5. Smirnov/Lagrangian/Ambrosio representation

Consider the PDE

$$\rho_t + \operatorname{div}(\mathbf{b}\rho) = \mu,\tag{5.1}$$

with the assumptions

$$\rho \in \mathcal{M}_b^+(\mathbb{R}^{d+1}), \quad b \in L^1(\rho), \quad \mu \in \mathcal{M}(\mathbb{R}^{d+1}).$$
(5.2)

Because of

$$\rho(\mathbb{R}^{d+1}) < \infty,$$

it follows that

$$\mu = \mu^+ - \mu^-, \quad \mu^+(\mathbb{R}^{d+1}) = \mu^-(\mathbb{R}^{d+1}).$$

By scaling we assume that

$$\mu^{\pm}(\mathbb{R}^{d+1}) = 1.$$

Remark 5.1. For the transport equation for t > 0

$$\rho_t + \operatorname{div}_x(\rho \mathbf{b}) = 0, \quad \rho(t=0) = \rho_0,$$

we can arrive to the same formulation by setting

$$\tilde{\rho} = \begin{cases} 0 & t \le 0, \\ \rho & t > 0, \end{cases}$$

and for all smooth function ϕ

$$\operatorname{div}_{t,x}(\rho\phi(1,\mathbf{b})) = \rho(1,\mathbf{b}) \cdot \nabla_{t,x}\phi + \phi\rho_0 \times \delta_{t=0}.$$

In this way we consider only the trajectories inside the support of ϕ in $\{t > 0\}$.

Lemma 5.2. The space

$$\tilde{C} = \left\{ \gamma \in C(I_{\gamma}, \mathbb{R}^{d}) \right\}, \quad \tilde{d}(\gamma, \gamma') = |t_{\gamma}^{-} - t_{\gamma'}^{-}| + |t_{\gamma}^{+} - t_{\gamma'}^{+}| + ||\gamma - \gamma'||_{C^{0}(I_{\gamma} \cap I_{\gamma'})},$$

is Polish.

DEFINITION 5.3 (Superposition solution). If **b** is a representative in the $L^1(\rho)$ -class, a trajectory of **b** is an a.c. function $\mathbb{R} \supset I \ni t \mapsto \gamma(t) \in \mathbb{R}^d$, I open interval, such that

$$\frac{d\gamma}{dt} = \mathbf{b}(t, \gamma(t))$$
 t a.e..

If η is a probability measure on \tilde{C} concentrated on trajectories γ of the Borel vector field **b** such that

$$\int \left[\int_{I_{\gamma}} |\dot{\gamma}(t)| dt \right] \eta(d\gamma) < \infty$$

then the measure defined by

$$\rho(t,dx) = \int_{t \in I_{\gamma}} \delta_{\gamma(t)}(dx) \eta(d\gamma), \quad \int \phi(x) \rho(t,dx) = \int \mathbf{1}_{t \in I_{\gamma}} \phi(t,\gamma(t)) \eta(d\gamma),$$

is a superposition solution.

Proposition 5.4. A superposition solution is a solution to (5.1).

PROOF. First of all, for η -a.e. γ it holds

$$\int_{I_{\gamma}} |\dot{\gamma}(t)| < \infty,$$

so that there are η -measurable maps (exercise)

$$\gamma \mapsto \gamma(t_{\gamma}^{\pm}).$$

Also.

$$\begin{split} \int |\mathbf{b}(t,x)| \rho(t,dx) \mathscr{L}^1(dt) &= \int \bigg[\int_{I_{\gamma}} |\mathbf{b}(t,\gamma(t)|dt \bigg] \eta(d\gamma) \\ &= \int \bigg[\int_{I_{\gamma}} |\dot{\gamma}| \mathscr{L}^1 \bigg] \eta(d\gamma) < \infty, \end{split}$$

so that the PDE is meaningful.

