Chimica Computazionale Geometry optimization and reaction profile

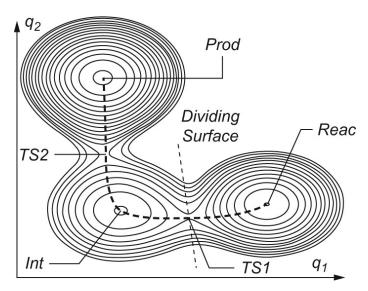
Emanuele Coccia

PhotoInduced Quantum Dynamics (PIQD) Group

1/37

Characterizing a PES

Stationary points in a PES



Characterizing a PES

Scan of the relevant coordinates

Geometry optimization (minimum)

Reaction profile (transition state)

Brute-force approach

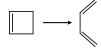
Search of stationary points

Computing a PES

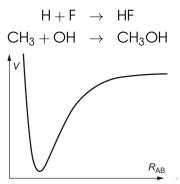
Unimolecular reactions

Computing a PES

Unimolecular reactions



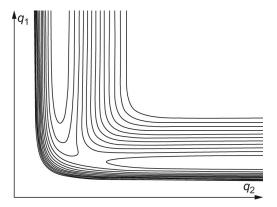
Bimolecular reactions (atom- or radical-recombination process)



Computing a PES

Bimolecular reactions (bond breaking)

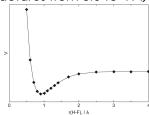
$$\begin{array}{ccc} \text{CH}_4 + \text{OH} & \rightarrow & \text{H}_2\text{O} + \text{CH}_3 \\ \text{CH}_2 = \text{CH}_2 + \text{CH}_2 & \rightarrow & \text{CH}_2 = \text{CH} - \text{CH} = \text{CH}_2 \rightarrow \text{cyclohexene} \end{array}$$



6/37

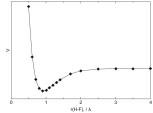
Computing the PES

- Scan on the coordinate for small molecules:
 - HF molecule: 13 structures from 0.5 to 4 Å)

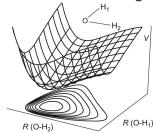


Computing the PES

- Scan on the coordinate for small molecules:
 - HF molecule: 13 structures from 0.5 to 4 Å)

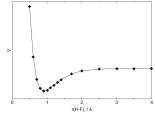


• H_2O : 11x11 = 121 structures at frozen angle

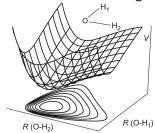


Computing the PES

- Scan on the coordinate for small molecules:
 - HF molecule: 13 structures from 0.5 to 4 Å)

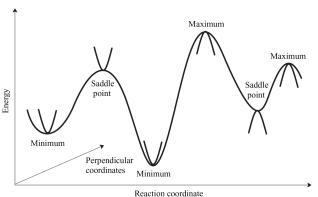


• H_2O : 11x11 = 121 structures at frozen angle

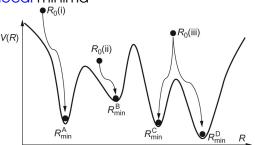


• Impractical approach for large molecules (10ⁿ points!)

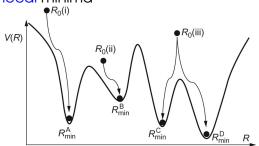
- Goal: find stationary points of a PES
- Stationary points = first derivative is zero
- Minimum = second derivatives are positive
- Saddle point = second derivative negative along one direction



Global and local minima

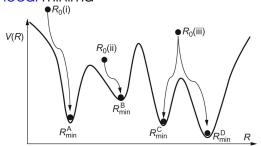


Global and local minima



- Energy as a function of nuclear coordinates:
 - Minima
 - Transition-state structures (saddle points)

Global and local minima



- Energy as a function of nuclear coordinates:
 - Minima
 - Transition-state structures (saddle points)
- Energy as a function of variational wavefunction parameters:
 - Molecular orbital coefficients
 - Slater determinant coefficients
 - Basis function exponents

