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Seconda legge della termodinamica

Seconda legge della termodinamica
Generalità

origine della seconda legge

Il I principio non pone limitazioni alla conversione di energia da una
forma all’altra

lavoro in calore e viceversa

Lavoro può sempre essere convertito in calore

attrito, passaggio di corrente elettrica, . . .

Esistono limitazioni nella conversione di calore in lavoro

Impossibilità di costruire una macchina perpetua del secondo tipo

conversione di lavoro in calore macchina perpetua del secondo tipo
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Seconda legge della termodinamica

Seconda legge della termodinamica
Postulati equivalenti

postulato di Kelvin-Planck

Una trasformazione, il cui unico risultato sia la conversione in lavoro di
calore estratto da un termostato ad una data temperatura, è impossibile

senza un cambiamento di stato del sistema

evidenza sperimentale: impossibilità di costruire una macchina
perpetua del secondo tipo

postulato di Clausius

Una trasformazione, il cui unico risultato sia il trasferimento di calore da
un corpo a una data temperatura, ad un corpo a temperatura più alta è
impossibile

Se calore fluisce per conduzione da un corpo A ad un corpo B, la
trasformazione inversa è impossibile
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Seconda legge della termodinamica

Seconda legge della termodinamica
Equivalenza dei postulati

Kelvin =⇒ Clausius

Supponiamo che il postulato di Kelvin sia falso

Esiste una trasformazione, il cui unico risultato è la conversione di q
estratto da una sorgente a temperatura t1 in w

Possiamo convertire w in q e aumentare la temperatura di un corpo a
t > t1

Anche il postulato di Clausius è falso
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Seconda legge della termodinamica

Seconda legge della termodinamica
Equivalenza dei postulati

Ciclo reversibile di Carnot

diagramma p-V del ciclo di Carnot

Macchina termica che lavora tra due sorgenti, a T = Th e
T = Tc < Th:

A–B: espansione isoterma
B–C: espansione adiabatica
C–D: compressione isoterma
D–A: compressione adiabatica
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Seconda legge della termodinamica

Seconda legge della termodinamica
Equivalenza dei postulati

Ciclo reversibile di Carnot
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Seconda legge della termodinamica

Seconda legge della termodinamica
Equivalenza dei postulati

Ciclo reversibile di Carnot

diagramma p-V del ciclo di Carnot

Consideriamo q intrinsecamente positivo (macchine termiche)

Sistema assorbe qh a Th, rilascia qc a Tc

∆U = 0 (processo ciclico), w = qh − qc (area del ciclo)

Efficienza del ciclo: η = qh−qc
qh

= 1− qc
qh
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Seconda legge della termodinamica

Seconda legge della termodinamica
Equivalenza dei postulati

Clausius =⇒ Kelvin

Supponiamo che il postulato di Clausius sia falso

Esiste una trasformazione, il cui unico risultato è il trasferimento di qh
estratto da una sorgente a temperatura Tc , alla sorgente a
temperatura Th, con Th > Tc

Attraverso un ciclo di Carnot operante tra le due sorgenti:

qh estratto dalla sorgente a Th

una parte è convertita in w
qc è rilasciato a Tc

qh − qc = w =⇒ il postulato di Kelvin è falso

I due postulati sono equivalenti
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Seconda legge della termodinamica

Seconda legge della termodinamica
Macchine termiche

macchina termica reversibile

Lavora in un ciclo reversibile tra le temperature Th e Tc

Il ciclo può essere percorso nel senso inverso:

assorbe qc a Tc , rilascia qh a Th

per operare riceve w (macchina refrigerante)

macchina termica operante tra Th e Tc macchina operante nel ciclo inverso
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Seconda legge della termodinamica

Seconda legge della termodinamica
Macchina termica reversibile

w > 0 =⇒ qh assorbito a Th e qc rilasciato a Tc

Assumiamo qc assorbito a Tc :

dopo il ciclo: sorgenti in contatto termico finchè la sorgente a Tc

rivece qc
unico risultato: trasformazione di q assorbito a Th in w
violazione del principio di Kelvin

I principio: w = qh − qc =⇒ qh > qc e assorbito a Th

macchina termica operante tra Th e Tc
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Seconda legge della termodinamica

Seconda legge della termodinamica
Efficienza delle macchine termiche

Data una seconda macchina termica, non necessariamente reversibile, che
lavora tra le stesse temperature Th e Tc , per la quale w ′, q′h, e q′c sono le
quantità corrispondenti a w , qh, e qc della prima macchina:

Se la prima macchina è reversibile:

qh
qc

≥
q′h
q′c

Se anche la seconda macchina è reversibile

qh
qc

=
q′h
q′c

Dr. Daniele Toffoli (DSCF, UniTS) II e III principio 13 / 112



Seconda legge della termodinamica

Seconda legge della termodinamica
Efficienza delle macchine termiche

dimostrazione

Poniamo qh
q′h

= N′

N (N,N ′ ∈ N > 0)

Processo complesso che consiste di:

N ′ cicli della seconda macchina termica
N cicli inversi della prima macchina termica (reversibile)

Alla fine del processo:

wtot = N ′w ′ − Nw (w compiuto totale)
qh,tot = N ′q′h − Nqh = 0 (q assorbito a Th)
qc,tot = N ′q′c − Nqc (q rilasciato a Tc)
wtot = −qc,tot (I principio)

wtot ≤ 0 (postulato di Kelvin)

qc,tot ≥ 0 =⇒ N ′q′c ≥ Nqc

qh
q′h

≥ qc
q′c

=⇒ qh
qc

≥ q′h
q′c
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Seconda legge della termodinamica