By computation for every test function ϕ

$$\int \int (1, \mathbf{b}) \cdot \nabla_{t,x} \phi(t, x) \rho(t, dx) dt = \int \left(\int (1, \mathbf{b}) \cdot \nabla_{t,x} \phi(t, \gamma(t)) \eta(d\gamma) \right) dt$$

$$= \int \left[\int_{I_{\gamma}} \frac{d}{dt} \phi(t, \gamma(t)) dt \right] \eta(d\gamma)$$

$$= \int \left[-\phi(t_{\gamma}^{-}, \gamma(t_{\gamma}^{-})) + \phi(t_{\gamma}^{+}, \gamma(t_{\gamma}^{+})) \right] \eta(d\gamma)$$

$$= -\int \phi \tilde{\mu}^{-} + \int \int \phi \tilde{\mu}^{+},$$

where we have defined

$$\tilde{\mu}^{\pm} = \gamma(t_{\gamma}^{-})_{\sharp} (\mathbf{I}_{t_{\gamma}^{\pm} \in \mathbb{R}} \eta(d\gamma)).$$

Note that being η a probability, then $\tilde{\mu}^{\pm}(\mathbb{R}^{d+1}) \leq 1$. The PDE is satisfied with $\mu = \tilde{\mu}^{-} - \tilde{\mu}^{+}$.

REMARK 5.5. Note that there maybe trajectories which goes to ∞ in finite time or such that I_{γ} is unbounded. These trajectories will not contribute to the measure μ , and are not present if the measure is locally finite. This is the reason why we assume (5.2).

Note moreover that in this construction it may happen that $\tilde{\mu}^+ \perp \tilde{\mu}^-$ is false, so that some trajectories may stop in the points where another one starts. In this case $\mu^+(\mathbb{R}^{d+1}) = \mu^-(\mathbb{R}^{d+1}) < 1$.

Also the set of trajectories depends on the representative **b** in this construction. We will see below that any representative of **b** gives the same η , which means that the trajectories differ on an η -negligible set.

Now we prove the converse: we are given a solution to the PDE (5.1) with the localization assumptions (5.2) and construct a decomposition.

We start with the smooth case.

PROPOSITION 5.6. If **b** is smooth and ρ is smooth positive in $L^1(\mathbb{R}^{d+1})$, then there exists a Smirnov decomposition.

Proof. Assume first that ρ is compactly supported. By disintegrating the weak formulation of the PDE

$$\rho_t + \operatorname{div}(\mathbf{b}\rho) = \mu, \quad \mu = f\mathcal{L}^{d+1},$$

using the trajectories of the flow $X(\cdot, y)$

$$\mathcal{L}^{d+1} \sqcup_{\text{supp }\rho} = \int \left[\int \frac{\delta_X(t,y)}{J(t,y)} dt \right] dy,$$

$$0 = \int \rho(1,\mathbf{b}) \cdot \nabla_{t,x} \psi \mathcal{L}^{d+1} + \int \psi f \mathcal{L}^{d+1}$$

$$= \int \left[\int \left(\frac{\rho(t,X(t,y))}{J(t,y)} \frac{d\psi}{dt} + \frac{f(t,X(t,y))}{J(t,y)} \right) dt \right] dy,$$

which gives that

$$\frac{d}{dt}\frac{\rho(t,X(t,y))}{J(t,y)} = \frac{f(t,X(t,y))}{J(t,y)}.$$

Hence

$$u(t,y) = \frac{\rho(t, X(t,y))}{J(t,y)}$$

is a smooth positive BV function, with

$$\int \text{Tot.Var.}(u\cdot,y,\mathbb{R})dy = \int \left[\int \frac{|f(t,X(t,y))|}{J(t,y)}dt\right]dy = \int |f(t,x)|dtdx.$$

