SISTEMI DI ELABORAZIONE DELLE ÎNFORMAZIONI

A.A. 2025-26

Ing. Paolo Querci

ING-INF-05

Lezione 2

AUDIO: CAMPIONAMENTO E QUANTIZZAZIONE

Campionamento: processo di **conversione** di un segnale continuo in una sequenza di **campioni discreti**.

Frequenza di campionamento (Fs): indica **quante volte al secondo** viene misurato il segnale. Più è alta, maggiore è la **frequenza massima riproducibile** della rappresentazione digitale.

Aliasing: fenomeno in cui le **alte frequenze** si "mascherano" da frequenze più basse quando il campionamento è **insufficiente**; è una **distorsione irreversibile**.

Filtro anti-alias: filtro **analogico** posto prima del convertitore, che elimina le frequenze superiori a **Fmax** per **evitare aliasing**.

Quantizzazione: fase successiva al campionamento, in cui ogni campione viene **approssimato** a un valore numerico tra quelli disponibili nel convertitore. Determina la **precisione** (numero di bit) e il **rapporto segnale/rumore** del sistema digitale.

IL CAMPIONAMENTO NEL COMPACT DISC (CD AUDIO)

La **musica** che ascoltiamo nasce come **segnale analogico continuo** registrato da un **microfono**, che trasforma le onde sonore in variazioni di **tensione elettrica**.

Per poter essere **memorizzata su CD**, questa forma d'onda deve essere **campionata** cioè misurata a intervalli di tempo regolari.

Nel Compact Disc (CD Audio), la frequenza di campionamento è 44 100 volte al secondo (44,1 kHz). Ogni canale (sinistro e destro) viene registrato separatamente, così un secondo di musica stereo contiene 88 200 campioni totali.

Questa frequenza è sufficiente a rappresentare **tutte le frequenze udibili** dall'uomo, fino a 20 Khz, (in teoria fino a **22 050 Hz**, come previsto dal **teorema di Nyquist-Shannon**).

Il risultato è un segnale digitale che conserva **tutta l'informazione essenziale** del suono originale

IL CONCETTO DI RUMORE DI FONDO

In ogni sistema di comunicazione — naturale o tecnologico — il **rumore di fondo** è ciò che **disturba o maschera il segnale utile**.

Nel mondo reale, non esiste mai silenzio assoluto: ogni ambiente o dispositivo produce un certo livello minimo di rumore, che fissa il limite inferiore di percezione e intelleggibilità del segnale, cioè il punto al di sotto del quale il quale il segnale utile si confonde con il rumore.

Durante una **conversazione in un aeroporto affoliato**, la tua voce è il **segnale**, le voci, i motori e gli annunci sono il **rumore di fondo**.

Più il rumore aumenta, più diventa difficile distinguere le parole.

Immagine generata con AI - © 2025, P. Querci

IL CONCETTO DI RUMORE DI FONDO

Allo stesso modo, nei sistemi elettronici o digitali, il rumore di fondo è costituito da **fluttuazioni casuali** che possono **nascondere o alterare** le informazioni più deboli del segnale.

il rumore di fondo è **inevitabile**, ma capire **quanto incide** è essenziale per valutare la **qualità reale di un segnale**.

IL CONCETTO DI RUMORE DI FONDO

Il concetto di **rumore di fondo** non si limita ai **suoni**. Si applica a **qualsiasi tipo di segnale**: elettrico, ottico, digitale o biologico.

Ogni volta che c'è una **misura**, una **trasmissione** o una **registrazione**, esiste sempre un **livello minimo di disturbo** che si sovrappone al segnale utile.

Nel dominio audio il rumore può essere fruscio o ronzio, in un segnale video può apparire come granulosità o disturbi visivi, in un sensore elettronico può manifestarsi come variazioni casuali di tensione.

In tutti i casi, il principio è lo stesso: il rumore di fondo è ciò che **limita la sensibilità e la precisione** con cui possiamo distinguere o trasmettere un'informazione.

IL RAPPORTO SEGNALE / RUMORE

Per descrivere la qualità complessiva di un sistema si utilizza il **rapporto segnale/rumore (SNR – Signal to Noise Ratio)**, che esprime la **differenza di livello** tra il segnale utile e il rumore di fondo.

Un SNR elevato indica maggiore chiarezza e fedeltà, mentre un SNR basso comporta perdita di dettaglio e difficoltà di comprensione del segnale.

IL RAPPORTO SEGNALE / RUMORE

Il rapporto segnale/rumore, indicato con SNR (Signal to Noise Ratio), misura quanto il segnale utile è più forte del rumore di fondo.

$$SNR = rac{P_{segnale}}{P_{rumore}}$$

$$SNR_{dB} = 10 \log_{10}(SNR)$$
.

