Equilibrio Chimico

Dr. Daniele Toffoli

Dipartimento di Scienze Chimiche e Farmaceutiche, UniTS

Outline

Costante di equilibrio termodinamica

- Dipendenza di K da pressione e temperatura
- Equilibri in fase liquida

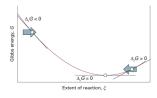
Costante di equilibrio termodinamica

2 Dipendenza di K da pressione e temperatura

Equilibri in fase liquida

Considerazioni preliminari

$R \rightleftharpoons P$



- tutte le reazioni sono reversibili
 - all'equilibrio sia R che P sono presenti
 - all'equilibrio $(dG)_{T,p} = 0$
- Grado di avanzamento della reazione $\xi = \frac{n_i n_{i,0}}{\nu_i}$
 - n_{i,0}: moli iniziali della specie i
 - n_i : moli della specie i presenti a ξ
 - ν_i coefficiente stechiometrico con segno

Reazioni tra fasi pure in condizioni standard

 $NaOH(s)+CO_2(g, 1bar) \Longrightarrow NaHCO_3(s)$

	NaOH	CO ₂	NaHCO ₃
Iniziali	1	1	0
Eq.	1 - ξ	1 - ξ	ξ
	1-ζ	1-ζ	

•
$$G = (1 - \xi)G_{NaOH}^0 + (1 - \xi)G_{CO_2}^0 + \xi G_{NaHCO_3}^0 = G_{NaOH}^0 + G_{CO_2}^0 + \xi \Delta_r G^0$$

- $\bullet \ \Delta_r G^0 = G^0_{NaHCO_3} G^0_{NaOH} G^0_{CO_2} = -77.2 \mathrm{kJ/mol}$
- ullet Minimo per $0<\xi<1$ dovuto a $\Delta_{\it mix}G$

Quoziente di reazione

generica reazione a $A+bB+\cdots \iff pP+qQ+\cdots$

- $G = \sum_{i=1}^{N} n_i \mu_i$ (T, p costanti)
- $dG = \sum_{i=1}^{N} \mu_i dn_i = \sum_{i=1}^{N} \nu_i \mu_i d\xi$
 - $dn_i = \nu_i d\xi$

•
$$\Delta_r G = \sum_{i=1}^N \nu_i \mu_i = \left(\frac{\partial G}{\partial \xi}\right)_{T,p}$$

- $\Delta_r G$: potenziale di reazione
- $\Delta_r G > 0$: reazione endoergonica
- $\Delta_r G < 0$: reazione esoergonica
- $\Delta_r G = \sum_{i=1}^N \nu_i \mu_i^0 + RT \ln \left(\prod_i a_i^{\nu_i} \right) = \Delta_r G^0 + RT \ln Q$
 - $\mu_i = \mu_i^0 + RT \ln a_i$
 - $\Delta_r G^0 = \sum_{i=1}^N \nu_i \mu_i^0$: potenziale standard di reazione
 - $Q = \prod_i a_i^{\nu_i}$ quoziente di reazione

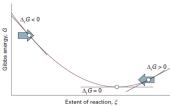
Quoziente di reazione

Esempio: n-butano(g) (A) \Longrightarrow isobutano(g) (B)

- $G = n_A \mu_A + n_B \mu_B$ (T, p costanti)
- $dG = \mu_A dn_A + \mu_B dn_B = (\mu_B \mu_A)d\xi$

$$\bullet \left(\frac{\partial G}{\partial \xi}\right)_{T,p} = \Delta_r G = (\mu_B - \mu_A)$$

- $\Delta_r G > 0 \Longrightarrow \mu_B > \mu_A$: conversione di B in A
- $\Delta_r G < 0 \Longrightarrow \mu_B < \mu_A$: conversione di A in B
- $\Delta_r G = 0 \Longrightarrow \mu_B = \mu_A$: equilibio



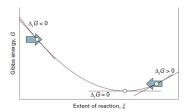
Quoziente di reazione

Esempio: n-butano(g) (A) \Longrightarrow isobutano(g) (B)