◆ロ → ◆団 → ◆ 草 → ▼ ● りゅう

Minimum search

Finding a minimum

- Goal: determine the nearest stationary point
- Many local minima

Finding a minimum

- Goal: determine the nearest stationary point
- Many local minima
- At least, the first derivative of the energy $E(\mathbf{q}_1, \mathbf{q}_2, ...)$ with respect to all variables is needed (gradient \mathbf{g})

$$\mathbf{g} = \nabla E = \left(\frac{\partial E}{\partial \mathbf{q}_1}; \frac{\partial E}{\partial \mathbf{q}_2}; \dots\right)$$

Finding a minimum

- Goal: determine the nearest stationary point
- Many local minima
- At least, the first derivative of the energy E(q₁, q₂,...) with respect to all variables is needed (gradient g)

$$\mathbf{g} = \nabla E = \left(\frac{\partial E}{\partial \mathbf{q}_1}; \frac{\partial E}{\partial \mathbf{q}_2}; \dots\right)$$

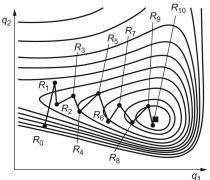
- Convergence achieved:
 - g reduced below a threshold
 - $\Delta E = E(\mathbf{q}_1^{i+1}, \mathbf{q}_2^{i+1}, ...) E(\mathbf{q}_1^{i}, \mathbf{q}_2^{i}, ...) < \epsilon$

Steepest descent method

Exploring the configurational space along a direction d

$$\mathbf{d} = -\mathbf{g}$$

- Finding a minimum is guaranteed
- Simple algorithm



- Slow convergence
- Hard to converge for narrow valleys

Newton-Raphson method

- Second-order expansion of E around the current point \mathbf{q}^0
- $\mathbf{q}^0 = \mathbf{q}_1^0, \mathbf{q}_2^0, \mathbf{q}_3^0...$ $\mathbf{q} = \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3...$

$$E(\mathbf{q}) \sim E(\mathbf{q}^0) + \mathbf{g}^T(\mathbf{q} - \mathbf{q}^0) + \frac{1}{2}(\mathbf{q} - \mathbf{q}^0)^T \mathbf{H}(\mathbf{q} - \mathbf{q}^0)$$

$$\mathbf{H}_{ij} = \frac{\partial^2 E}{\partial \mathbf{q}_i \partial \mathbf{q}_j}$$

• g = 0 if

$$(\mathbf{q} - \mathbf{q}^0) = -\mathbf{H}^{-1}\mathbf{g}$$

Newton-Raphson method

- Second-order expansion of E around the current point \mathbf{q}^0
- $\mathbf{q}^0 = \mathbf{q}_1^0, \mathbf{q}_2^0, \mathbf{q}_3^0...$ $\mathbf{q} = \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3...$

$$E(\mathbf{q}) \sim E(\mathbf{q}^0) + \mathbf{g}^T(\mathbf{q} - \mathbf{q}^0) + \frac{1}{2}(\mathbf{q} - \mathbf{q}^0)^T \mathbf{H}(\mathbf{q} - \mathbf{q}^0)$$

$$\mathbf{H}_{ij} = \frac{\partial^2 E}{\partial \mathbf{q}_i \partial \mathbf{q}_j}$$

• g = 0 if

$$(\mathbf{q}-\mathbf{q}^0)=-\mathbf{H}^{-1}\mathbf{g}$$

 Method converges to a stationary point (minimum or saddle point)

Newton-Raphson method

- Second-order expansion of E around the current point \mathbf{q}^0
- $\mathbf{q}^0 = \mathbf{q}_1^0, \mathbf{q}_2^0, \mathbf{q}_3^0...$ $\mathbf{q} = \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3...$

$$E(\mathbf{q}) \sim E(\mathbf{q}^0) + \mathbf{g}^T(\mathbf{q} - \mathbf{q}^0) + \frac{1}{2}(\mathbf{q} - \mathbf{q}^0)^T \mathbf{H}(\mathbf{q} - \mathbf{q}^0)$$

$$\mathbf{H}_{ij} = \frac{\partial^2 E}{\partial \mathbf{q}_i \partial \mathbf{q}_i}$$