IL RAPPORTO SEGNALE / RUMORE E LA GAMMA DINAMICA

Rapporto segnale/rumore (SNR)

Indica quanto il segnale utile è più forte del rumore di fondo.

Si misura in decibel (dB) ed è legato alla qualità del segnale.

Nel caso di un sistema digitale ideale, dipende dal numero di bit di quantizzazione.

Gamma dinamica (Dynamic Range)

Rappresenta **l'intervallo tra il suono più debole e quello più forte** che un sistema può riprodurre o registrare **senza distorsione né rumore udibile**.

Si misura anch'essa in dB.

Misura **l'intervallo totale** tra il **segnale massimo non distorto** e il **minimo segnale percepibile**, che di fatto coincide con il **livello di rumore**.

IL RAPPORTO SEGNALE / RUMORE E LA GAMMA DINAMICA

Nel caso ideale (senza altri limiti di distorsione o rumore): gamma dinamica ≈ SNR teorico

Nella pratica reale, invece, la **gamma dinamica effettiva** è spesso **inferiore** al SNR teorico,

perché intervengono altri fattori: rumore elettronico, non linearità, limitazioni acustiche.

In sintesi:

SNR → misura tecnica del rapporto segnale/rumore

Gamma dinamica → misura pratica dell'intervallo utile di livelli sonori

Nei sistemi digitali ideali, coincidono quasi perfettamente

LA QUANTIZZAZIONE E IL RAPPORTO SEGNALE / RUMORE

Un valore alto di SNR significa che il segnale è pulito e chiaro. Un valore basso indica che il segnale è disturbato o coperto dal rumore.

Si esprime in **decibel (dB)**: più decibel → **migliore qualità**.

$$SNR_{dB} \approx 6.02 \text{ n} + 1.76 \text{ dB}$$

ove: n = numero di bit di codifica

Esempi:

20 dB → segnale debole e rumoroso

60 dB → qualità accettabile

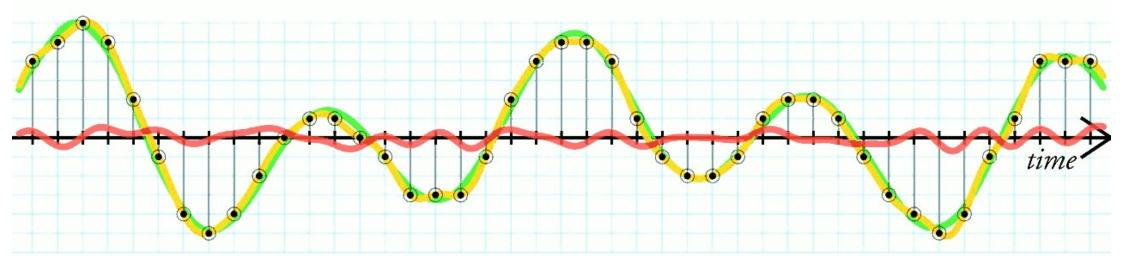
90 dB o più → qualità molto alta (come nei CD audio)

In sintesi: SNR alto = segnale chiaro, SNR basso = segnale sporco.

IL RUMORE DI QUANTIZZAZIONE

Il rumore di quantizzazione è l'errore introdotto quando un segnale analogico viene approssimato ai livelli discreti disponibili in digitale.

In pratica, ad ogni campione il valore reale viene **arrotondato** al livello più vicino, generando una piccola differenza casuale tra il segnale originale e quello quantizzato.


Se il segnale è sufficientemente complesso, questa differenza si comporta come un **rumore bianco** distribuito uniformemente sullo spettro udibile.

All'ascolto si manifesta come un **fruscio costante**, simile al soffio di fondo di un vecchio registratore, più evidente nelle parti silenziose.

All'aumentare dei bit di quantizzazione, il passo tra i livelli diventa più fine e il rumore diminuisce: ogni bit in più migliora il rapporto segnale/rumore (SNR) di circa 6 dB, rendendo il fruscio progressivamente impercettibile.