Seconda legge della termodinamica
Efficienza delle macchine termiche

dimostrazione

Se la seconda macchina è reversibile:
q′
h

q′
c
≥ qh

qc
=⇒ qh

qc
=

q′
h

q′
c

In termini di efficienza, η: η ≥ η′

l’efficienza di una macchina irreversibile non può eccedere quella
corrispondente alla macchina reversibile

Tutte le macchine reversibili operanti tra Th e Tc hanno la stessa
efficienza

indipendentemente dal fluido usato nella macchina

Per macchine termiche reversibili qh
qc

dipende solo da Th e Tc :
qh
qc

= f (Tc ,Th) (f universale di Tc ,Th)
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

f (T1,T2) =
f (T0,T2)
f (T0,T1)

(T0,T1,T2 arbitrarie)

Macchina A1 operante tra T0 e T1 =⇒ q1
q0

= f (T0,T1)

Macchina A2 operante tra T0 e T2 =⇒ q2
q0

= f (T0,T2)

Assumiamo che q0 sia la stessa per entrambe
q2
q1

= f (T0,T2)
f (T0,T1)

Processo composto da un ciclo diretto di A2 e un ciclo inverso di A1

processo reversibile operante tra T1 e T2
q2
q1

= f (T1,T2)
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

f (T0,T ) = θ(T ) se T0 è fissa
q2
q1

= f (T1,T2) =
θ(T2)
θ(T1)

Introduciamo θ(T ) come nuova scala di T

determinata a meno di una costante moltiplicativa arbitraria
indipendente dalle proprietà della sostanza termometrica
unità di misura fissata come per il termometro a gas

Coincide con la temperatura assoluta misurata con il termometro a
gas
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

Ciclo di Carnot per 1 mole di gas ideale

diagramma p-V del ciclo di Carnot

A–B: espansione isoterma reversibile a T = Th:

∆A→BU = 0 =⇒ qA→B = −wA→B

wA→B = −RTh ln
VB

VA

qA→B = RTh ln
VB

VA
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

Ciclo di Carnot per 1 mole di gas ideale

diagramma p-V del ciclo di Carnot

B–C: espansione adiabatica reversibile:

qB→C = 0 =⇒ ∆B→CU = wB→C

∆B→CU = CV ,m(Tc − Th)
wB→C = CV ,m(Tc − Th)
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

Ciclo di Carnot per 1 mole di gas ideale

diagramma p-V del ciclo di Carnot

C–D: compressione isoterma reversibile a T = Tc

∆C→DU = 0 =⇒ qC→D = −wC→D

wC→D = −RTc ln
VD

VC

qC→D = RTc ln
VD

VC
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

Ciclo di Carnot per 1 mole di gas ideale

diagramma p-V del ciclo di Carnot

D–A: compressione adiabatica reversibile

qD→A = 0 =⇒ ∆D→AU = wD→A

∆D→AU = CV ,m(Th − Tc)
wD→A = CV ,m(Th − Tc)
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

Ciclo di Carnot per 1 mole di gas ideale

A e D (B e C) stanno su una adiabatica:

ThV
γ−1
A = TcV

γ−1
D e ThV

γ−1
B = TcV

γ−1
C

VA

VB
= VD

VC

∆U = 0

q = −w , w è l’area del ciclo

w = −RTh ln
VB

VA︸ ︷︷ ︸
wA→B

+CV ,m(Tc − Th)︸ ︷︷ ︸
wB→C

+−RTc ln
VA

VB︸ ︷︷ ︸
wB→C

+CV ,m(Th − Tc)︸ ︷︷ ︸
wD→A

= −R(Th − Tc) ln
VB

VA
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Seconda legge della termodinamica

Seconda legge della termodinamica
Scala termodinamica delle temperature assolute

Ciclo di Carnot per 1 mole di gas ideale

qh
qc

= θ(Th)
θ(Tc )

Per il ciclo di Carnot: qh
qc

= Th
Tc

θ(Th)

θ(Tc)
=

Th

Tc

θ(T ) e T sono proporzionali

stessa unità di temperatura

=⇒ stessa scala

η = 1− Tc
Th

uguale per tutte le macchine reversibili
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Seconda legge della termodinamica

Seconda legge della termodinamica
Esempio

Un ciclo di Carnot usa come fluido operante 1 mole di gas monoatomico
perfetto, per il quale CV = 3

2R. Da uno stato iniziale di 600K e 10 atm, il
gas si espande isotermicamente fino a p = 1 atm, e poi adiabaticamente
fino a T =300K. Una compressione isoterma e una compressione
adiabatica completano il ciclo. Calcolare w e q per ogni stadio e il
rendimento per il ciclo

diagramma p-V del ciclo di Carnot
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Seconda legge della termodinamica

Seconda legge della termodinamica
Esempio

A → B: espansione isoterma da pA =10 atm a pB =1 atm a T = 600K

∆A→BU = 0

wA→B = −RTA

∫ VB

VA

dV
V = −RTA ln VB

VA
= −RTA ln pA

pB
=

−8.314JK−1mol−1 × 600K × ln 10atm
1atm = −11.5kJ

qA→B = 11.5 kJ

B → C : espansione adiabatica da TB = 600K a TC = 300K

qB→C = 0

wB→C =
∫ TC

TB
CV dT = CV (TC − TB) =

3
2R(TC − TB) =

3
2 × 8.314JK−1mol−1 × (300K − 600K ) = −3.74 kJ

∆B→CU = −3.74 kJ
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Seconda legge della termodinamica