•
$$\mu_{A(B)} = \mu_{A(B)}^0 + RT \ln \left(\frac{p_{A(B)}}{p^0} \right)$$
 (assunti gas ideali)

$$\bullet \ \left(\frac{\partial G}{\partial \xi}\right)_{T,p} = (\mu_B^0 - \mu_A^0) + RT \ln \left(\frac{p_B}{p_A}\right) = \Delta_r G^0 + RT \ln Q$$

•
$$Q = \frac{p_B}{p_A}$$



Costante di equilibrio termodinamica

generica reazione $aA+bB+\cdots \iff pP+qQ+\cdots$

- All'equilibrio: $\Delta_r G = 0$ (T, p costanti)
- $\Delta_r G^0 = -RT \ln Q_{eq} = -RT \ln K$
 - K: costante di equilibrio termodinamica (adimensionale)
- $K = \prod_{i} (a_i)_{eq}^{\nu_i} = e^{-\frac{\Delta_r G^0}{RT}}$
- K è ottenuta da $\Delta_r G^0$
- $\Delta_r G^0$ dipende dagli stati standard a cui si riferiscono i potenziali chimici di reagenti/prodotti
- Per reazioni in fase gassosa $\Delta_r G^0$ dipende solo da T
 - stato standard: gas puro alla $p^0 = 1.00$ bar

Costante di equilibrio termodinamica

esempio:
$$2H_2S(g)+3O_2(g) \implies 2SO_2(g)+2H_2O(g)$$

$$\bullet \ \ Q = \frac{a_{SO_2}^2 a_{H_2O}^2}{a_{H_2S}^2 a_{O_2}^3} = \frac{f_{SO_2}^2 f_{H_2O}^2}{f_{H_2S}^2 f_{O_2}^3} p^0$$

- per gas $a_i = \frac{f_i}{p^0}$
- I valori di Q e K dipendono dalla stechiometria della reazione

esempio:
$$4NH_3(g)+5O_2(g) \iff 4NO(g)+6H_2O(g)$$

$$Q = \frac{a_{NO}^4 a_{H_2O}^6}{a_{NH_3}^4 a_{O_2}^5} = \frac{f_{NO}^4 f_{H_2O}^6}{f_{NH_3}^4 f_{O_2}^5} \frac{1}{p^0}$$

Relazioni con le costanti di equilibrio pratiche

- $a_i = \gamma_i x_i \Longrightarrow K = \prod_i (\gamma_i x_i)^{\nu_i} = \prod_i \gamma_i^{\nu_i} \prod_i x_i^{\nu_i} = K_{\gamma} K_{x}$
 - stato standard: sostanza pura alla $p^0 = 1.00$ bar
- $a_i = \gamma_i \frac{m_i}{m^0} \Longrightarrow K = \prod_i \left(\gamma_i \frac{m_i}{m^0} \right)^{\nu_i} = \prod_i \gamma_i^{\nu_i} \prod_i \left(\frac{m_i}{m^0} \right)^{\nu_i} = K_{\gamma} K_m$
 - $m^0 = 1.00 \text{m}$
- $a_i = \gamma_i \frac{c_i}{c^0} \Longrightarrow K = \prod_i \left(\gamma_i \frac{c_i}{c^0} \right)^{\nu_i} = \prod_i \gamma_i^{\nu_i} \prod_i \left(\frac{c_i}{c^0} \right)^{\nu_i} = K_{\gamma} K_c$ $c^0 = 1.00 M$
- In fase gassosa
 - $a_i = \gamma_i \frac{p_i}{p^0} \Longrightarrow K = \prod_i \left(\gamma_i \frac{p_i}{p^0} \right)^{\nu_i} = \prod_i \gamma_i^{\nu_i} \prod_i \left(\frac{p_i}{p^0} \right)^{\nu_i} = K_{\gamma} K_{p}$
 - γ_i : coefficiente di fugacità
- K è sempre adimensionale