• g = 0 if

$$(\mathbf{q}-\mathbf{q}^0)=-\mathbf{H}^{-1}\mathbf{g}$$

- Method converges to a stationary point (minimum or saddle point)
- Computing the Hessian demanding or impossible
- Storage issue

Computing the Hessian

- One order of magnitude more demanding than the gradient
- Approximation for computing the Hessian:
 - Initial guess
 - Pirst step: steepest descent
 - Iterative estimation of the Hessian

$$\mathbf{H}_{n} = \mathbf{H}_{n-1} + \Delta \mathbf{H}$$

$$\Delta \mathbf{H} = \frac{\Delta \mathbf{g} \Delta \mathbf{g}^{T}}{\Delta \mathbf{g}^{T} \Delta \mathbf{q}} - \frac{\mathbf{H} \Delta \mathbf{q} \Delta \mathbf{q}^{T} \mathbf{H}}{\Delta \mathbf{q}^{T} \mathbf{H} \Delta \mathbf{q}}$$

E. Coccia (DSCF) 14/37

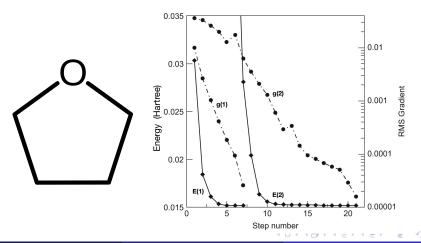
 Methods applied to any level of theory (focus here on quantum chemistry)

- Methods applied to any level of theory (focus here on quantum chemistry)
- Approximated Hessian for molecules up to few hundred atoms

- Methods applied to any level of theory (focus here on quantum chemistry)
- Approximated Hessian for molecules up to few hundred atoms
- Convergence improved with choice of the set of coordinates q:
 - Cartesian coordinates: simple algorithms, possible slow convergence

- Methods applied to any level of theory (focus here on quantum chemistry)
- Approximated Hessian for molecules up to few hundred atoms
- Convergence improved with choice of the set of coordinates q:
 - Cartesian coordinates: simple algorithms, possible slow convergence
 - Internal coordinates: bond lengths and angles..., "natural" set, redundant

- Tetrahydrofuran (THF): 39 Cartesian and 71 internal coordinates
- Optimization with Hartree-Fock and 6-31G basis set
 - First method (1): initial structure optimized with MM
 - Second method (2): "random" initial structure



H₂O ground-state geometry

HF

L_{max}	Basis	$R_{\mathrm{OH}}\left(\mathrm{\mathring{A}}\right)$	$ heta_{ ext{HOH}}$ (°)	
1				
2	cc-pVDZ	0.9463	104.61	
3	cc-pVTZ	0.9406	106.00	
4	cc-pVQZ	0.9396	106.22	
5	cc-pV5Z	0.9396	106.33	
6	cc-pV6Z	0.9396	106.33	

H₂O ground-state geometry

HF

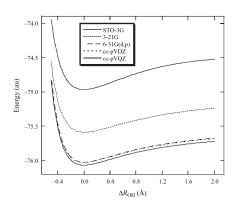
L_{\max}	Basis	$R_{\mathrm{OH}}\left(\mathrm{\mathring{A}}\right)$	$ heta_{ ext{HOH}}$ (°)	
1				
2	cc-pVDZ	0.9463	104.61	
3	cc-pVTZ	0.9406	106.00	
4	cc-pVQZ	0.9396	106.22	
5	cc-pV5Z	0.9396	106.33	
6	cc-pV6Z	0.9396	106.33	

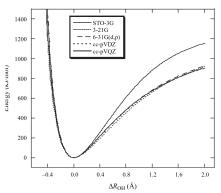
DFT

Basis	LSDA	BLYP	PBE	НСТН	B3LYP	PBE0
рс-0	0.9878	0.9962	0.9936	0.9854	0.9841	0.9806
pc-1	0.9764	0.9791	0.9763	0.9656	0.9683	0.9645
pc-2	0.9696	0.9706	0.9689	0.9589	0.9604	0.9574
pc-3	0.9700	0.9704	0.9689	0.9589	0.9604	0.9576
pc-4	0.9700	0.9704	0.9689	0.9590	0.9604	0.9576

