Hence fnνn cannot
converge to a probability a.c. to ν, because otherwise ̟ would have measure 1. �

We will not assume that the measures are smooth, because by a bootstrap argument we will have
that the proposition holds also in the general case.

Proposition 5.10. Assume that

(1) ρα ≥ 0, µα are uniformly bounded measure, tight in R
d+1,

(2) bα are uniformly integrable,
(3) the PDE (5.1) holds for all α.

Then the Smirnov representation ηα are tight in C̃.

Proof. We will construct compact sets which leave outside η-arbitrarily small sets: we will do it for
a single measure, and see that it depends only on the tightness assumptions of ρα, µα.

By the bound on the L1-norm of b we have
ˆ

(

L
1(Iγ) + Tot.Var.(γ)

)

ηα(dγ) ≤ ‖1 + |bα|‖L1(ρα),

so that up to a set of η-measure small we can assume that the trajectories have

L
1(Iγ) +

ˆ

Iγ

|γ̇(t)|dt ≤ N. (5.4)

Next, the measure of trajectories starting outside a ball BR(0) have measure

ηα
({

γ : (t, γ(t)) /∈ BR(0) ∀t ∈ Iγ
})

≤ µ+
α (R

d+1 \BR(0)),

so that we can assume that the trajectories intersect BR(0) up to an arbitrarily η-small set. Then by
(5.4) we deduce that the trajectories are contained in BR+N (0).

Using again the uniform integrability of bα to get that there is a superlinear convex function ω :
R

+ → R
+ such that

ˆ

ω(|bα|)ρα =

ˆ

[
ˆ

Iγ

ω(|γ̇(t)|)dt

]

ηα(dγ) < +∞.

By removing an arbitrarily small set, we can thus assume that for some M < +∞ it holds
ˆ

Iγ

ω(|γ̇(t)|)dt ≤M.

Being ω convex, the above functional is l.s.c., so that we conclude that the compact set is given by

KN,R,H =
{

γ ∈ C̃ : Graph(γ) ⊂ BN+R(0), ‖γ̇‖1 ≤ N, ‖ω(|γ̇|)‖L1 ≤M
}

.

This gives the family of compact sets where the measure is concentrated. �

We can now pass to the limit.

Theorem 5.11 (Smirnov/Lagrangian/Ambrosio representation). The measure ρ solving (5.1) can be
represented as a superposition solution.
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Proof. We have constructed a family ηǫ which is tight and represent ρǫ: the only missing point for
the tightness is the uniform integrability. Note that

(|b|ρ)ǫ = (|b|ρx|b|≤N+|b|ρx|b|>N )ǫ = (|b|ρx|b|≤N )ǫ + (|b|ρx|b|>N )ǫ ≤ N + (|b|ρx|b|>N )ǫ.

Hence
ˆ

{|bǫ|>2N}

|bǫ|ρǫ ≤

ˆ

{(|b|ρx|b|>N )ǫ>Nρǫ}

(|b|ρx|b|>N )ǫ ≤

ˆ

|b|>N

|b|ρ,

which converges to 0.
We pass to the limit of all quantities for suitable subsequence ǫn.

(1) Each side of
ˆ

φρǫn =

ˆ

[
ˆ

φ(t, γ)dt

]

ηǫn

converges to the corresponding quantity, so that ρ(t, dx) = γ(t)♯η(dγ).
(2) The same for the initial and final data

ˆ

φµǫn,± =

ˆ

φ(t−γ , γ(t
−
γ ))η

ǫn(dγ),

which passes to the limit.
(3) For the vector field the map

γ 7→ γ̇

is weakly continuous, so that
ˆ

ρgǫn ∗ (bρ) =

ˆ

φbǫnρǫn =

ˆ

[
ˆ

φ(t)γ̇(t)dt

]

ηǫn

is converging. This proves that the projection of γ̇(t) is b(t, x). On the other hand by l.s.c.
ˆ

Tot.Var.(γ, Iγ)η(dγ) ≤ lim sup
ǫ

ˆ

Tot.Var.(γ, Iγ)ηǫ(dγ) = lim sup

ˆ

|bǫ|ρǫ =

ˆ

|b|ρ,

because of the convergence of the convolution. Hence we have that
ˆ

[
ˆ

Iγ

|γ̇(t)|dt

]

η(dγ) =

ˆ

|b|ρ,

which implies that for L 1-a.e. t
ˆ

γ(t)=x

γ̇(t)ηx(dγ) = b(t, γ(t)),

ˆ

γ(t)=x

|γ̇(t)|ηx(dγ) = |b(t, x)|.

By the strict convexity of | · | we deduce that γ̇(t) = b(t, x) η × L 1-a.e..

Hence we obtain a representation. �

Some remarks are in order.

(1) First of all there is no uniqueness in general of the representation, the simple case being a vector
field allowing two trajectories to cross and putting a Dirac delta on them: one can exchange the
trajectories at the crossing time.

(2) The uniqueness of the representation does not imply that the trajectories do not intersect:
however it implies some sort of future or past uniqueness.

(3) A similar decomposition can be done for the more general PDE

divb = µ,

in this case as curves or solenoidal parts (Smirnov).
(4) In the case of initial data, we can partition the trajectories according to the initial data, obtaining

that

η =

ˆ

ηyρ0(dy).

In the case of a flow, ηy = δX(·,y), but in general it corresponds to a probability measure not
supported on a single point.