Costante di equilibrio termodinamica

Esempio

- Calcolare la K a T=298.16K per la reazione in fase gassosa: $\frac{1}{2}N_2(g)+\frac{3}{2}H_2(g) \Longrightarrow NH_3(g)$
 - $\Delta_r G^0 = \Delta_f G^0[NH_3(g)] \frac{1}{2}\Delta_f G^0[N_2(g)] \frac{3}{2}\Delta_f G^0[H_2(g)] = \Delta_f G^0[NH_3(g)] = -16.5$ kJ/mol
 - $\ln K = -\frac{\Delta_r G^0}{RT} = -\frac{-16.5 \times 10^3 Jmol^{-1}}{8.314 \frac{V}{Mol} \times 298.16K} = 6.66 \Longrightarrow K = 7.8 \times 10^2$

Costante di equilibrio termodinamica

Dipendenza di K da pressione e temperatura

3 Equilibri in fase liquida

Dipendenza della K dalla pressione

- Per reazioni in fase gassosa: $\left(\frac{\partial K}{\partial p_t}\right)_T = 0$
 - stato standard si riferisce a $p = p^0 = 1.00$ bar
 - ullet la composizione all' equilibrio dipende da p_t
- Per reazioni in fase liquida $\left(\frac{\partial K}{\partial p_t}\right)_T \sim 0$
 - a p_t ordinarie

Dipendenza della K dalla pressione

dipendenza della composizione di equilibrio da p_t

Per la reazione in gase gassosa: N₂O₄ = 2 NO₂

	N ₂ O ₄	NO ₂
Inizio	n	0
Eq.	$n(1-\alpha)$	$2n\alpha$
$(y_i)_{eq}$	$\frac{1-\alpha}{1+\alpha}$	$\frac{\frac{2\alpha}{1+\alpha}}{\frac{2\alpha}{1+\alpha}}p_t$
$(p_i)_{eq}$	$\frac{\overline{1+lpha}}{\overline{1+lpha}}p_t$	$\frac{2\alpha}{1+\alpha}p_t$

•
$$K = \frac{\gamma_{NO_2}^2 \left(\frac{\rho_{NO_2}}{\rho^0}\right)^2}{\gamma_{N_2O_4} \frac{\rho_{NO_2}}{\rho^0}} \sim \left(\frac{\rho_{NO_2}^2}{\rho_{N_2O_4}}\right) \frac{1}{\rho^0} = K_\rho = \left(\frac{y_{NO_2}^2}{y_{N_2O_4}}\right) \frac{\rho_t}{\rho^0} = K_y \left(\frac{\rho_t}{\rho^0}\right)$$

 la composizione all' equilibrio dipende da p_t in accordo al principio di Le Chatelier:

$$\bullet \ \alpha_{eq} = \sqrt{\frac{\kappa_p}{4\left(\frac{p_t}{p^0}\right) + \kappa_p}}$$

- $\lim_{p_t \to \infty} \alpha_{eq} = 0$
- $\lim_{p_t \to 0} \alpha_{eq} = 1$
- α : grado di dissociazione

Dipendenza della K dalla pressione

dipendenza della composizione di equilibrio da pt

• Da misure sperimentali $lpha_{eq}=0.17=rac{1}{6}$ a T=25 °C e $p_t{=}1.00$ bar

•
$$K_p = \frac{4(\frac{1}{6})^2}{1-(\frac{1}{6})^2} \times (\frac{1.00bar}{1.00bar}) = 0.1143 \Longrightarrow \Delta_r G^0 = 5.37 \text{ kJ/mol}$$

- A p_t =0.100bar, α_{eq} = 0.47 (a T=25 °C)
- A p_t =10.0bar, α_{eq} = 0.05 (a T=25 °C)
- Da dati di $\Delta_f G^0$ si ottiene $\Delta_r G^0 = 5.39 \text{ kJ/mol}$
 - buon accordo teoria/exp: il comportamento dei gas è essenzialmente ideale

Dipendenza della K dalla pressione

reazioni in fase gassosa tra gas perfetti

•
$$K = K_p = \prod_i \left(\frac{p_i}{p^0}\right)^{\nu_i} (K_{\gamma} = 1)$$

•
$$K_p = \prod_i \left(y_i \frac{p_t}{p^0} \right)^{\nu_i} = \prod_i (y_i)^{\nu_i} \left(\frac{p_t}{p^0} \right)^{\nu} = K_y \left(\frac{p_t}{p^0} \right)^{\nu}$$