Seconda legge della termodinamica
Esempio

C → D: compressione isoterma a T = 300K

∆C→DU = 0

(A,D) e (B,C ) sono sulla stessa adiabatica:

=⇒ pAV
γ
A = pDV

γ
D , pBV

γ
B = pCV

γ
C

=⇒ TAV
γ−1
A = TDV

γ−1
D , TBV

γ−1
B = TCV

γ−1
C (TA = TB e TC = TD)

=⇒ VA

VB
= VD

VC

wC→D = −RTC

∫ VD

VC

dV
V = −RTC ln VD

VC
= −RTC ln VA

VB
=

−RTC ln pB
pA

= −8.314JK−1mol−1 × 300K × ln 1atm
10atm = 5.75 kJ

qC→D = −5.75 kJ
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Seconda legge della termodinamica

Seconda legge della termodinamica
Esempio

D → A: compressione adiabatica da TD = 300K a TA = 600K

qD→A = 0

wD→A =
∫ TA

TD
CV dT = CV (TA − TD) =

3
2R(TA − TD) =

3
2 × 8.314JK−1mol−1 × (600K − 300K ) = 3.74 kJ

∆D→AU = 3.74 kJ

Rendimento del ciclo

∆U = ∆B→CU +∆D→AU = 0

η = 1− qC→D
qA→B

= 1− TC
TA

= 1− 300K
600K = 0.5
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Entropia
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Entropia

Entropia
Proprietà dei processi ciclici

Sia S un sistema che subisce una trasformazione ciclica. Durante il ciclo,
S riceve (cede) calore da un insieme di sorgenti a temperature T1, T2, . . .,
Tn. Siano q1, q2, . . ., qn i calori scambiati tra S e le sorgenti (qi > 0 se
assorbito da S).

teorema: disuguaglianza di Clausius

n∑
i=1

qi
Ti

≤ 0

∑n
i=1

qi
Ti

= 0 ciclo reversibile∑n
i=1

qi
Ti

< 0 ciclo irreversibile
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Entropia

Entropia
Proprietà dei processi ciclici

dimostrazione

Introduciamo una sorgente a T = T0, T0 arbitraria

Introduciamo C1, C2, . . ., Cn cicli di Carnot reversibili

Ci opera tra Ti e T0

Ci cede a Ti qi assorbito da S a Ti

qi,0 =
T0

Ti
qi (q assorbito da Ci aT0)

Ciclo complesso composto da 1 ciclo di S e 1 ciclo dei Ci :

q0 =
∑n

i=1 qi,0 = T0

∑n
i=1

qi
Ti

(qtot ceduto da T0)

Per il sistema S
⋃

C1, C2, . . ., Cn:

w = q0 ≤ 0 =⇒
∑n

i=1
qi
Ti

≤ 0

Se reversibile:
∑n

i=1
qi
Ti

≥ 0 (ciclo inverso) =⇒
∑n

i=1
qi
Ti

= 0
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Entropia

Entropia
Proprietà dei processi ciclici

distribuzione continua di sorgenti

Se S scambia calore con un numero finito di sorgenti T1, T2, . . ., Tn:

n∑
i=1

qi
Ti

≤ 0

Per una distribuzione continua di sorgenti (dq calore scambiato a T ):∮
dq

T
≤ 0

T : temperatura della sorgente che cede (riceve) dq
T ′: temperatura di S
cicli irreversibili: T ′ < T se dq > 0
cicli reversibili: T ′ = T
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Entropia

Entropia
Funzione termodinamica di stato∫ B

A
dq
T assume lo stesso valore per tutti i processi reversibili che

connettono due stati di equilibrio A e B di S

dimostrazione∮
AIBIIA

dq
T = 0 (trasformazione ciclica reversibile A–I–B–II–A)∮

AIBIIA
dq
T =

(∫ B
A

dq
T

)
I
+
(∫ A

B
dq
T

)
II(∫ A

B
dq
T

)
II
= −

(∫ B
A

dq
T

)
II
=⇒

(∫ B
A

dq
T

)
I
=
(∫ B

A
dq
T

)
II

processo ciclico reversibile A–I–B–II–A
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Entropia

Entropia
Funzione termodinamica di stato

La proprietà
(∫ B

A
dq
T

)
I
=
(∫ B

A
dq
T

)
II
definisce la funzione di stato

entropia:

S(A) =

∫ A

O

dq

T

A ed O stati di equilibrio del sistema

O: stato standard fissato (quindi S è funzione di A)

O → A: processo reversibile

Definita anche per stati di non-equilibrio:

parti omogenee differenti a diverse p e T
separate da pareti rigide e adiabatiche
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Entropia

Entropia
Funzione termodinamica di stato

Dati due stati di equilibrio A e B, S(B)− S(A) =
∫ B
A

dq
T :∫ B

A

dq

T
=

∫ B

O

dq

T
+

∫ O

A

dq

T︸ ︷︷ ︸
−

∫ A
O

dq
T

= S(B)− S(A)

A → B processo reversibile

indipendente dallo stato standard O

Per una trasformazione reversibile infinitesima, dS = dq
T
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Entropia