Basis	LSDA	BLYP	PBE	HCTH	B3LYP	PBE0
рс-0	111.82	109.27	109.40	109.43	110.72	110.93
pc-1	104.15	103.24	103.09	103.22	104.06	103.99
pc-2	105.10	104.56	104.27	104.52	105.19	104.98
рс-3	104.98	104.52	104.21	104.44	105.13	104.90
pc-4	104.98	104.52	104.21	104.42	105.13	104.90

H₂O dissociation energy at HF level





Transiton state search

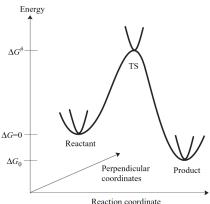
 Born-Oppenheimer approximation: chemical reaction as nuclei moving on a PES

20/37

- Born-Oppenheimer approximation: chemical reaction as nuclei moving on a PES
- From reactant to products: path with lowest energy, minimum energy path (MEP)

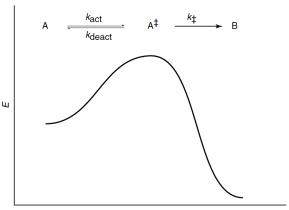
E. Coccia (DSCF) 20/37

- Born-Oppenheimer approximation: chemical reaction as nuclei moving on a PES
- From reactant to products: path with lowest energy, minimum energy path (MEP)
- The highest point in energy is the transition state



E. Coccia (DSCF) 20/37

• Unimolecular reaction A $\stackrel{k_1}{\longleftarrow}$ B



- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom

22/37

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_BT}$
- Equilibrium between reactant and TS

E. Coccia (DSCF) 22/37

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_BT}$
- Equilibrium between reactant and TS
- Production B rate

$$\begin{array}{rcl} k_1 & = & \frac{k_B T}{h} e^{-\Delta G_{\ddagger}/k_B T} \\ \Delta G_{\ddagger} & = & G_{\ddagger} - G_A \end{array}$$

ΔG₁: activation free energy

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_BT}$
- Equilibrium between reactant and TS
- Production B rate

$$k_1 = \frac{k_B T}{h} e^{-\Delta G_{\ddagger}/k_B T}$$

$$\Delta G_{\ddagger} = G_{\ddagger} - G_A$$

- ΔG_t : activation free energy
- No re-crossing assumed in the model

- Semi-classical theory:
 - Classical dynamics along the reaction coordinate
 - Quantization of vibrational and rotational degrees of freedom
- Boltzmann distribution $e^{-\Delta E/k_BT}$
- Equilibrium between reactant and TS
- Production B rate

$$k_1 = \frac{k_B T}{h} e^{-\Delta G_{\ddagger}/k_B T}$$

$$\Delta G_{\ddagger} = G_{\ddagger} - G_A$$

- ΔG_t : activation free energy
- No re-crossing assumed in the model
- Single PES, i.e. thermal reaction

◄□▶
◄□▶
◄□▶
◄□▶
₹
₽
♥
Q
Q

Finding transition-state structures

- Two main approaches for locating transition-state (TS) structures:
 - Interpolation methods
 - Local methods

23/37

Finding transition-state structures

- Two main approaches for locating transition-state (TS) structures:
 - Interpolation methods
 - Local methods
- Interpolation: TS located in between two end-points (minima)

23/37

Finding transition-state structures

- Two main approaches for locating transition-state (TS) structures:
 - Interpolation methods
 - Local methods
- Interpolation: TS located in between two end-points (minima)
- Local: propagating from an optimized geometry, gradient and (possibly) Hessian known

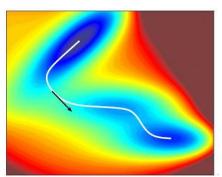
◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣९○