A smooth positive BV function can be written as (exercise)

$$u(t,y) = \int_0^{+\infty} \mathbf{I}_{\{u(\cdot,y)>\beta\}}(t)d\beta = \int_0^{+\infty} \sum_n \mathbf{I}_{I_{y,\beta,n}}(t)d\beta, \quad \{u(\cdot,y)>\beta\} = \bigcup_n I_{n,\beta},$$

so that we obtain

$$\begin{split} \int \psi \rho \mathscr{L}^{d+1} &= \int \psi(t, X(t,y)) \frac{\rho(t, X(t,y))}{J(t,y)} dt dy \\ &= \int \int \sum_n \int_{I_{y,\beta,n}} \phi(t, X(t,y)) dt d\beta dy, \end{split}$$

which is the Smirnov decomposition with

$$\eta = \int \int \sum_n \int \delta_{X(t,y)} \mathbb{1}_{I_{y,\beta,n}}(t) dt d\beta dy.$$

It is fairly standard to see that η is a Borel measure (exercise) and that

$$\|\eta\| \le \|\rho_0\|_1 + \|\mu\|.$$

If ρ is just in $L^1(\mathbb{R}^{d+1})$, then one repeats the construction in a countable smooth partition of unity $\phi_n : \mathbb{R}^{d+1} \to [0,1]$ with compact support such that

$$\sum_{n} \int |\nabla_{1,x} \phi_n| (1+|\mathbf{b}|) \rho \mathcal{L}^{d+1} < +\infty.$$

We leave the details as an exercise.

To show that there are smooth approximations to $\rho(1, \mathbf{b})$, we take the convolution of the PDE (5.1) with a strictly positive space-time convolution kernel g^{ϵ} , e.g. the Gaussian:

$$\rho^{\epsilon} + \operatorname{div}_{x}(\mathbf{b}^{\epsilon}\rho^{\epsilon}) = \mu^{\epsilon}, \quad \rho^{\epsilon} = g^{\epsilon} * \rho, \ \mu^{\epsilon} = g^{\epsilon} * \mu, \ \mathbf{b}^{\epsilon} = \frac{(\rho \mathbf{b})^{\epsilon}}{\rho^{\epsilon}}.$$
(5.3)

We now give an estimate on tightness. We need the following characterization of uniform integrability.

DEFINITION 5.7. If ν_{α} is a family of probabilities and $f_{\alpha} \in L^{1}(\nu_{\alpha})$ with integral equal to 1, we say that f_{α} is uniformly integrable if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \left(\rho_{\alpha}(A) < \delta \ \Rightarrow \ \int_{A} |f| \rho_{\alpha} < \epsilon \right).$$

LEMMA 5.8. The family f_{α} is uniformly integrable iff there exists a convex superlinear function $\omega : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\int \omega(|f_{\alpha}|)\nu_{\alpha} < +\infty.$$

Proof. Indeed the uniform integrability there are increasing constant $y_n \to +\infty$ such that

$$\int_{|f_{\alpha}|>y_n} |f_{\alpha}| \nu_{\alpha} < 2^{-n}.$$

Define then the convex monotone function

$$\omega(y) = \sum_{n} 2^{\frac{n}{2}} [y - y_n]^+$$

and compute

$$\int \omega(|f_{\alpha}|)\nu_{\alpha} = \sum_{n} 2^{\frac{n}{2}} \int_{|f_{\alpha}| > y_{n}} |f_{\alpha}|\nu_{\alpha} < \sum 2^{-\frac{n}{2}} < +\infty.$$

The converse is elementary.

PROPOSITION 5.9 (Dunford-Pettis). Assume $f_n \geq 0$ and that $\nu_n, f_n \nu_n \rightharpoonup \nu, f \nu$ in $\mathcal{P}(\mathbb{R}^d)$. Then f_n is uniformly integrable and viceversa (up to subsequences).

PROOF. Consider the measure on \mathbb{R}^{d+1} defined by

$$\varpi_n = (\mathrm{id}, f_n)_{\sharp} \nu_n.$$

If f_n are uniformly integrable, then it follows that ϖ_n is tight, so that up to subsequences $\varpi_n \to \varpi$. The projection of ϖ_n is ν_n , which narrowly converges (up to subsequences) to ν : being the projection a linear operation, it follows that the projection of ϖ in \mathbb{R}^d is ν . Using the disintegration theorem

$$\varpi = \int \varpi_x \nu(dx), \quad f(x) = \int y \nu_x(dy),$$

it is easy to see that

$$f_n \nu_n \rightharpoonup f \nu$$
.