•
$$\nu = \sum_{i} \nu_{i}$$

$$\bullet \left(\frac{\partial K_p}{\partial p_t}\right)_T = 0$$

$$\bullet \ \frac{p_t}{K_y} \left(\frac{\partial K_y}{\partial p_t} \right)_T = \left(\frac{\partial \ln K_y}{\partial \ln p_t} \right)_T = -\nu$$

- $\nu < 0 \Longrightarrow K_{\nu}$ aumenta all'aumentare di p_t
- $\nu > 0 \Longrightarrow K_{\nu}$ diminuisce all'aumentare di p_t
- $\nu = 0 \Longrightarrow K_y$ indipendente da p_t

Dipendenza della K dalla pressione

reazioni in fase gassosa tra gas reali

•
$$a_i = \gamma_i \left(\frac{p_i}{p^0} \right) = \gamma_i y_i \left(\frac{p_t}{p^0} \right)$$

•
$$K = \prod_{i} a_{i}^{\nu_{i}} = \left(\prod_{i} \gamma_{i}^{\nu_{i}}\right) \underbrace{\left(\prod_{i} y_{i}^{\nu_{i}}\right) \left(\frac{p_{t}}{p^{0}}\right)^{\nu}}_{K_{p}} = K_{\gamma} K_{p}$$

$$\bullet \left(\frac{\partial K}{\partial p_t}\right)_T = \left(\frac{\partial K_{\gamma}}{\partial p_t}\right)_T K_p + K_{\gamma} \left(\frac{\partial K_p}{\partial p_t}\right)_T = 0$$

$$\bullet \ \left(\frac{\partial \ln K_{\gamma}}{\partial p_{t}}\right)_{T} = -\left(\frac{\partial \ln K_{p}}{\partial p_{t}}\right)_{T}$$

• Il prodotto $K_{\gamma}K_{p}$ non dipende da p_{t}

Dipendenza della K dalla pressione

verifica della dipendenza di K da p_t per la reazione $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \iff NH_3(g)$

Larson e Dodge hanno studiato la sintesi di NH₃ ad alte pressioni. A
 450 °C la % mol all'equilibrio partendo da una miscela stechiometrica di N₂ e H₂ a varie p è riportata in tabella:

p_t (atm)	10	30	50	100	300	600	1000
% NH ₃ (mol)	2.04	5.80	9.17	16.3	35.8	53.7	69.7

• Posto α grado di dissociazione:

	N ₂	H ₂	NH ₃
Inizio (mol)	0.5	1.5	0.0
Eq.(mol)	$0.5(1 - \alpha)$	$1.5(1 - \alpha)$	α

Dipendenza della K dalla pressione

verifica della dipendenza di K da p_t per la reazione $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \iff NH_3(g)$

$$\bullet \ \ \textit{K}_{\textit{p}} = \frac{\textit{y}_{\textit{NH}_{3}}}{\textit{y}_{\textit{H}_{3}}^{\frac{3}{2}}\textit{y}_{\textit{N}_{2}}^{\frac{1}{2}}} \left(\frac{\textit{p}^{0}}{\textit{p}_{t}}\right) = \textit{K}_{\textit{y}}\left(\frac{\textit{p}^{0}}{\textit{p}_{t}}\right)$$

•
$$n_t = 0.5(1 - \alpha) + 1.5(1 - \alpha) + \alpha = 2.0 - \alpha$$

•
$$K_y = \frac{\frac{\alpha}{2-\alpha}}{\left[\frac{0.5(1-\alpha)}{2-\alpha}\right]^{\frac{1}{2}}\left[\frac{1.5(1-\alpha)}{2-\alpha}\right]^{\frac{3}{2}}}$$

• A
$$p_t$$
=10.0 atm, $y_{NH_3} = 0.0204 \Longrightarrow \alpha = 0.039984$

•
$$K_y = 6.4 \times 10^{-2} \Longrightarrow K_p = 6.4 \times 10^{-3}$$

p_t (atm)	10	30	50	100	300	600	1000
$K_p \times 10^3$	6.4	6.7	6.9	7.2	8.9	12.8	23.2