Computing energy barriers

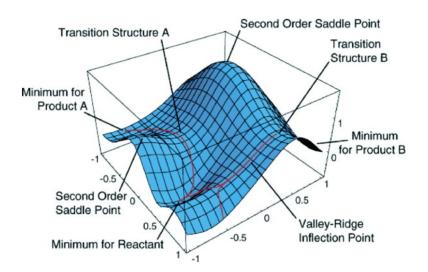
Minimum energy path

- Path lying on the PES between the reactants (R) and products (P), offering least resistance to the atomic motion
- Going through the saddle point, i.e. the TS
- From the TS, MEP is the union of steepest descent paths to the minima
- MEP is a smooth curve ϕ satisfying

$$(\nabla E)^{\perp}(\phi) = 0$$



Minimum energy path



E. Coccia (DSCF) 26/37

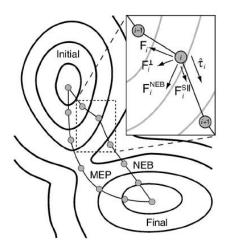
Nudged elastic band (NEB) method

- Chain method: a string of replicas (images) of the system between R and P is created
- Images are connected with springs
- Optimization algorithm is applied to relax the images down towards the MEP
- Interpolation between images to get TS

27/37

NEB method

(Numerical) NEB convergence to the MEP



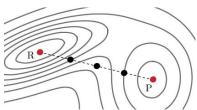
NEB method: initialization

- Reactant \vec{R} and product \vec{P} structures known
- Possible guess of intermediates and/or TS (not needed)

path =
$$\begin{bmatrix} \vec{R}_0, \vec{R}_1, \vec{R}_2,, \vec{R}_N \end{bmatrix}$$

 $\vec{R}_0 = \vec{R}$
 $\vec{R}_N = \vec{P}$

Linear interpolation for initial chain

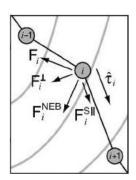


NEB method: forces

• Intermediate images $[...,\vec{R}_{i-1},\vec{R}_i,\vec{R}_{i+1},...]$ with a NEB force

$$ec{F}_i^{NEB} = ec{F}_i^{\perp} + ec{F}_i^{S\parallel}$$

- Parallel spring force $(\vec{F}_i^{S\parallel})$
- Perpendicular component of the true force (\vec{F}_i^{\perp})



NEB method: forces

• Perpendicular force \vec{F}_i^{\perp}

$$\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i)|_{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$$

31/37

NEB method: forces

• Perpendicular force \vec{F}_i^{\perp}

$$\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i)|_{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$$

• Spring force $\vec{F}_i^{S\parallel}$

$$|\vec{F}_{i}^{S||} = k \left(|\vec{R}_{i+1} - \vec{R}_{i}| - |\vec{R}_{i} - \vec{R}_{i-1}| \right) \hat{\vec{\tau}}_{i}$$

k is a parameter given by input

Climbing-image NEB method

 After a few iterations, the spring force is not applied to the highest energy image I

Climbing-image NEB method

- After a few iterations, the spring force is not applied to the highest energy image I
- Climbs to the saddle point via a reflection of the true force

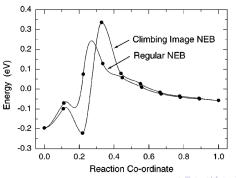
$$\vec{F}_I^{CI} = \vec{F}_I - 2\vec{F}_I \cdot \widehat{\vec{\tau}}_I \widehat{\vec{\tau}}_I$$

Climbing-image NEB method

- After a few iterations, the spring force is not applied to the highest energy image I
- Climbs to the saddle point via a reflection of the true force

$$\vec{F}_I^{CI} = \vec{F}_I - 2\vec{F}_I \cdot \hat{\vec{\tau}}_I \hat{\vec{\tau}}_I$$

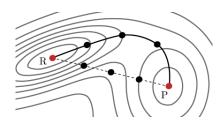
ullet $\widehat{ au}_l$ is the tangent vector to the path, referred to the image l