If f_n are not uniformly integrable, then up to susbequences ϖ_n is not converging narrowly, which means that there is a subsequence weakly converging to ϖ with $\varpi(\mathbb{R}^{d+1}) < 1$. Hence $f_n\nu_n$ cannot converge to a probability a.c. to ν , because otherwise ϖ would have measure 1.

We will not assume that the measures are smooth, because by a bootstrap argument we will have that the proposition holds also in the general case.

Proposition 5.10. Assume that

- (1) $\rho_{\alpha} \geq 0, \mu_{\alpha}$ are uniformly bounded measure, tight in \mathbb{R}^{d+1} ,
- (2) \mathbf{b}_{α} are uniformly integrable,
- (3) the PDE (5.1) holds for all α .

Then the Smirnov representation η_{α} are tight in \tilde{C} .

PROOF. We will construct compact sets which leave outside η -arbitrarily small sets: we will do it for a single measure, and see that it depends only on the tightness assumptions of ρ_{α} , μ_{α} .

By the bound on the L^1 -norm of **b** we have

$$\int \left(\mathscr{L}^1(I_{\gamma}) + \text{Tot.Var.}(\gamma) \right) \eta_{\alpha}(d\gamma) \le \|1 + |\mathbf{b}_{\alpha}|\|_{L^1(\rho_{\alpha})},$$

so that up to a set of η -measure small we can assume that the trajectories have

$$\mathcal{L}^{1}(I_{\gamma}) + \int_{I_{\gamma}} |\dot{\gamma}(t)| dt \le N.$$
(5.4)

Next, the measure of trajectories starting outside a ball $B_R(0)$ have measure

$$\eta_{\alpha}(\{\gamma:(t,\gamma(t))\notin B_R(0)\ \forall t\in I_{\gamma}\})\leq \mu_{\alpha}^+(\mathbb{R}^{d+1}\setminus B_R(0)),$$

so that we can assume that the trajectories intersect $B_R(0)$ up to an arbitrarily η -small set. Then by (5.4) we deduce that the trajectories are contained in $B_{R+N}(0)$.

Using again the uniform integrability of \mathbf{b}_{α} to get that there is a superlinear convex function ω : $\mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\int \omega(|\mathbf{b}_{\alpha}|)\rho_{\alpha} = \int \left[\int_{I_{\gamma}} \omega(|\dot{\gamma}(t)|) dt \right] \eta_{\alpha}(d\gamma) < +\infty.$$

By removing an arbitrarily small set, we can thus assume that for some $M<+\infty$ it holds

$$\int_{I_{\gamma}} \omega(|\dot{\gamma}(t)|) dt \le M.$$

Being ω convex, the above functional is l.s.c., so that we conclude that the compact set is given by

$$K_{N,R,H} = \{ \gamma \in \tilde{C} : \operatorname{Graph}(\gamma) \subset B_{N+R}(0), \|\dot{\gamma}\|_1 \le N, \|\omega(|\dot{\gamma}|)\|_{L^1} \le M \}.$$

This gives the family of compact sets where the measure is concentrated.

We can now pass to the limit.

Theorem 5.11 (Smirnov/Lagrangian/Ambrosio representation). The measure ρ solving (5.1) can be represented as a superposition solution.