Entropia
Funzione termodinamica di stato

Dati O e O ′ stati standard differenti:

S ′(A) =

∫ A

O′

dq

T
=

∫ O

O′

dq

T︸ ︷︷ ︸
−S(O′)

+

∫ A

O

dq

T

= S(A)− S(O ′)

S(O ′) costante per O ′ fissato (indipendente da A)

S è definita a meno di una costante additiva

determinata dal III principio della termodinamica
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Entropia

Entropia
Sistema composto da diversi sottosistemi

S = S1 + S2 + . . .+ Sn

Se U =
∑

i Ui , somma delle energie dei sottosistemi

non sempre vero (caso di sostanze finemente suddivise)
e.g. energia di superficie di contatto tra due fasi omogenee

Se w =
∑

i wi −→ q =
∑

i qi :

S(A) =

∫ A

O

dq

T
=

n∑
i=1

∫ A

O

dqi
T

=
n∑

i=1

Si (A)

S può essere definita anche per uno stato di non equilibrio

S è una proprietà estensiva
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Entropia

Entropia
Processi irreversibili

Per un processo A → B irreversibile, S(B)− S(A) >
∫ B
A

dq
T

0 >

∮
A−I−B−R−A

dq

T
=

(∫ B

A

dq

T

)
I

+

(∫ A

B

dq

T

)
R︸ ︷︷ ︸

S(A)−S(B)

>

(∫ B

A

dq

T

)
I

− [S(B)− S(A)]

In un processo adiabatico: dq = 0 =⇒ S(B) ≥ S(A)
processo irreversibile: S(B) > S(A)

processo ciclico irreversibile A–I–B–R–A
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Entropia

Entropia
∆S per processi irreversibili

trasferimento reversibile di q tra corpi a diverse T

q trasferito reversibilmente tra due termostati alle temperature Th e
Tc (Th > Tc)

Espansione/compressione di un gas ideale come tramite:
1 espansione reversibile isoterma a Th: ∆Sgas =

q
Th

= −∆Sres. 1

2 espansione reversibile adiabatica (Th → Tc): ∆Sgas = 0
3 compressione reversibile isoterma a Tc : ∆Sgas = − q

Tc
= −∆Sres. 2

∆Sgas =
q
Th

− q
Tc

< 0

∆Sreservoirs =
q
Tc

− q
Th

> 0

∆Stot = ∆Sgas +∆Sreservoirs = 0
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Entropia

Entropia
∆S per processi irreversibili

trasferimento irreversibile di q tra corpi a diverse T

q trasferito irreversibilmente tra due termostati alle temperature Th e
Tc (Th > Tc)

Th e Tc connessi con un filo metallico (conduttore di q):

∆S =
q

Tc
− q

Th
> 0

trasferimento irreversibile di calore tra due corpi
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Entropia

Entropia
Espansione isoterma di un gas perfetto

espansione reversibile da Vi a Vf > Vi

wrev = −
∫ Vf

Vi
pdV = −nRT ln

(
Vf
Vi

)
, qrev − wrev

∆Ssys =
qrev
T = nR ln

(
Vf
Vi

)
qsurr = −qrev =⇒ ∆Ssurr = −∆Ssys

∆Stot = ∆Ssys +∆Ssurr = 0

espansione irreversibile da Vi a Vf > Vi (unico stadio, pex=const.)

wirrev = −
∫ Vf

Vi
pexdV = −pex(Vf − Vi ), qirrev = −wirrev

∆Ssys = nR ln
(
Vf
Vi

)
qsurr = −qirrev =⇒ ∆Ssurr = −pex(Vf −Vi )

T

∆Stot = ∆Ssys +∆Ssurr > 0
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Entropia

Entropia
Espansione isoterma di un gas perfetto

espansione irreversibile da Vi a Vf > Vi (unico stadio, contro il vuoto)

wirrev = −
∫ Vf

Vi
pexdV = 0

qirrev = −wirrev = 0

∆Ssys = nR ln
(
Vf
Vi

)
qsurr = −qirrev =⇒ ∆Ssurr = 0

∆Stot = ∆Ssys > 0
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Entropia

Entropia
Espansione isoterma di un gas perfetto

esempio

Calcolare il ∆Stot per l’espansione isoterma di una mole di gas
perfetto, da Vi=1.00L a Vf=10.0L e alla T=27◦C nelle seguenti
condizioni:

1 reversibile
2 in un solo stadio (irreversibile)
3 contro il vuoto

In tutti i casi, ∆Ssys è la stessa:

∆Ssys = R ln

(
Vf

Vi

)
= 8.314JK−1mol−1 ln

(
10.0L

1.00L

)
= 19.1JK−1
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Entropia

Entropia
Espansione isoterma di un gas perfetto

esempio

1 Espansione isoterma reversibile:

∆Ssurr = −∆Ssys = −19.1JK−1

∆Stot = 0

2 Espansione isoterma in un solo stadio:

wirrev = −pf (Vf − Vi ) = −RT
Vf

(Vf − Vi )

qirrev =
RT
Vf

(Vf − Vi ) =
8.314JK−1mol−1×300K

10L (10.0L− 1.00L) = 2.24kJ

∆Ssurr = − qirrev
T = − 2.24kJ

300K = −7.47JK−1

∆Stot = ∆Ssys +∆Ssurr = (19.1− 7.5)kJK−1 = 11.6kJK−1

3 Espansione isoterma contro il vuoto:

∆Ssurr = 0
∆Stot = ∆Ssys = 19.1JK−1
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Entropia