Dipendenza della K dalla pressione

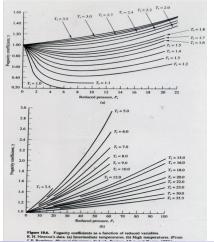
verifica della dipendenza di K da p_t per la reazione $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \Longrightarrow NH_3(g)$

- ullet K_{γ} non può essere approssimata a $K_{\gamma} \sim 1$
- Si assume (per mix. all'equilibrio) la relazione approssimata di Lewis-Randall: il γ_i del componente i-esimo della mix. alla temperatura T e alla pressione parziale p_i è eguale al γ_i della specie i-esima pura alla stessa T ed alla pressione p_t della mix:
 - $\bullet \ \gamma_i(T,p_i) = \gamma_i^*(T,p_t)$

	N_2	H ₂	NH ₃
$T_c(K)$	126.0	33.2	406
p_c (atm)	33.6	12.8	111.6

Dipendenza della K dalla pressione

verifica della dipendenza di K da p_t per la reazione $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \iff NH_3(g)$



Dipendenza della K dalla pressione

verifica della dipendenza di K da p_t per la reazione $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \iff NH_3(g)$

• A $T{=}450$ °C e $p_t{=}300$ atm:

	N_2	H ₂	NH ₃
T_r	5.73	17.53	1.78
p_r	8.94	14.4	2.69
γ	1.14	1.09	0.91

•
$$K = K_p K_\gamma = 8.9 \times 10^{-3} \frac{0.91}{(1.14)^{\frac{1}{2}} (1.09)^{\frac{3}{2}}} = 6.7 \times 10^{-3}$$

Dipendenza della K dalla temperatura

equazione di van't Hoff

- In $K = -\frac{\Delta_r G^0}{RT}$
- $\bullet \frac{d \ln K}{dT} = -\frac{1}{R} \frac{d}{dT} \left(\frac{\Delta_r G^0}{T} \right) = \frac{\Delta_r H^0}{RT^2}$
 - punto stazionario (max. o min. K) alla T per la quale $\Delta_r H^0 = 0$
- $\bullet \ \frac{d}{d\left(\frac{1}{T}\right)} \ln K = -\frac{\Delta_r H^0}{R}$
- $\int d \ln K = -\frac{\Delta_r H^0}{R} \int d\left(\frac{1}{T}\right) + c$
- $\ln K = -\frac{\Delta_r H^0}{RT} + c$ (se $\Delta_r H^0$ indipendente da T)
- Retta con pendenza $-\frac{\Delta_r H^0}{R}$ in un grafico $\ln K$ vs $\frac{1}{T}$:
 - K diminuisce all'aumentare di T per reazioni esotermiche
 - K aumenta all'aumentare di T per reazioni endotermiche
- Metodo non calorimetrico per determinare $\Delta_r H^0$

Dipendenza della K dalla temperatura

valori di K a varie T

- $\int_{\ln K(T_1)}^{\ln K(T_2)} d \ln K = -\frac{\Delta_r H^0}{R} \int_{T_1}^{T_2} d \left(\frac{1}{T} \right)$
 - Se $\Delta_r H^0$ costante per $\Delta T = T_2 T_1$
- $\ln K(T_2) = \ln K(T_1) \frac{\Delta_r H^0}{R} \left(\frac{1}{T_2} \frac{1}{T_1}\right)$

esempio

- Per la sintesi di NH₃ a T=25 °C K=778. Sapendo che a questa T $\Delta_r H^0$ =-46.1 kJ/mol, determinare K alle T=125 °C e T=-75 °C
- posto $T_1 = 25^{\circ} \text{C} = 298.15 \text{K e } T_2 = 125^{\circ} \text{C}$:

•
$$\ln K(T_2) = \ln (778) - \frac{-46.1 \times 10^3 \frac{J}{mol}}{8.314 \frac{J}{M_{cool}}} \left[\frac{1}{(273.15 + 125)K} - \frac{1}{298.15K} \right] = 1.9857$$