PROOF. We have constructed a family η^{ϵ} which is tight and represent ρ^{ϵ} : the only missing point for the tightness is the uniform integrability. Note that

$$(|\mathbf{b}|\rho)^{\epsilon} = (|\mathbf{b}|\rho \sqcup_{|\mathbf{b}| \leq N} + |b|\rho \sqcup_{|\mathbf{b}| > N})^{\epsilon} = (|\mathbf{b}|\rho \sqcup_{|\mathbf{b}| \leq N})^{\epsilon} + (|\mathbf{b}|\rho \sqcup_{|\mathbf{b}| > N})^{\epsilon} \leq N + (|\mathbf{b}|\rho \sqcup_{|\mathbf{b}| > N})^{\epsilon}.$$

Hence

$$\int_{\{|b^\epsilon|>2N\}} |\mathbf{b}^\epsilon| \rho^\epsilon \leq \int_{\{(|\mathbf{b}|\rho \sqcup_{|b|>N})^\epsilon > N\rho^\epsilon\}} (|\mathbf{b}|\rho \sqcup_{|\mathbf{b}|>N})^\epsilon \leq \int_{|\mathbf{b}|>N} |\mathbf{b}|\rho,$$

which converges to 0.

We pass to the limit of all quantities for suitable subsequence ϵ_n .

(1) Each side of

$$\int \phi \rho^{\epsilon_n} = \int \left[\int \phi(t, \gamma) dt \right] \eta^{\epsilon_n}$$

converges to the corresponding quantity, so that $\rho(t, dx) = \gamma(t)_{\sharp} \eta(d\gamma)$.

(2) The same for the initial and final data

$$\int \phi \mu^{\epsilon_n, \pm} = \int \phi(t_{\gamma}^-, \gamma(t_{\gamma}^-)) \eta^{\epsilon_n}(d\gamma),$$

which passes to the limit.

(3) For the vector field the map

$$\gamma \mapsto \dot{\gamma}$$

is weakly continuous, so that

$$\int \rho g^{\epsilon_n} * (\mathbf{b}\rho) = \int \phi \mathbf{b}^{\epsilon_n} \rho^{\epsilon_n} = \int \left[\int \phi(t) \dot{\gamma}(t) dt \right] \eta^{\epsilon_n}$$

is converging. This proves that the projection of $\dot{\gamma}(t)$ is $\mathbf{b}(t,x)$. On the other hand by l.s.c.

$$\int \mathrm{Tot.Var.}(\gamma,I_\gamma)\eta(d\gamma) \leq \limsup_{\epsilon} \int \mathrm{Tot.Var.}(\gamma,I_\gamma)\eta_\epsilon(d\gamma) = \limsup_{\epsilon} \int |\mathbf{b}^\epsilon|\rho^\epsilon = \int |\mathbf{b}|\rho,$$

because of the convergence of the convolution. Hence we have that

$$\int \left[\int_{I_{\gamma}} |\dot{\gamma}(t)| dt \right] \eta(d\gamma) = \int |\mathbf{b}| \rho,$$

which implies that for \mathscr{L}^1 -a.e. t

$$\int_{\gamma(t)=x} \dot{\gamma}(t) \eta_x(d\gamma) = \mathbf{b}(t, \gamma(t)), \quad \int_{\gamma(t)=x} |\dot{\gamma}(t)| \eta_x(d\gamma) = |\mathbf{b}(t, x)|.$$

By the strict convexity of $|\cdot|$ we deduce that $\dot{\gamma}(t) = \mathbf{b}(t,x) \; \eta \times \mathscr{L}^1$ -a.e.

Hence we obtain a representation.

Some remarks are in order.

(1) First of all there is no uniqueness in general of the representation, the simple case being a vector field allowing two trajectories to cross and putting a Dirac delta on them: one can exchange the trajectories at the crossing time.

- (2) The uniqueness of the representation does not imply that the trajectories do not intersect: however it implies some sort of future or past uniqueness.
- (3) A similar decomposition can be done for the more general PDE

$$\operatorname{div} \mathbf{b} = \mu$$
.

in this case as curves or solenoidal parts (Smirnov).

(4) In the case of initial data, we can partition the trajectories according to the initial data, obtaining that

$$\eta = \int \eta_y \rho_0(dy).$$

In the case of a flow, $\eta_y = \delta_{X(\cdot,y)}$, but in general it corresponds to a probability measure not supported on a single point.