Entropia
I e II legge della termodinamica

Equazione fondamentale per un sistema chiuso

Per un processo infinitesimo, dU = dq + dw

Processo reversibile: dqrev = TdS

Solo lavoro pV: dw = −pdV

Combinando insieme la I e la II legge:

dU = TdS − pdV

sempre vera, indipendentemente dal particolare processo:

dU è un differenziale esatto
dU è espresso in funzione di variabili termodinamiche e loro differenziali
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Calcolo dei cambi entropici

1 Seconda legge della termodinamica

2 Entropia

3 Calcolo dei cambi entropici

4 Terza legge della termodinamica

5 Funzioni di stato ausiliarie
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Processi reversibili e processi naturali

calcolo di ∆S da processi reversibili

Per un processo reversibile: ∆A→BS =
∫ B
A

dq
T

Per un processo irreversibile: ∆A→BS >
∫ B
A

dq
T

Per il calcolo di ∆S bisogna sempre considerare processi reversibili
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Cambio di stato di aggregazione

i cambiamenti di fase sono processi reversibili

fusione: A(s)→ A(l) a T = Tfus

vaporizzazione: A(l)→ A(g) a T = Tvap

sublimazione: A(s)→ A(g) a T = Tsub

∆trsS =
∆trsH

Ttrs
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Cambio di stato di aggregazione

regola di Trouton: ∆vapS =
∆vapH

Tvap
∼ 85JK−1mol−1

Andamento anomalo per:

H2O: formazione di legami a idrogeno in fase liquida aumenta ∆vapSm
(108.951 JK−1mol−1)
CH4: molecola piccola e sferica
Liquidi associati: bassi valori di ∆vapSm (e.g. CH3COOH forma dimeri
in fase vapore)
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Cambio di stato di aggregazione

Esempi

1 Per H2O(s) a p = 1.00 atm, ∆fusH=6.02kJmol−1, Tfus=0.0 ◦C

∆fusS =
∆fusH

Tfus
=

6.02× 103Jmol−1

273.15K
= 22.039JK−1mol−1

2 Per H2O(l) a p = 1.00 atm, ∆vapH=40.60kJmol−1, Tfus=100.0 ◦C

∆vapS =
∆vapH

Tvap
=

40.60× 103Jmol−1

373.15K
= 108.80JK−1mol−1

3 ∆subS = ∆fusS +∆vapS

4 Per Sn(white)→ Sn(grey), ∆trsH=2.09kJmol−1 a T = 286.0K (p=1.0 atm)

∆trsS =
∆trsH

Ttrs
=

2.09× 103Jmol−1

286.0K
= 7.3077JK−1mol−1
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Il gas perfetto

espansione isoterma reversibile da V1 a V2 > V1

wrev = −
∫ V2

V1
pdV = −nRT ln

(
V2
V1

)
= −qrev

∆S = qrev
T = nR ln

(
V2
V1

)
processo (T1,V1) → (T2,V2)

dqrev = dU + pdV = nCV ,mdT + nRT
V dV

Per un processo finito:

∆S =

∫ B

A

dqrev
T

=

∫ T2

T1

nCV ,mdT

T
+

∫ V2

V1

nR

V
dV

= nCV ,m ln

(
T2

T1

)
+ nR ln

(
V2

V1

)
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Il gas perfetto

esempio

Una mole di H2(g) è scaldata da T1=300K a T2=1000K a volume
costante. Il gas può essere trattato come ideale usando
Cp,m(JK

−1mol−1)=27.28︸ ︷︷ ︸
a

+3.26× 10−3︸ ︷︷ ︸
b

(T/K)+5.0× 104︸ ︷︷ ︸
c

(T/K)−2.

Calcolare ∆Sm.

Se V = const., ∆Sm =
∫ T2=1000K
T1=300K (Cp,m − R)dTT :

∆Sm =

∫ T2

T1

a− R + bT + cT−2

T
dT = (a− R) ln

(
T2

T1

)
+ b(T2 − T1)

− c

2

(
1

T 2
2

− 1

T 2
1

)
= 25.369JK−1mol−1
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Il gas perfetto

entropia di mescolamento di due gas ideali diversi a p e T costanti

Immaginiamo un processo reversibile costituito da due stadi:

espansione isoterma reversibile del gas 1 (V1 → V1 + V2):

∆S1 = n1R ln
(

V1+V2

V1

)
espansione isoterma reversibile del gas 2 (V2 → V1 + V2):

∆S2 = n2R ln
(

V1+V2

V2

)
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Il gas perfetto

entropia di mescolamento di due gas ideali a p e T costanti

x1 =
n1

n1+n2
= V1

V1+V2
, x2 =

n2
n1+n2

= V2
V1+V2

∆mixS = ∆S1 +∆S2 = −(n1 + n2)R [x1 ln x1 + x2 ln x2]

Per n gas alle stesse T e p: ∆mixS = −(
∑n

i=1 ni )R (
∑n

i=1 xi ln xi )

Se non alla stessa p: ∆mixS = n1R ln
(
V1+V2
V1

)
+ n2R ln

(
V1+V2
V2

)
Dr. Daniele Toffoli (DSCF, UniTS) II e III principio 53 / 112



Calcolo dei cambi entropici

Calcolo dei cambi entropici
Soluzioni ideali

La stessa relazione vale per soluzioni ideali di due componenti A e B
stesse interazioni tra componenti: A–A, A–B, e B–B

esempio

1 L di una soluzione 0.100M di sostanza A è aggiunta a 3.00 L di una
soluzione 0.050M della sostanza B. Assumendo comportamento ideale
della miscela, calcola l’entropia di mescolamento.