AUDIO: CAMPIONAMENTO E QUANTIZZAZIONE

original signal quantized signal quantization noise

IL RUMORE DI QUANTIZZAZIONE

Profondità di bit	Livelli possibili	SNR teorico (dB)	Percezione del rumore
8 bit	256	~ 50 dB	Fruscio evidente, qualità da nastro economico o telefono
10 bit	1.024	~ 62 dB	Rumore ancora percepibile nei silenzi
12 bit	4.096	~ 74 dB	Rumore leggero, accettabile per uso semi- professionale
14 bit	16.384	~ 86 dB	Fruscio minimo, buona qualità audio
16 bit (CD Audio)	65.536	~ 98 dB	Rumore non percepibile, qualità Hi-Fi
20 bit	1.048.576	~ 122 dB	Rumore non percepibile, dinamica estesa, usata in studio
24 bit	16.777.216	~ 146 dB	Rumore non percepibile, margine tecnico elevatissimo

LA QUANTIZZAZIONE NEL COMPACT DISC (CD AUDIO)

Dopo il campionamento del segnale, ogni campione deve essere convertito in un numero. Questo processo si chiama quantizzazione.

Nel CD Audio, ogni campione è rappresentato con **16 bit**, cioè con **2**¹⁶ = **65 536** possibili livelli di ampiezza.

Il valore reale del segnale analogico viene **approssimato** al livello digitale più vicino. Questa approssimazione introduce un piccolo errore chiamato **rumore di quantizzazione**, che però rimane **molto inferiore** al livello del segnale utile e quindi **non percepibile** in condizioni normali di ascolto.

La **profondità di quantizzazione** (in bit) determina la **dinamica del suono**, cioè la differenza tra i suoni più deboli e quelli più forti che possono essere rappresentati.

LA QUANTIZZAZIONE NEL COMPACT DISC (CD AUDIO)

In un sistema digitale, il rapporto segnale rumore è funzione del numero di bit di codifica:

$$SNR_{dB} \approx 6.02 \text{ n} + 1.76 \text{ dB}$$

ove: n = numero di bit di codifica

Con **16 bit**, il CD raggiunge una **gamma dinamica di circa 96 dB**, ampiamente sufficiente per la musica e per l'orecchio umano.

Nei formati più moderni (come **High-resolution audio**), si usano profondità di **24 bit** o superiori, per ottenere una **quantizzazione più fine** e una **gamma dinamica ancora più ampia**.

la **quantizzazione** trasforma i campioni analogici in **numeri digitali**, e la **profondità in bit** ne determina **precisione**, **dinamica e fedeltà sonora**.

IL COMPACT DISC E IL METODO PCM

Il **PCM (Pulse Code Modulation – Modulazione a Impulsi Codificati)** è la forma più diffusa e consolidata di **rappresentazione digitale del suono** ed è quella **utilizzata nel CD Audio**. È basato su due operazioni fondamentali:

- Campionamento → misura periodica dell'ampiezza del segnale nel tempo.
- **Quantizzazione** → approssimazione di ciascun valore con un numero finito di bit.

Il **Compact Disc Audio** ha fissato gli standard di riferimento:

- 44.100 campioni al secondo (44,1 kHz)
- 16 bit per campione
- due canali (stereo)

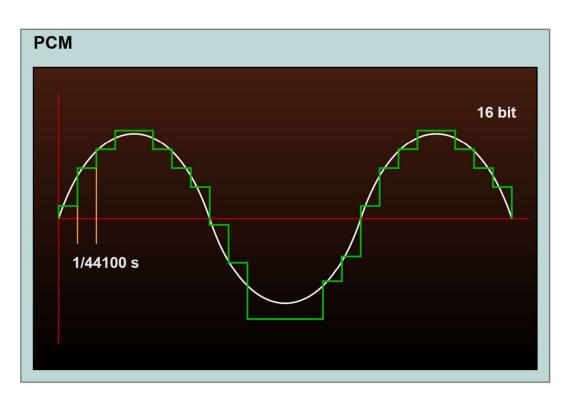
Questa combinazione garantisce una qualità Hi – Fi e rimane tutt'oggi la base per la maggior parte dei file audio digitali, compresi MP3, streaming musicali e formati lossless (come FLAC o ALAC) derivati dallo stesso principio PCM.

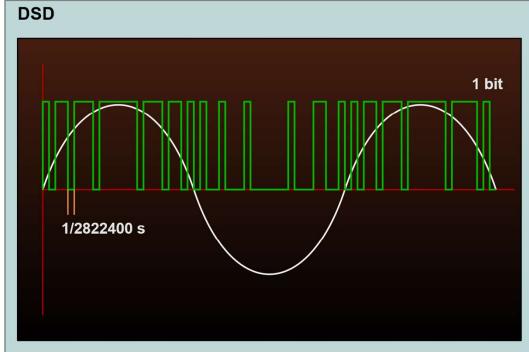
OLTRE IL PCM "TRADIZIONALE"

Accanto al **PCM del Compact Disc** (44,1 kHz / 16 bit) sono stati sviluppati formati più avanzati per migliorare la rappresentazione digitale del suono.

