1) Consider the example of Lifetime utility maximization.

Solve it assuming $U(C)=\ln C, r=1, \delta=0, K(0)=1$ and $T=1$.

$$
\begin{gathered}
\max \int_{0}^{1} \ln C(t) d t \\
\text { subject to } \\
K^{\prime}=K(t)-C(t) \\
K(0)=1 \quad K(1) \geq 0
\end{gathered}
$$

The Hamiltonian function is

$$
H=\ln C(t)+\lambda(K(t)-C(t))
$$

(i) $\frac{d H}{d C}=\frac{1}{C(t)}-\lambda=0$
(ii) $\quad K^{\prime}=K(t)-C(t)$
(iii) $\lambda^{\prime}=-\lambda$
(iv) $\quad \lambda(1) \geq 0, K(1) \geq 0,(K(1)) \lambda(1)=0$
(Truncated vertical line)

Solving (iii) we get $\quad \lambda(t)=\lambda_{0} e^{-t}$ where λ_{0} is an arbitrary constant (note that (iii) is an homogeneous differential equation with constant term and constant coefficient)
Replacing in (i) $\frac{1}{C(t)}=\lambda_{0} e^{-t} \rightarrow C(t)=\lambda_{0}{ }^{-1} e^{t}$
Then $C(t)$ is increasing in t if $\lambda_{0}>0$
Replacing in (ii) we get:

$$
K^{\prime}-K(t)=-\lambda_{0}^{-1} e^{t}
$$

(note the general form of a first order linear differential equation is $\frac{d y}{d t}+u(t) y=w(t)$) The general solution of this differential equation is given by

$$
K(t)=e^{-\int u(t) d t}\left(A+\int w(t) e^{\int u(t) d t} d t\right)
$$

where $(t)=-1, w(t)=-\lambda_{0}{ }^{-1} e^{t}$ and $\int u(t) d t=-\int 1 d t=-t-k$ where k is an arbitrary constant. Replacing into the expression above we have:

$$
\begin{gathered}
K=e^{t+k}\left(A-\lambda_{0}^{-1} \int e^{-k} d t\right) \\
K(t)=e^{t+k}\left(A-\lambda_{0}^{-1} e^{-k}(t+h)\right) \text { where } h \text { is an arbitrary constant } \\
K(t)=\left(A e^{t+k}-\lambda_{0}^{-1} e^{t}(t+h)\right)
\end{gathered}
$$

Note that:

1) Given that $C(t)=\lambda_{0}{ }^{-1} e^{t}, \lambda_{0}$ must be different from 0 otherwise $C(t)$ is not defined
2) given that $\lambda(t)=\lambda_{0} e^{-t}$ for any $\lambda_{0} \neq 0$ we have that for $t=1 \rightarrow \lambda(1)=\lambda_{0} e^{-1} \neq 0$ Then the terminal condition has to be $K(1)=0$
Using the initial and the terminal conditions:

$$
K(0)=\left(A e^{k}-\lambda_{0}^{-1} h\right)=1
$$

$$
K(1)=e\left(A e^{k}-\lambda_{0}^{-1}(1+h)\right)=0
$$

From the second equation we have $A e^{k}=\lambda_{0}^{-1}(1+h)$ and replacing in the first one:
$\lambda_{0}{ }^{-1}((1+h)-h)=1 \rightarrow \lambda_{0}=1$
Replacing $\lambda_{0}=1$ in $K(t)$ we have:

$$
K(t)=\left(A e^{t+k}-e^{t}(t+h)\right)=e^{t}\left(A e^{k}-t-h\right)=e^{t}(B-t)
$$

where B is an arbitrary constant. Using Initial and terminal conditions we find that $B=1$, then:

$$
K(t)=e^{t}(1-t)
$$

Replacing $\lambda_{0}=1$ in $C(t)$ the optimal consumption path:

$$
C(t)=e^{t}
$$

Replacing $\lambda_{0}=1$ in $\lambda(t)$ we get the evolution of the shadow prices

$$
\lambda(t)=e^{-t}
$$

2) Consider the problem above in discrete time.
a. Solve it with $T=4$. (the function to maximize is $\sum_{t=0}^{4} U\left(C_{t}\right)$)

The problem is:

$$
\begin{gathered}
\max _{C_{t}} \sum_{t=0}^{4} \ln C_{t} \\
\text { s.t. } C_{t}=2 K_{t}-K_{t+1} \\
K_{0}=1
\end{gathered}
$$

Note that:
i) $\quad \delta=0$ in continuous time is equivalent to a discount factor equal 1 in discrete time.
ii) the constraint $K^{\prime}=K(t)-C(t)$ in discrete time becomes

$$
K_{t+1}-K_{t}=K_{t}-C_{t}
$$

iii) in the solution $K_{5}=0$ (no residual capital is left because utility function satisfies no satiation)

Replacing the constraint into the objective function:

$$
\begin{gathered}
\max _{K_{t}} \sum_{t=0}^{4} \ln \left(2 K_{t}-K_{t+1}\right) \\
0 \leq K_{t+1} \leq 2 K_{t} \\
K_{0}=1
\end{gathered}
$$

The first order condition is

$$
\begin{gathered}
-\frac{1}{2 K_{t-1}-K_{t}}+\frac{2}{2 K_{t}-K_{t+1}}=0 \\
-\frac{1}{C_{t-1}}+\frac{2}{C_{t}}=0
\end{gathered}
$$

that gives
$C_{t}=2 C_{t-1}$
We can explicit each C_{t} as
$C_{t}=2^{t} C_{0}$.

$$
\begin{gathered}
x_{0}=1=\sum_{t=0}^{4} \frac{c_{t}}{R^{t+1}}=\sum_{t=0}^{4} \frac{2^{t} C_{0}}{2^{t+1}}=\sum_{t=0}^{4} \frac{C_{0}}{2} \\
C_{0}=\frac{2}{5} \\
C_{t}=\frac{2^{t+1}}{5}
\end{gathered}
$$

b. Solve it with $T=\infty$.