∆S(A) = nAR ln
(
VA+VB

VA

)
=

0.100mol × 8.314JK−1mol−1 ln
(
(1.00+3.00)L

1.00L

)
= 1.153JK−1

∆S(B) = nBR ln
(
VA+VB

VB

)
=

(0.050M × 3.00L)× 8.314JK−1mol−1 ln
(
(1.00+3.00)L

3.00L

)
= 0.359JK−1

∆S = ∆S(A) + ∆S(B) = (1.153 + 0.359)JK−1 = 1.511JK−1
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Calcolo di ∆S per il riscaldamento di sostanze pure

Cp e ∆trsH misurabili per via calorimetrica

S(Tf ) = S(0)+

∫ Tfus

0

Cp(s)

T
dT+

∆fusH

Tfus︸ ︷︷ ︸
∆fusS

+

∫ Tb

Tfus

Cp(l)

T
dT+

∆vapH

Tvap︸ ︷︷ ︸
∆vapS

+

∫ Tf

Tb

Cp(g)

T
dT

a basse T , Cp = aT 3 =⇒S(T ) = S(0) + 1
3Cp(T )

andamento di
Cp
T

con T grafico di S (entropia assoluta) vs T
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

Calcolare il ∆S quando 1 mole di ghiaccio è riscaldata da 250K a
300K, usando i seguenti dati: Cp,m[H2O(l)]=75.3JK−1mol−1,
Cp,m[H2O(s)]=37.7JK−1mol−1, ∆fusH=6.02kJmol−1

∆S =

∫ T=273.15K

T=250K

Cp,m[H2O(s)]dT

T
+

∆fusH

Tfus
+

∫ T=300K

T=273.15K

Cp,m[H2O(l)]dT

T

= Cp,m[H2O(s)] ln

(
273.15K

250K

)
+

6.02× 103Jmol−1

273.15K

+ Cp,m[H2O(l)] ln

(
300K

273.15K

)
= 32.438JK−1
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

Due moli di H2O(l) a 50.0 ◦C sono poste in un frigorifero mantenuto
a T=5◦C. Se Cp,m[H2O(l)]=75.3JK−1mol−1 indipendente da T
calcola il ∆S per il raffreddamento dell’ H2O(l) a T=5◦C. Calcola
anche il ∆Sfridge e il ∆Stot.

Per il raffreddamento dell’ H2O(l):

∆SH2O = nCp,m

∫ Tf

Ti

dT

T
= nCp,m ln

(
Tf

Ti

)
= −22.583JK−1

q assorbito dal frigorifero: qrev = −nCp,m(Tf − Ti ) = 6777J

∆Sfridge =
qrev

Tfridge
= 6777J

278.15K = 24.365JK−1

∆Stot = ∆SH2O +∆Sfridge = (−22.583 + 24.365)JK−1 = 1.781JK−1
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

Una mole di H2O(l) sottoraffreddata a T =-10.0 ◦C e p=1.0 atm
viene convertita in ghiaccio. Calcola ∆Ssys e ∆Ssurr ed il cambio
netto di entropia.

Il processo non è reversibile, e dobbiamo considerare il seguente ciclo:

ciclo per il calcolo di ∆S per il processo H2O(l, T=-10◦C)→ H2O(s, T=-10◦C)
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

∆Ssys = ∆S1 +∆S2 +∆S3:

∆Ssys =

∫ T=273.15K

T=263.15K

Cp,m[H2O(l)]dT

T
− ∆fusH

Tfus
+

∫ T=263.15K

T=273.15K

Cp,m[H2O(s)]dT

T

= Cp,m[H2O(l)] ln

(
273.15K

263.15K

)
+

6.02× 103Jmol−1

273.15K

+ Cp,m[H2O(s)] ln

(
263.15K

273.15K

)
= −20.636JK−1
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

q scambiato (reversibilmente) con l’ambiente:

qrev = −Cp,m[H2O(l)](10◦C ) + ∆fusH − Cp,m[H2O(s)](−10◦C )

= 5644Jmol−1

∆Ssurr =
qrev
Tsurr

= 5644Jmol−1

263.15K =21.448JK−1

∆Stot = ∆Ssys +∆Ssurr=0.811JK−1

∆Stot aumenta (processo spontaneo)
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

Una mole di H2O(s) a -10 ◦C è posta in una stanza a T=10◦C. Calcola il
∆Ssys, ∆Ssurr e il ∆Stot.

∆Stot = ∆Ssys +∆Ssurr

∆Ssys =

∫ Tfus

Ti

Cp,m[H2O(s)]dT

T
+

∆fusH

Tfus
+

∫ Tf

Tfus

Cp,m[H2O(l)]dT

T

= Cp,m[H2O(s)] ln

(
Tfus

Ti

)
+

∆fusH

Tfus
+ Cp,m[H2O(l)] ln

(
Tf

Tfus

)
= 26.167JK−1
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

∆Ssurr =
qsurr
Tsurr

qsurr = −Cp,m[H2O(s)] (Tfus − Ti )−∆fusH − Cp,m[H2O(l)] (Tf − Tfus)

= −7154Jmol−1

∆Ssurr =
−7154J
283.15K=-25.266 JK−1

∆Stot=0.901JK−1 (processo spontaneo)
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

esempio

In un recipiente termicamente isolato contenente 5 kg di acqua
liquida a 30◦C e p = 1 atm viene introdotto 1 kg di ghiaccio a
−10◦C. Il ghiaccio fonde completamente. Calcolare ∆Stot usando i
seguenti dati: Cp[H2O(l)]=18 calK−1mol−1,Cp[H2O(s)]=9
calK−1mol−1, ∆fusH(273K)=1440 cal mol−1.