Pur con approcci diversi, tutti mirano a ridurre il rumore e ad ampliare la gamma dinamica.

PCM ad alta risoluzione (Hi-Res PCM)


Stesso principio del PCM classico, ma con frequenze di campionamento più alte (96 kHz, 192 kHz) e maggiore profondità di bit (24 o 32 bit).


Offre maggior dinamica e minor rumore di quantizzazione, utile nelle fasi di registrazione e mixaggio.

DSD (Direct Stream Digital)

Sistema alternativo basato su un **flusso binario a 1 bit** con **campionamento molto elevato** (2,8 MHz o più). Utilizzato nei **Super Audio CD (SACD)** e in produzioni audio di fascia alta, rappresenta il segnale come **densità di impulsi** invece che livelli discreti *(non lo vediamo in questo corso)*.

OLTRE IL PCM "TRADIZIONALE"

OLTRE IL PCM "TRADIZIONALE"

Dal punto di vista **percettivo**, per un orecchio normale il **PCM del CD** (44,1 kHz / 16 bit) **copre già l'intera gamma udibile**:

- fino a 20 kHz di banda passante,
- circa 96 dB di dinamica utile.

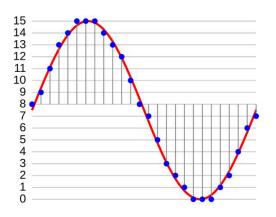
Ulteriori incrementi di risoluzione portano **benefici minimi o nulli all'ascolto**, poiché superano i limiti fisiologici dell'udito umano (anche se la questione è ancora dibattuta).

Tuttavia, in **fase di produzione e manipolazione del suono**, lavorare con **campionamenti e quantizzazioni superiori** è vantaggioso: riduce gli **errori numerici cumulativi** (dovuti a manipolazioni successive del segnale), mantiene margine dinamico e consente elaborazioni più pulite nei processi digitali.

In sintesi: le codifiche ad alta risoluzione non servono tanto a sentire meglio, quanto a lavorare meglio.

DAL SUONO ALL'IMMAGINE: STESSE REGOLE DIGITALI

Nel dominio **audio**, il segnale varia nel **tempo**; nel dominio delle **immagini**, varia nello **spazio**.


In entrambi i casi, la realtà è **analogica**, cioè continua.

Quando convertiamo un suono o un'immagine in **digitale**, stiamo traducendo grandezze fisiche continue (ampiezza, luminosità, colore) in **numeri discreti**.

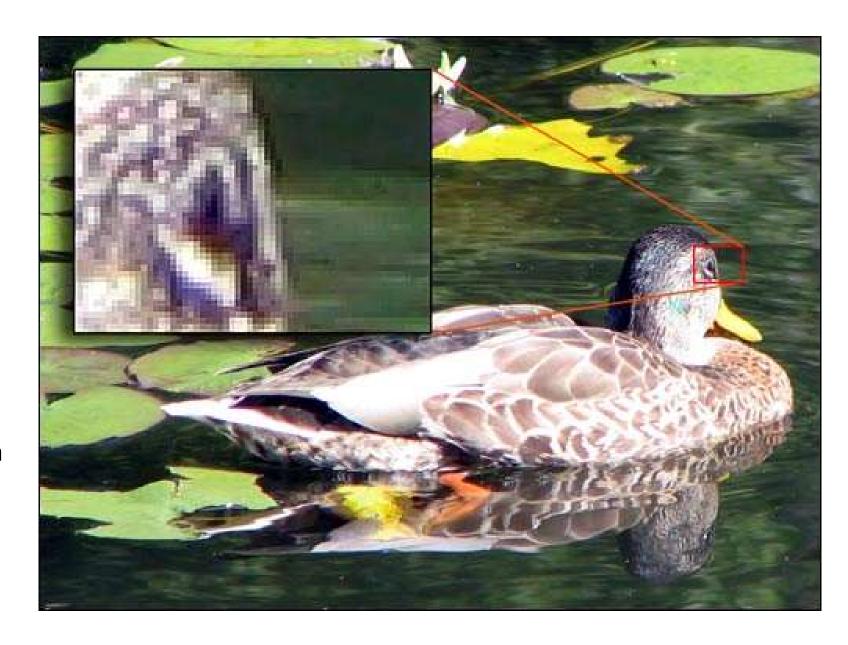
Le due operazioni fondamentali sono identiche:

Campionamento, cioè la scelta di "dove" misurare il segnale.

Quantizzazione, cioè la definizione di "quanto" dettaglio numerico vogliamo rappresentare.