- \Longrightarrow K=7.28
- a T=-75°C, $K = 9.32 \times 10^6$

Dipendenza della K dalla temperatura

esempio:
$$PCI_5(g) \iff PCI_3(g) + CI_2(g)$$

• Calcolare il grado di dissociazione, α , a $T=500 {\rm K}$ e alle pressioni p di 1 atm e 5 atm dai seguenti dati termodinamici a $T=298.15 {\rm K}$:

	Cl ₂ (g)	PCl ₃ (g)	PCI ₅ (g)
$\Delta_f H^0$ (kcal/mol)	0.0	-73.22	-95.35
$\Delta_f G^0$ (kcal/mol)	0.0	-68.42	-77.59

Dipendenza della K dalla temperatura

esempio:
$$PCI_5(g) \iff PCI_3(g)+CI_2(g)$$

- A T=298.15K:
 - $\Delta_r G^0 = \Delta_f G^0[PCl_3(g)] \Delta_f G^0[PCl_5(g)] = -68.42 (-77.59) = 9.17 \frac{kcal}{mol}$
- A T=298.15K:
 - $\Delta_r H^0 = \Delta_f H^0[PCI_3(g)] \Delta_f H^0[PCI_5(g)] = -73.22 (-95.35) = 22.130 \frac{kcal}{mol}$
- A T=298.15K:
 - $\ln K_1 = -\frac{\Delta_r G^0}{RT} = -\frac{9.17 \times 10^3 \frac{cal}{mol}}{1.98 \frac{cal}{Vector} \times 298K} = -15.541$
- A T = 500K:
 - $\ln K = -15.541 \frac{22.130 \times 10^3 \frac{cal}{mol}}{1.98 \frac{cal}{Kmol}} \left(\frac{1}{500K} \frac{1}{298.15K} \right) = -0.38868$ $\Longrightarrow K = 0.678$

Dipendenza della K dalla temperatura

esempio: $PCI_5(g) \iff PCI_3(g)+CI_2(g)$

	$Cl_2(g)$	PCl ₃ (g)	$PCl_5(g)$
inizio (mol)	0.0	0.0	1.0
eq. (mol)	α	α	1.0- $lpha$
Уі	$\frac{\alpha}{1.0+\alpha}$	$\frac{\alpha}{1.0+\alpha}$	$\frac{1.0-\alpha}{1.0+\alpha}$

•
$$K_p = \frac{y_{Cl_2}y_{PCl_3}}{y_{PCl_5}} \left(\frac{p_t}{p^0}\right) = \frac{\alpha^2}{1-\alpha^2} \left(\frac{p_t}{p^0}\right)$$

$$\bullet \ \alpha_{eq} = \sqrt{\frac{\kappa_p}{\left(\frac{p_t}{p^0}\right) + \kappa_p}}$$

- Alla $p_t = 1$ atm, $\alpha_{eq} = 0.63316$,
- Alla p_t =5atm, $\alpha_{eq} = 0.34356$

Dipendenza della K dalla temperatura

espressione accurata di K a varie T

- ullet Per grandi ΔT non possiamo usare l'espressione a 2 punti
 - dipendenza di Cp(v) da T: $C_p = a + bT + cT^2$
- $\Delta C_p = C_p(prod.) C_p(reag.) = \sum_i \nu_i C_{p,m}(i) = \Delta a + \Delta b T + \Delta c T^2$ • $\Delta a = \sum_i \nu_i a(i); \ \Delta b = \sum_i \nu_i b(i); \ \Delta c = \sum_i \nu_i c(i)$
- $\frac{d\Delta_r H^0}{dT} = \Delta C_p$
- $\int d\Delta_r H^0 = \int \Delta C_p dT + A$
 - A: contributo T-indipendente a $\Delta_r H^0$
- Conoscendo $\Delta H^0(T=T_1)$ si ottiene la costante A e il ΔH^0 a tutte le T
- $\Delta_r H^0(T) = \Delta_a(T T_1) + \frac{\Delta_b}{2}(T^2 T_1^2) + \frac{\Delta_c}{3}(T^3 T_1^3) + \Delta_r H^0(T_1)$