Prendiamo come sistema il ghiaccio e come ambiente H2O(l).

Consideriamo i seguenti 4 stadi:

H2O (s, 263 K)
∆S1−→ H2O(s, 273 K)

H2O (s, 273 K)
∆S2−→ H2O(l, 273 K)

H2O (l, 273 K)
∆S3−→ H2O(l, Tf )

H2O (l, 303 K)
∆S4−→ H2O(l, Tf )
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

calcolo di Tf

q1 =
∫ 273
263 Cp[H2O(s)]dT = Cp[H2O(s)]∆T =

1000
18 × 9× (273− 263)=5 kcal

q2 = ∆fusH(273K)=1000
18 × 1440=80 kcal

q3 =
∫ Tf

273 Cp[H2O(l)]dT = Cp[H2O(l)]∆T =
1000
18 × 18× (Tf − 273) = (Tf − 273) kcal

q4 =
∫ Tf

303 Cp[H2O(l)]dT = Cp[H2O(l)]∆T =
5000
18 × 18× (Tf − 303) = (5Tf − 1515) kcal

q1 + q2 + q3 = −q4 =⇒ 5 + 80 + Tf − 273 = −5Tf + 1515

=⇒ Tf=284 K
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Calcolo dei cambi entropici

Calcolo dei cambi entropici
Solidi e liquidi

calcolo di ∆Stot

∆S1 =
∫ 273
263

Cp [H2O(s)]
T dT = 1000×9

18 ln 273
263=18.6 cal K−1

∆S2 =
∆fusH
T = 1000×1440

18×273 =293 cal K−1

∆S3 =
∫ 284
273

Cp [H2O(l)]
T dT = 1000×18

18 ln 284
273= 39.5 cal K−1

∆Sice=351.1 cal K−1

∆SH2O(l)=∆S4 =
∫ 284
303

Cp [H2O(l)]
T dT = 5000×18

18 ln 284
303=-323.8 cal K−1

∆Stot=351.1-323.8=27.3 cal K−1
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Terza legge della termodinamica

1 Seconda legge della termodinamica

2 Entropia

3 Calcolo dei cambi entropici

4 Terza legge della termodinamica

5 Funzioni di stato ausiliarie
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Terza legge della termodinamica

Terza legge della termodinamica
Intepretazione microscopica dell’ entropia

S = kB ln (W (Ē )∆E )− ϕ(V ,N1,N2, . . .)

kB : costante di Boltzmann (kB=1.381× 10−23JK−1)
W (Ē ): densità degli stati all’energia totale Ē
∆E : fluttuazione di E attorno a Ē
W (Ē )∆E : numero di stati accessibili al sistema alla data T
ϕ(V ,N1,N2, . . .): funzione arbitraria degli argomenti

continuo di livelli energetici di un sistema macroscopico funzione di distribuzione di probabilità di energia
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Terza legge della termodinamica

Terza legge della termodinamica
Intepretazione microscopica dell’ entropia

formula di Boltzmann

S = kB ln (W (Ē )∆E )− ϕ(V ,N1,N2, . . .)

S è una misura logaritmica del numero di stati accessibili alla data E
(W (E )∆E ).

S è una proprietà estensiva=⇒ kB ln [W (E )∆E ] ∝ O(N )

∆E ∝
√
O(N )

∆E contribuisce a S nell’ ordine lnO(N) ≪ N per N → ∞
W (E )∆E ∝ exp(O(N)) ≈ exp 1023 → molto grande.
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Terza legge della termodinamica

Terza legge della termodinamica
Teorema del calore di Nernst

criogenia: approccio allo 0 K

Cambiamenti isotermi di stato termodinamico

reazione chimica o processo fisico (fusione, transizione di struttura
cristallina, . . .)
sia ∆ST il cambio entropico associato

Gli stati iniziali e finali sono stati di equilibrio interno

anche metastabile

In principio il processo può essere condotto reversibilmente

T molto basse → solidi (tranne He)

Dr. Daniele Toffoli (DSCF, UniTS) II e III principio 69 / 112



Terza legge della termodinamica

Terza legge della termodinamica
Teorema del calore di Nernst

esempi di processi considerati

Reazione chimica: Pb(s) + S(s) −−→ PbS (s)

Cambiamento di struttura cristallina: S(mon) −−→ S(rhom)

Compressione isoterma: NH4I(p1) −−→ NH4I(p2)

Teorema del calore di Nernst

Quando la temperatura T alla quale avvengono questi processi isotermi si
avvicina allo 0 K, cos̀ı anche il corrispondente cambio entropico, ∆ST , si
annulla:

lim
T→0

∆ST = 0
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Terza legge della termodinamica