SEGNALE CONTINUO E SEGNALE DISCRETO

Un'immagine reale o su pellicola è continua, così come un suono nel mondo fisico.


Un'immagine digitale invece è una griglia di punti (pixel), ciascuno con un valore numerico.

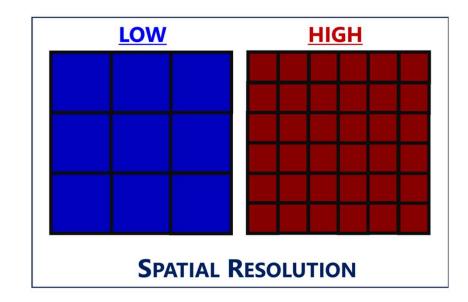
Allo stesso modo, un segnale audio digitale è composto da una successione di campioni nel tempo.

Il passaggio da continuo a discreto introduce una **semplificazione controllata**: scegliamo un numero finito di punti e di valori per rappresentare un fenomeno che, in natura, sarebbe infinito.

Esempio di immagine bitmap (raster).

Ingrandendo un dettaglio, si nota che è composta da piccole aree di colore, i **pixel**, disposti in una griglia regolare.

RISOLUZIONE E DETTAGLIO VISIVO


La **risoluzione spaziale** di un'immagine (numero di pixel in orizzontale e verticale) è l'equivalente della **frequenza di campionamento** di un segnale audio.

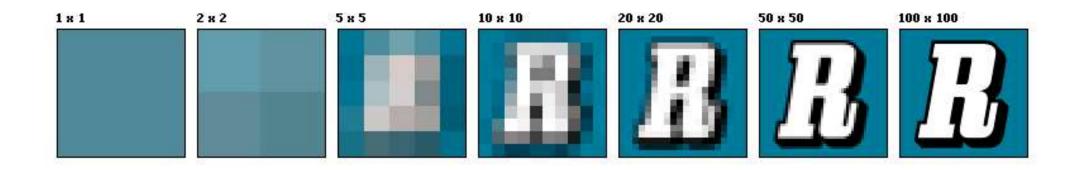
In entrambi i casi, determina il livello di dettaglio rappresentabile.

Nell'audio, più campioni al secondo → maggiore fedeltà nel riprodurre frequenze alte.

Nell'immagine, più pixel → maggiore nitidezza e definizione dei contorni.

Campionare "poco" significa **perdere informazione** che non potrà più essere recuperata.

CAMPIONAMENTO: SELEZIONARE I PUNTI NELLO SPAZIO O NEL TEMPO


Nel dominio **audio**, il **campionamento** consiste nel misurare l'ampiezza del segnale a intervalli regolari di tempo (ad esempio, 44.1 kHz per il CD).

Nel dominio delle **immagini**, il campionamento avviene nello **spazio**: dividiamo la superficie in una griglia regolare di **pixel**, ognuno dei quali misura la luminosità o il colore in un punto.

Più fitta è la griglia, maggiore è la **risoluzione**.