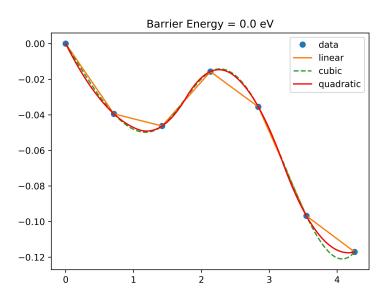
NEB method: convergence

- Spring force on each image fully determined
- Minimization algorithm to compute energy and gradients (true force)
- Iterate until absolute value of the maximum component of the NEB force at every image is less than a given threshold

$$|\vec{F}_{\max,i}^{NEB}|<\varepsilon \quad \forall i$$



NEB method: interpolation



E. Coccia (DSCF) 34/

1. Set \vec{R} and \vec{P}

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy

35/37

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$

35/37

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\vec{\tau}}_i$ to the pathway at each image

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\tau}_i$ to the pathway at each image
- Connect each pair of images with a spring, yielding a force on each image of

$$\vec{F}_i^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}| \right) \widehat{\tau}_i$$

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\vec{\tau}}_i$ to the pathway at each image
- 5. Connect each pair of images with a spring, yielding a force on each image of

$$\vec{F}_i^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}| \right) \widehat{\tau}_i$$

6. Project out the component of the interatomic force parallel to the tangent at each image i, $\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$

(□▶ ◀♬▶ ◀불▶ ◀불▶ · 불 · 쒸٩♡

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\tau}_i$ to the pathway at each image
- Connect each pair of images with a spring, yielding a force on each image of

$$\vec{F}_i^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}| \right) \widehat{\tau}_i$$

- 6. Project out the component of the interatomic force parallel to the tangent at each image i, $\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$
- 7. Minimize the energy for each image using $\vec{F}_i^{NEB} = \vec{F}_i^{\perp} + \vec{F}_i^{S\parallel}$ Steps from 3 to 7 will be repeated until getting a NEB force smaller than a tolerance

◆ロ → ◆昼 → ◆ 種 → ■ の へ ②

E. Coccia (DSCF) 35/37

- 1. Set \vec{R} and \vec{P}
- 2. Construct an initial path between \vec{R} and \vec{P} . Chosen by linear interpolation or according to the user's strategy
- 3. Compute the energy $E(\vec{R}_i)$, and the force on each image defined by the gradient of PES $\vec{F}_i = -\nabla E(\vec{R}_i)$
- 4. Compute the tangent $\hat{\tau}_i$ to the pathway at each image
- Connect each pair of images with a spring, yielding a force on each image of

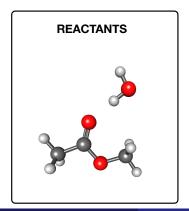
$$\vec{F}_i^{S\parallel} = k \left(|\vec{R}_{i+1} - \vec{R}_i| - |\vec{R}_i - \vec{R}_{i-1}| \right) \widehat{\tau}_i$$

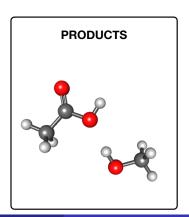
- 6. Project out the component of the interatomic force parallel to the tangent at each image i, $\vec{F}_i^{\perp} = -\nabla E(\vec{R}_i) + \nabla E(\vec{R}_i) \cdot \hat{\vec{\tau}}_i \hat{\vec{\tau}}_i$
- 7. Minimize the energy for each image using $\vec{F}_i^{NEB} = \vec{F}_i^{\perp} + \vec{F}_i^{S\parallel}$ Steps from 3 to 7 will be repeated until getting a NEB force smaller than a tolerance
- 8. Cubic polynomial piecewise interpolation of the final images

35/37

NEB method: example

Hydrolysis of methyl-acetate into acetic acid and methanol

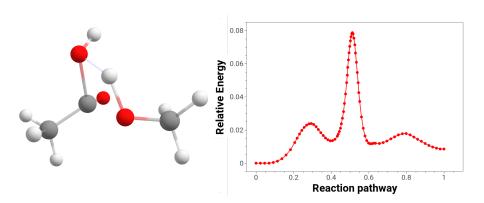




36/37

NEB method: example

- Level of theory: DFT with B3LYP functional and DEF2-SVP basis set
- Eight intermediate images
- Final interpolation



E. Coccia (DSCF) 37/37