Dipendenza della K dalla temperatura

espressione accurata di K a varie T

•
$$\frac{d}{dT} \ln K = \frac{1}{R} \left(\frac{A}{T^2} + \frac{\Delta a}{T} + \frac{\Delta b}{2} + \frac{\Delta c}{3} T \right)$$
 (Eq. di van't Hoff)

•
$$\int d \ln K = \frac{1}{R} \int \left(\frac{A}{T^2} + \frac{\Delta a}{T} + \frac{\Delta b}{2} + \frac{\Delta c}{3} T \right) dT + C$$

•
$$R \ln K = -\frac{A}{T} + \Delta a \ln T + \frac{\Delta b}{2} T + \frac{\Delta c}{6} T^2 + C$$

- A, C : costanti di integrazione
- A contrib. T-indipendente a $\Delta_r H^0$
- C contrib. T-indipendente a K

•
$$R \ln K - \left[\Delta a \ln T + \frac{\Delta b}{2}T + \frac{\Delta c}{6}T^2\right] = C - \frac{A}{T} = \Sigma$$

- retta di pendenza -A e intercetta C in un grafico Σ vs $\frac{1}{T}$
- ullet recuperate le costanti A e C si può calcolare K per ogni T

Dipendenza della K dalla temperatura

$$\frac{1}{2}$$
N₂(g)+ $\frac{3}{2}$ H₂(g) \Longrightarrow NH₃(g)

• Derivare una espressione generale per la costante termodinamica di equilibrio in funzione della T da dati termodinamici a T=298.15K e dai dati per le costanti a, b e c che esprimono la variazione con la T delle C_p ($C_p=a+bT+cT^2$):

	$N_2(g)$	H ₂ (g)	NH ₃ (g)
$\Delta_f H^0$ (kcal/mol)	0.0	0.0	-11.04
$\Delta_f G^0$ (kcal/mol)	0.0	0.0	-3.98
а	6.30	6.88	5.92
$b imes 10^3$	0.0	0.066	8.96
$c imes 10^6$	-0.34	0.28	-1.76

Costante di equilibrio termodinamica

2 Dipendenza di K da pressione e temperatura

Equilibri in fase liquida

Espressioni delle costanti di equilibrio

- In generale $\mu_i = \mu_i(p, T, comp.)$
- $\Delta_r G^0$ dipende dalla scelta dello stato standard:
- $a_i = \gamma_i x_i \Longrightarrow K = K_\gamma K_x$
 - stato standard: sostanza pura alla $p^0 = 1.00$ bar
- $a_i = \gamma_i \frac{m_i}{m^0} \Longrightarrow K = K_\gamma K_m$
 - stato standard alla conc. $m^0=1.00$ m
- $a_i = \gamma_i \frac{c_i}{c^0} \Longrightarrow K = K_\gamma K_c$
 - stato standard alla conc. $c^0=1.00M$

Espressioni delle costanti di equilibrio

$$2NH_3(g)+CO_2(g) \implies CO(NH_2)_2 (soln.)+ H_2O(I)$$

• Calcolare la K dai seguenti dati termodinamici a T=298.15K:

	NH ₃	CO ₂	CO(NH ₂) ₂	H ₂ O
$\Delta_f G^0(kJ/mol)$	-16.83	-394.30	-203.84	-237.19
stato standard	gas puro a p^0	gas puro a p^0	soln a <i>m</i> 0	pura a p^0

$$\bullet \ \mu_{NH_3} = \mu_{NH_3}^0 + RT \ln \frac{\mathit{f}_{NH_3}}{\mathit{p}^0}$$