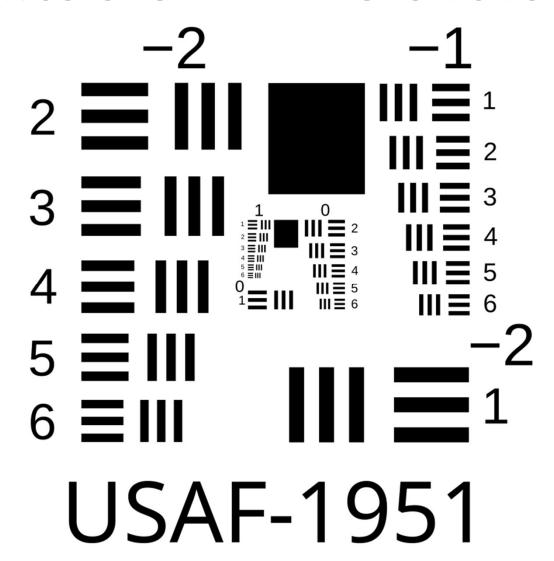
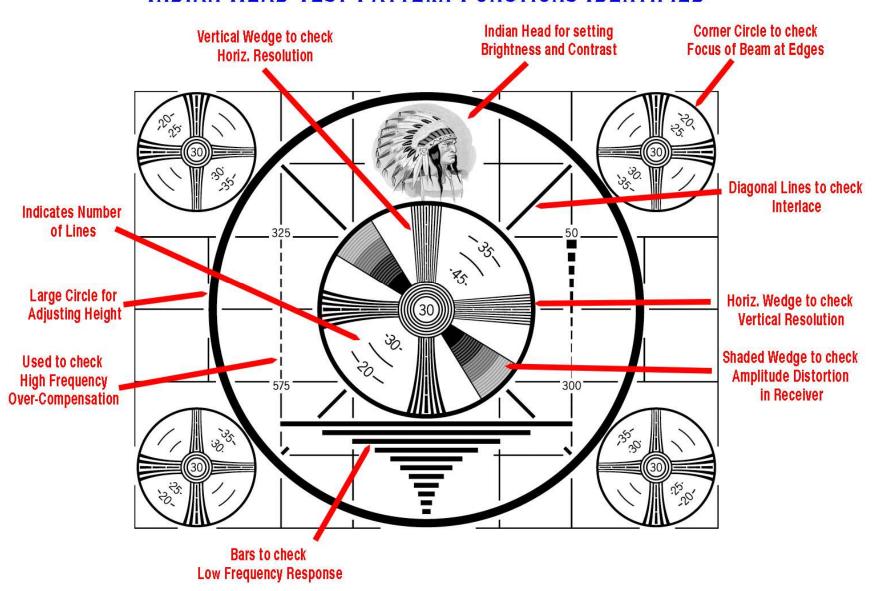
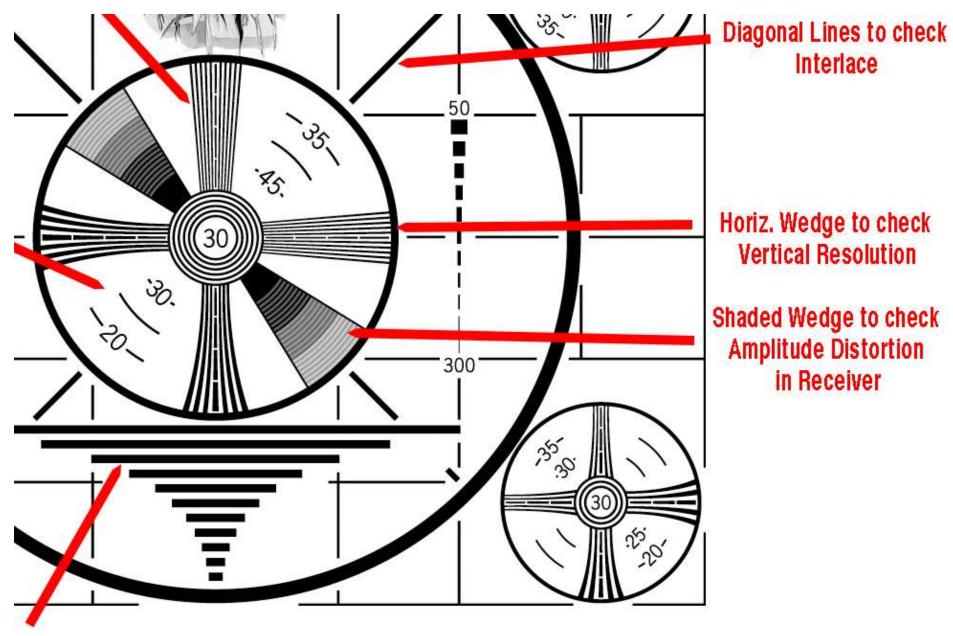

Un campionamento troppo rado produce **aliasing**, cioè distorsioni o artefatti visivi, analoghi ai suoni o distorti in un audio sottocampionato.