The reduced problem now is

$$
\begin{gathered}
\max _{K_{t}} \sum_{t=0}^{\infty} \ln \left(2 K_{t}-K_{t+1}\right) \\
0 \leq K_{t+1} \leq 2 K_{t} \\
K_{0}=1
\end{gathered}
$$

The first order condition is

$$
\begin{gathered}
-\frac{1}{2 K_{t-1}-K_{t}}+\frac{2}{2 K_{t}-K_{t+1}}=0 \\
-\frac{1}{C_{t-1}}+\frac{2}{C_{t}}=0
\end{gathered}
$$

that gives
$C_{t}=2 C_{t-1}$
We can explicit each C_{t} as
$C_{t}=2^{t} C_{0}$.

$$
x_{0}=1=\sum_{t=0}^{\infty} \frac{c_{t}}{R^{t+1}}=\sum_{t=0}^{\infty} \frac{2^{t} c_{0}}{2^{t+1}}=\sum_{t=0}^{\infty} \frac{C_{0}}{2}
$$

Cannot be satisfied for every positive value of C_{0}. Then, no solution.
3) Maximize $\int_{0}^{T} \ln (q) e^{-\delta t} d t \quad$ subject to $s^{\prime}=-q$ and $S(0)=s_{0}, S(T) \geq 0$

$$
H=\ln (q) e^{-\delta t}+\lambda(-q)
$$

(i) $\frac{d H}{d C}=\frac{1}{q} e^{-\delta t}-\lambda=0$
(ii) $s^{\prime}=-q$
(iii) $\quad \lambda^{\prime}=0$
(iv) $\quad \lambda(T) \geq 0, s(T) \geq 0,(s(T)) \lambda(T)=0$

From (iii) $\lambda(t)=\lambda_{0} \quad \forall t \quad$ (where λ_{0} is constant)
From (i) we have:
$\frac{1}{q} e^{-\delta t}-\lambda_{0}=0 \rightarrow q=\frac{1}{\lambda_{0}} e^{-\delta t}$
Replacing q in (ii) we get:

$$
\begin{gathered}
s^{\prime}=-\frac{1}{\lambda_{0}} e^{-\delta t} \\
s=-\int \frac{1}{\lambda_{0}} e^{-\delta t} d t=\frac{1}{\delta \lambda_{0}} e^{-\delta t}+h
\end{gathered}
$$

Note λ_{0} has to be different from zero otherwise q and s are not defined.
Therefore condition (iv) has to be $s(T)=0$

$$
\begin{equation*}
h=-\frac{1}{\delta \lambda_{0}} e^{-\delta T} \tag{1}
\end{equation*}
$$

Using initial condition we have:

$$
s_{0}=\frac{1}{\delta \lambda_{0}}+h
$$

Replacing h using [1] and solving by λ_{0} we get:

$$
\begin{aligned}
& s_{0}=\frac{1}{\delta \lambda_{0}}\left(1-e^{-\delta T}\right) \\
& \lambda_{0}=\frac{1}{\delta s_{0}}\left(1-e^{-\delta T}\right)
\end{aligned}
$$

Replacing λ_{0} in [1] we get

$$
h=-\frac{1}{\delta \lambda_{0}} e^{-\delta T}=\frac{e^{-\delta T}}{\left(1-e^{-\delta T}\right)} s_{0}
$$

Replacing in the expression fot s :

$$
s=\frac{1}{\delta \lambda_{0}} e^{-\delta t}+h=\frac{e^{-\delta t}}{1-e^{-\delta T}} S_{0}+\frac{e^{-\delta T}}{1-e^{-\delta T}} S_{0}=\frac{e^{-\delta t}+e^{-\delta T}}{1-e^{-\delta T}} S_{0}
$$

Section 20.2

Ex. 1

$$
H=6 y+\lambda(y+u)
$$

Conditions are:

1. $\frac{d H}{d u}=\lambda$
2. $y^{\prime}=y+u$
3. $\lambda^{\prime}=-6-\lambda$
4. $\lambda(8)=0$
5. $y(0)=10$

The general solution of 3 is

$$
\lambda(t)=A e^{-t}-6
$$

We can use the trasversality condition to find the definite solution

$$
\begin{gathered}
\lambda(8)=A e^{-8}-6=0 \\
A=6 e^{8}
\end{gathered}
$$

The definite solution is

$$
\lambda(t)=6 e^{8-t}-6
$$

Then $>0 \forall 0 \leq t \leq 8$.

By condition 1 we can say that the Hamiltonian is maximized for $u=2 \forall 0 \leq t \leq 8$
Replacing in 2 we have

$$
y^{\prime}=y+2
$$

The general solution of is

$$
y(t)=A e^{t}-2
$$

Using the initial condition $y(0)=10$ we find the definite solution:

$$
\begin{gathered}
y(0)=A e^{0}-2=10 \\
A=12
\end{gathered}
$$

That is:

$$
y(t)=12 e^{t}-2
$$

