6. Uniqueness

The condition for uniqueness of the Lagrangian representation is related to the uniqueness of the solution to the PDE

$$(\rho u)_t + \operatorname{div}_x(\mathbf{b}\rho u) = 0, \quad 0 \le u \le 1.$$
(6.1)

Recall ρ is considered as a background measure, while u is solving in the duality sense

$$u_t + \mathbf{b} \cdot \nabla u = 0, \quad u(t=0) = u_0.$$
 (6.2)

Remark 6.1. We are assuming that (6.1) defines a measure solution when restricted to any interval [0, T], i.e.

$$(\rho u)_t + \operatorname{div}_x(\mathbf{b}\rho u) = u_0 \rho_0 \times \delta_{t=0} - u(T)\rho(T) \times \delta_T,$$

and ρ, ρ_0, ρ_T are bounded measure, $u \in L^{\infty}(\rho), u_0 \in L^{\infty}(\rho_0), u(T) \in L^{\infty}(\rho(T))$. We will not write the end interval T (for example by considering as test functions $\psi \in C_c^1([0,t) \times \mathbb{R}^d)$).

DEFINITION 6.2. We say that $\rho(1, \mathbf{b})$ has the uniqueness property if for every $u_0 \in L^{\infty}(\rho)$ there is a unique ρ -solution in $L^{\infty}(\rho)$ to (6.2).

We say that ρ has the renormalization property if the following implication holds: for all $\beta \in C^1(\mathbb{R})$ u is a solution to (6.2) with $u(t=0) = u_0 \implies \beta(u)$ is a solution to (6.2) with $\beta(u)(t=0) = \beta(u_0)$.

LEMMA 6.3. For every $u_0 \in L^{\infty}$ there exists a solution to (5.1).

PROOF. Use the disintegration theorem to write

$$\eta = \int \eta_y \rho_0(dy),$$

and just check that

$$\eta' = \int \eta_y u_0(y) \rho_0(dy)$$

is a solution in L^{∞} .

Next we prove the following implications:

LEMMA 6.4. If ρ has the uniqueness property, then it is has the renormalization property.

PROOF. If u_1, u_2 are two solutions to (6.2) with the same initial data, by linearity there is a solution with initial data 0. Clearly by taking $\beta(u) = u^2$, it follows that

$$0 = \int_0^T \int \operatorname{div}(u^2 \rho(1, \mathbf{b})) = \int u^2(T)\rho(T) - \int u_0^2 \rho_0 = \int u^2(T)\rho(T),$$

which means it is renormalized only if u = 0, obtaining a contradiction.

Lemma 6.5. If ρ has the renormalization property, then there is a unique Lagrangian representation which is a flow.

PROOF. Assume that there is a Lagrangian representation which is not a flow: then there is a set of positive ρ_0 -measure such that the conditional probabilities η_y are not Dirac deltas. In particular, by a partition argument, one of the set

$$A_{r,\bar{t},x_1,x_2,\delta} = \left\{ y : \eta_y \left(\left\{ \gamma(\bar{t}) \in B_r(\bar{x}_i) \right\} \right) > \delta, i = 1, 2, |x_1 - x_2| > 2r \right\}$$

has positive ρ_0 measure: otherwise it follows that that for all r, \bar{t}, x_1, x_2 rational the set has measure 0, which gives that it is a flow.

The two solutions are

$$\rho u_i = \int_{A_{r,\bar{t},x_1,x_2,\delta}} \frac{\eta_y \llcorner \{\gamma(\bar{t}) \in B_r(\bar{x}_i)\}}{\eta_y(\{\gamma(\bar{t}) \in B_r(\bar{x}_i)\})} u_0(y) \rho_0(dy),$$

which are disjoint at time \bar{t} being in A_{r,\bar{t},x_1,x_2} .

Hence every Lagrangian representation is a flow. Being the set of Lagrangian representation convex, it follows that that the same flow is used from any other η up to a negligible set of trajectories.

LEMMA 6.6. If ρ has a unique Lagrangian representation which is a flow, then there is uniqueness.

PROOF. Since every η has to use the same flow X, then unique solution is given by Lemma 6.3. \square We now relate the uniqueness to a monotonicity principle.

COROLLARY 6.7. If $u_0 \ge 0$ implies that every solution to (6.2) is positive, then uniqueness holds. and viceversa.

PROOF. By Lemma 6.3 the implication (uniqueness \Rightarrow positivity) is trivially true. If monotonicity holds, it follows by the same reasoning as in Lemma 6.4 that

$$0 = \int_0^T \int \operatorname{div}(u\rho(1, \mathbf{b})) = \int u(T)\rho(T) - \int u_0 \rho_0 = \int u(T)\rho(T),$$

which means u = 0.

Remark 6.8. A more refined argument gives that η is concentrated on a set of trajectories γ such that the set

$$\big\{(t,\gamma(t)), t \in I_{\gamma}\big\}$$

are disjoint, i.e. the curves can only intersect in the final points, thus forming a disjoint partition of the space \mathbb{R}^{d+1} .