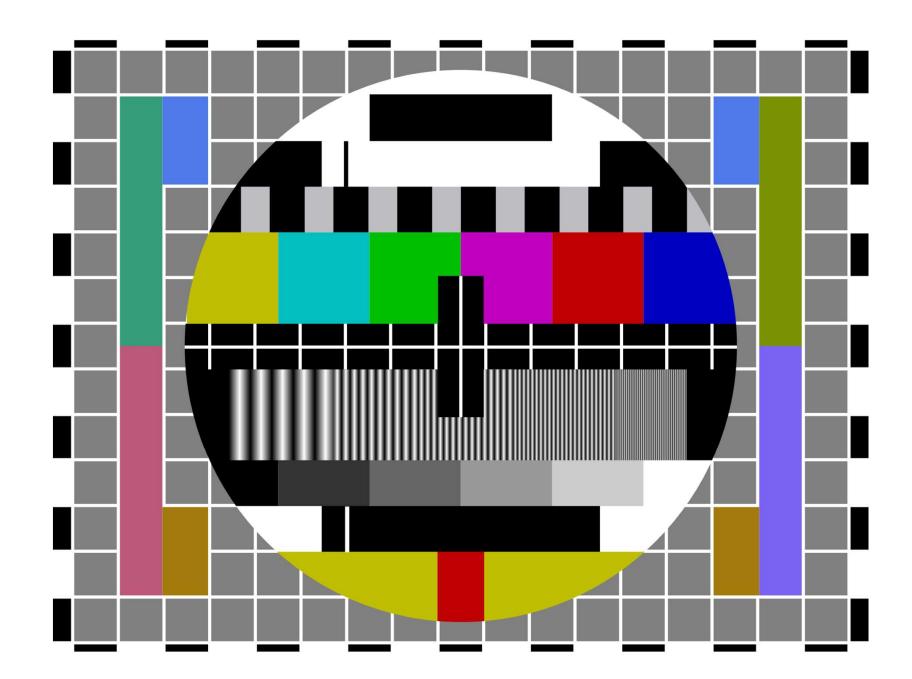
IMMAGINE: RISOLUZIONE E COMPRESSIONE




La **risoluzione** è la grandezza che quantifica il grado di dettaglio di un'immagine, dato dal numero di punti immagine che la compongono linearmente (altezza o larghezza).

RISOLUZIONE E DETTAGLIO VISIVO

INDIAN HEAD TEST PATTERN FUNCTIONS IDENTIFIED



Interlace

Horiz. Wedge to check **Vertical Resolution**

Shaded Wedge to check **Amplitude Distortion** in Receiver

Risoluzione 563 x 1000 pixel [465 KB]

Foto © P. Querci

Risoluzione 200 x 355 pixel [46,5 KB]

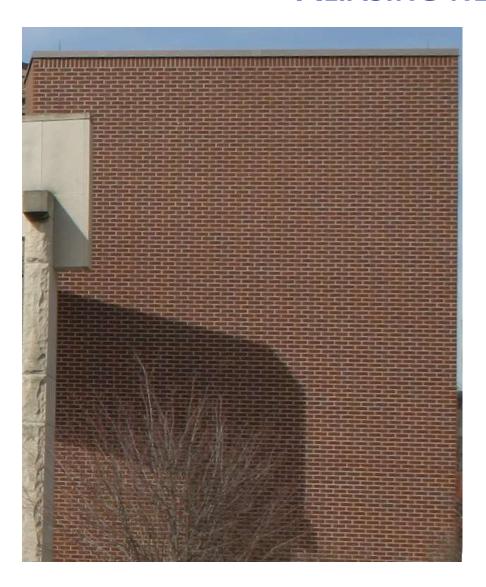
Foto © P. Querci

Risoluzione 142 x 80 pixel [25,9 KB]

ALIASING NELLE IMMAGINI

L'aliasing nelle immagini è il fenomeno per cui, quando un'immagine viene campionata con risoluzione troppo bassa, i dettagli fini o le linee oblique appaiono distorti, frastagliati o con pattern a moiré.

In sintesi: il sistema non riesce a rappresentare correttamente frequenze spaziali superiori al limite imposto dalla griglia di pixel.


Il **teorema di Nyquist–Shannon** stabilisce che, per evitare l'aliasing, la **frequenza di campionamento** (cioè la densità dei pixel) deve essere **almeno doppia** rispetto alla **frequenza spaziale massima** presente nell'immagine.

Quando questo requisito non è rispettato, i dettagli ad alta frequenza vengono interpretati come **pattern falsi** o **distorsioni visive**, esattamente come accade per un **suono sottocampionato**.

ALIASING NELLE IMMAGINI

QUANTIZZAZIONE: CONVERTIRE VALORI CONTINUI IN NUMERI

Dopo il campionamento, ogni punto (temporale o spaziale) deve essere rappresentato con un numero.

Nel suono, la **quantizzazione** definisce il numero di livelli di ampiezza possibili (es. 16 bit = 65.536 livelli).

Nelle immagini, la quantizzazione definisce il numero di livelli di **luminosità o colore** per pixel (es. 8 bit = 256 livelli di grigio).

Una quantizzazione più fine riduce l'errore di approssimazione e aumenta la **fedeltà percepita**.

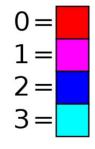
PROFONDITÀ DI BIT E QUALITÀ DELL'IMMAGINE

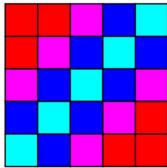
La profondità di bit indica quanti valori diversi può assumere ogni campione o pixel.

In audio: più bit → maggiore dinamica e minor rumore di quantizzazione.

In immagini: più bit → più sfumature tonali e passaggi di colore più morbidi.

Con pochi bit, il suono appare "granuloso" o compresso, mentre nelle immagini compaiono **bande visibili** (banding) invece di sfumature continue.


