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6. Uniqueness

The condition for uniqueness of the Lagrangian representation is related to the uniqueness of the
solution to the PDE

(ρu)t + divx(bρu) = 0, 0 ≤ u ≤ 1. (6.1)

Recall ρ is considered as a background measure, while u is solving in the duality sense

ut + b · ∇u = 0, u(t = 0) = u0. (6.2)

Remark 6.1. We are assuming that (6.1) defines a measure solution when restricted to any interval
[0, T ], i.e.

(ρu)t + divx(bρu) = u0ρ0 × δt=0 − u(T )ρ(T )× δT ,

and ρ, ρ0, ρT are bounded measure, u ∈ L∞(ρ), u0 ∈ L∞(ρ0), u(T ) ∈ L∞(ρ(T )). We will not write the
end interval T (for example by considering as test functions ψ ∈ C1

c ([0, t)× R
d)).

Definition 6.2. We say that ρ(1,b) has the uniqueness property if for every u0 ∈ L∞(ρ) there is a
unique ρ-solution in L∞(ρ) to (6.2).

We say that ρ has the renormalization property if the following implication holds: for all β ∈ C1(R)

u is a solution to (6.2) with u(t = 0) = u0 ⇒ β(u) is a solution to (6.2) with β(u)(t = 0) = β(u0).

Lemma 6.3. For every u0 ∈ L∞ there exists a solution to (5.1).

Proof. Use the disintegration theorem to write

η =

ˆ

ηyρ0(dy),

and just check that

η′ =

ˆ

ηyu0(y)ρ0(dy)

is a solution in L∞. �

Next we prove the following implications:

Lemma 6.4. If ρ has the uniqueness property, then it is has the renormalization property.

Proof. If u1, u2 are two solutions to (6.2) with the same initial data, by linearity there is a solution
with initial data 0. Clearly by taking β(u) = u2, it follows that

0 =

ˆ T

0

ˆ

div(u2ρ(1,b)) =

ˆ

u2(T )ρ(T )−

ˆ

u20ρ0 =

ˆ

u2(T )ρ(T ),

which means it is renormalized only if u = 0, obtaining a contradiction. �

Lemma 6.5. If ρ has the renormalization property, then there is a unique Lagrangian representation

which is a flow.

Proof. Assume that there is a Lagrangian representation which is not a flow: then there is a set of
positive ρ0-measure such that the conditional probabilities ηy are not Dirac deltas. In particular, by a
partition argument, one of the set

Ar,t̄,x1,x2,δ =
{

y : ηy
({

γ(t̄) ∈ Br(x̄i)
})

> δ, i = 1, 2, |x1 − x2| > 2r
}

has positive ρ0 measure: otherwise it follows that that for all r, t̄, x1, x2 rational the set has measure 0,
which gives that it is a flow.

The two solutions are

ρui =

ˆ

Ar,t̄,x1,x2,δ

ηyx{γ(t̄)∈Br(x̄i)}

ηy({γ(t̄) ∈ Br(x̄i)})
u0(y)ρ0(dy),

which are disjoint at time t̄ being in Ar,t̄,x1,x2
.

Hence every Lagrangian representation is a flow. Being the set of Lagrangian representation convex,
it follows that that the same flow is used from any other η up to a negligible set of trajectories. �

Lemma 6.6. If ρ has a unique Lagrangian representation which is a flow, then there is uniqueness.
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Proof. Since every η has to use the same flow X, then unique solution is given by Lemma 6.3. �

We now relate the uniqueness to a monotonicity principle.

Corollary 6.7. If u0 ≥ 0 implies that every solution to (6.2) is positive, then uniqueness holds.

and viceversa.

Proof. By Lemma 6.3 the implication (uniqueness ⇒ positivity) is trivially true.
If monotonicity holds, it follows by the same reasoning as in Lemma 6.4 that

0 =

ˆ T

0

ˆ

div(uρ(1,b)) =

ˆ

u(T )ρ(T )−

ˆ

u0ρ0 =

ˆ

u(T )ρ(T ),

which means u = 0. �

Remark 6.8. A more refined argument gives that η is concentrated on a set of trajectories γ such
that the set

{

(t, γ(t)), t ∈ Iγ
}

are disjoint, i.e. the curves can only intersect in the final points, thus forming a disjoint partition of the
space R

d+1.