•
$$\mu_{CO_2} = \mu_{CO_2}^0 + RT \ln \frac{f_{CO_2}}{p^0}$$

•
$$\mu_{H_2O} = \mu_{H_2O}^0 + RT \ln \gamma_{H_2O} x_{H_2O}$$

•
$$\mu_{urea} = \mu_{urea}^0 + RT \ln \gamma_{urea} \frac{m_{urea}}{m^0}$$

Espressioni delle costanti di equilibrio

 $2NH_3(g)+CO_2(g) \iff CO(NH_2)_2 \text{ (soln.)} + H_2O(I)$

$$ullet$$
 $\Delta_{r}G^{0}=\mu_{urea}^{0}+\mu_{H_{2}O}^{0}-2\mu_{NH_{3}}^{0}-\mu_{CO_{2}}^{0}=-13.39~{
m kJ}$

•
$$K = e^{-\frac{\Delta_r G^0}{RT}} = 222$$

$$\bullet \ \ K = \frac{{}^{a_{H_2O} \, a_{urea}}}{{}^{a_{NH_3}} \, {}^{a_{CO_2}}} = \frac{{}^{\gamma_{urea} \, \frac{m_{urea}}{m^0} \, \gamma_{H_2O} \times H_2O}}{{\left(\frac{f_{NH_3}}{p^0}\right)^2 \frac{f_{CO_2}}{p^0}}}$$

- costante di equilibrio mista
- in certi casi è conveniente usare come stati standard i liquidi puri alla $p_t = p^0$

Espressioni delle costanti di equilibrio

$EtOH(I)+CH_3COOH(I) \implies EtAc(I)+H_2O(I)$

• Determinare il numero di moli di EtAc che si ottengono alla $T=25^{\circ}$ C facendo reagire 1 mol di EtOH con 1 mol di CH₃COOH. Calcolare lo stesso numero a $T=200^{\circ}$ C. Si utilizzino i seguenti dati termodinamici alla $T=25^{\circ}$ C:

	EtOH(I)	CH ₃ COOH(I)	EtAc(I)	H ₂ O(I)
$\Delta_f G^0(kJ/mol)$	-168.7	-395.4	-324.7	-237.2
$\Delta_f H^0(kJ/mol)$	-270.7	-490.4	-467.8	-285.8

Espressioni delle costanti di equilibrio

$EtOH(I)+CH_3COOH(I) \iff EtAc(I)+H_2O(I)$

- $\Delta_r G^0 = \Delta_f G^0[EtAc(I)] + \Delta_f G^0[H_2O(I)] \Delta_f G^0[EtOH(I)] \Delta_f G^0[AcH(I)]$
 - $\Longrightarrow \Delta_r G^0 = 1.7 \text{ kJ}$
- Allo stesso modo: $\Delta_r H^0 = 7.5 \text{ kJ}$
- A T=25°C:

•
$$K = exp\left(-\frac{\Delta_r G^0}{RT}\right) = exp\left[-\left(\frac{1.7 \times 10^3 J}{8.314 \frac{J}{M_{mol}} \times 298.15K}\right)\right] = 0.51$$

- A T=200°C:
 - $\ln K = \ln 0.51 \frac{7.5 \times 10^3 J}{8.314 \frac{J}{K_{mol}}} \left(\frac{1}{473.15K} \frac{1}{298.15K} \right) = 1.56 \Longrightarrow K = 4.76$

Espressioni delle costanti di equilibrio

$$\mathsf{EtOH}(\mathsf{I}) + \mathsf{CH}_3 \mathsf{COOH}(\mathsf{I}) \iff \mathsf{EtAc}(\mathsf{I}) + \, \mathsf{H}_2 \mathsf{O}(\mathsf{I})$$

	EtOH(I)	CH ₃ COOH(I)	EtAc(I)	H ₂ O(I)	n _t
Inizio (mol)	1.0	1.0	0.0	0.0	2.0
eq. (mol)	1.0- $lpha$	1.0- $lpha$	α	α	2.0
x _i	$\frac{1-\alpha}{2}$	$\frac{1-\alpha}{2}$	$\frac{\alpha}{2}$	$\frac{\alpha}{2}$	

- $K \sim K_{\rm X} = \frac{\alpha^2}{(1-\alpha)^2} \Longrightarrow \alpha_{\rm eq} = \frac{\sqrt{K}}{1+\sqrt{K}}$
- A T=25 °C, $\alpha_{eq}=$ 0.42
- A T=200 °C, $\alpha_{eq}=0.55$