CODIFICA DEI COLORI DI OGNI PIXEL


Un'immagine a **2 bit per pixel**. Il colore di ciascun pixel è rappresentato da un numero; ogni numero corrisponde a un colore nella tavolozza.

Nell'immagine a dx i numeri sono rappresentati in base dieci, mentre in realtà saranno codificati in base due (codice binario):

- 0 = 00
- 1 = 01
- 2 = 10
- 3 = 11

0	0	1	2	3
0	1	2	3	2
1	2	3	2	1
2	3	2	1	0
3	2	1	0	0

Profondità di bit	Livelli per pixel	Descrizione	Aspetto visivo
1 bit	2 (bianco/nero)	Immagine binaria, nessuna sfumatura	Contrasto netto, senza toni intermedi
2 bit	4	Prime sfumature di grigio o 4 colori base	Toni grossolani
4 bit	16	Grafica a 16 colori (standard VGA)	Colori limitati, effetto posterizzazione
8 bit	256	Scala di grigi completa o tavolozza indicizzata	Buona resa, ancora visibile banding
16 bit (High Color)	65.536	Colori a 5-6 bit per canale	Transizioni fluide, adatte a fotografia base
24 bit (True Color)	16.777.216	8 bit per canale RGB (Red, Green, Blue)	Colore reale, indistinguibile dalla realtà
30 bit e oltre (Deep Color)	oltre 1 miliardo	10+ bit per canale	Qualità professionale, perfetta per stampa e cinema digitale

24 bit

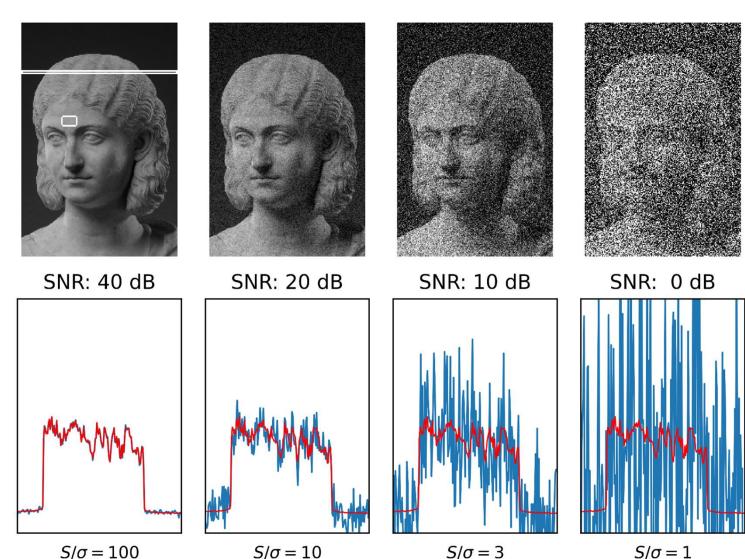
8 bit

4 bit

2 bit

1 bit

IL PARALLELO AUDIO ↔ IMMAGINI


Dominio Audio	Dominio Immagini	Concetto comune	
Tempo	Spazio	Dimensione di campionamento	
Frequenza di campionamento (Hz)	Risoluzione (pixel/dpi)	Densità dei campioni	
Profondità di bit	Profondità di colore	Precisione della quantizzazione	
Rumore	Grana, puntinatura	Fruscio, ronzio, disturbo	
Rumore di quantizzazione	Banding	Rumore uniforme di fondo	

IL BANDING (RUMORE DI QUANTIZZAZIONE NELLE IMMAGINI)

IL RAPPORTO SEGNALE / RUMORE NELLE IMMAGINI

Fotografia in scala di grigi rapporti diversi con segnale/rumore (SNR).I valori di SNR si riferiscono all'area rettangolare sulla fronte. I grafici in basso mostrano l'intensità del segnale lungo la riga indicata dell'immagine (in rosso il segnale originale, blu quello in con rumore).

CONCLUSIONE

Che si tratti di suono o di immagine, digitalizzare significa misurare e approssimare.

Ogni valore campionato e quantizzato è una "semplificazione" numerica della realtà.

La qualità finale dipende da quanto fittamente campioniamo e da quanti livelli usiamo per descrivere ogni punto.

Più densa è la griglia e più precisi i numeri, più il risultato digitale si avvicina all'originale analogico.

GRAZIE PER L'ATTENZIONE

Immagini tratte (ove non diversamente specificato) da Wikipedia e Wikimedia Commons, utilizzate a fini didattici e non commerciali. Tutte le immagini restano soggette alle rispettive licenze libere (CC BY, CC BY-SA, CCO o pubblico dominio).