Terza legge della termodinamica
Teorema del calore di Nernst

esempio di processo reversibile: Pb(s) + S(s) −−→ PbS(s)

processo 1:
1 Riscaldare (o raffreddare) reversibilmente i reagenti da T1 a T2,

soluzione di ∆HT = T∆ST ).
2 Fare avvenire la reazione reversibilmente a T2

3 Raffreddare (o riscaldare) reversibilmente i prodotti da T2 a T1.

processo 2:
1 A fissato T = T1, esiste una p alla quale ∆HT (p) = T∆ST (p)
2 Comprimere (o espandere) reversibilmente e isotermicamente i reagenti

a T1 fino a p.
3 Fare avvenire la reazione reversibilmente a p e T1.
4 Espandere (o comprimere) reversibilmente e isotermicamente i prodotti

alla p iniziale
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Terza legge della termodinamica

Terza legge della termodinamica
Teorema del calore di Nernst

conseguenze del teorema

Le entropie degli stati iniziali e finali diventano uguali a T = 0 K

per stati in equilibrio interno

Ponendo S(T = 0K) = S0 per uno stato di un sistema a T=0 K,
S(T = 0K) = S0 per tutti gli stati connessi in principio da un
processo reversibile

Convenzione della termodinamica S0 = 0

entropie del III principio (o assolute)
consistente con la convenzione ϕ(V ,N1,N2, . . . ,Ni ) = 0 della
termodinamica statistica

Questa scelta è applicata separatamente a sostanze che non possono
essere convertite una nell’altra
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Terza legge della termodinamica

Terza legge della termodinamica
enunciato del terzo principio

Le entropie di tutte le sostanze in completo equilibrio interno sono zero a
T=0 K per convenzione

Entropie assolute (S > 0 per T > 0)

Entropie standard, S◦, si riferiscono a sostanze nel rispettivo stato
standard

Per una data reazione chimica:

∆S◦ =
∑

S◦(prod)−
∑

S◦(react.) =
∑
j

νjS
◦(j)
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Terza legge della termodinamica

Terza legge della termodinamica
enunciato del terzo principio
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Terza legge della termodinamica

Terza legge della termodinamica
interpretazione microscopica

Da dati sperimentali possiamo derivare S(T ) per qualsiasi sostanza

Dalla definizione di Boltzmann S(U) = k ln [W (U)∆E ] possiamo
calcolare S(T )

convenzione S0 = 0 consistente con ϕ = 0

Predizioni della termodinamica statistica si accordano con stime
termodinamiche classiche

discrepanze correlate a stati non perfettamente ordinati a 0K

La termodinamica statistica dà una interpretazione microscopica della
terza legge

Effetti quantomeccanici si manifestano a basse T
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Terza legge della termodinamica

Terza legge della termodinamica
interpretazione microscopica

S(U) = kB ln[W (U)∆E ] con ∆E → sub-estensiva.

W (E )∆E ≈ exp(1023)

W (E ) = (∆E )−1 exp(S(E )/kB)

Vicino a E0 (energia del ground-state), W (E0) ≈ quantità
sub-estensiva:

lim
E→E0

(
S

N

)
= 0
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Terza legge della termodinamica

Terza legge della termodinamica
interpretazione microscopica

esempio: modello di Einstein del cristallo armonico

N indipendenti oscillatori armonici di frequenza comune ν

livello degenerazione

E0 =
1
2Nhν g0 = 1 tutti gli oscillatori nel ground-state

E1 =
1
2(N + 2)hν g1 = N 1 oscillatore con un quanto di exc.

E2 =
1
2(N + 4)hν g2 =

1
2N(N − 1) + N 2 osc. con 1 quanto di exc. o 1 osc. con 2

quanti di exc.
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Terza legge della termodinamica

Terza legge della termodinamica
interpretazione microscopica

esempio: modello di Einstein del cristallo armonico

(a) sparsità degli stati vicino a E0 (b) modello di Einstein
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Terza legge della termodinamica

Terza legge della termodinamica
interpretazione microscopica

entropie residue Stheor −∆Sexpt

H2O: Stheor −∆Sexpt=0.82 cal mol−1K−1

N2O: Stheor −∆Sexpt=1.14 cal mol−1K−1

CO: Stheor −∆Sexpt=1.11 cal mol−1K−1

Per CO e N2O: degenerazione del ground-state del cristallo

2 possibili orientazioni =⇒ 2N stati ad energie simili
S = kBN ln 2 = R ln 2=1.38 cal mol−1K−1
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Funzioni di stato ausiliarie

1 Seconda legge della termodinamica

2 Entropia

3 Calcolo dei cambi entropici

4 Terza legge della termodinamica

5 Funzioni di stato ausiliarie
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Criteri di spontaneità ed equilibrio

processi naturali e reversibili

In un sistema isolato dS tot ≥ 0

dS tot = 0: processi reversibili
dS tot > 0: processi spontanei (irreversibili)

All’ equilibrio, S tot ha raggiunto il valore massimo

sistema + ambiente = sistema adiabatico

condizione di equilibrio: dS tot = dS sys + dS surr = 0
qualsiasi processo porta a dS tot < 0 (non spontaneo)

È conveniente trovare un criterio basato solo sulle variabili del sistema
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Criteri di spontaneità ed equilibrio

processi naturali e reversibili

Se ambiente e sistema sono alla stessa T : T sys = T surr

Sia dq la quantità di calore scambiata a T :

processo infinitesimo (reversibile o spontaneo)
dqsys = −dqsurr

dqsurrirrev = dqsurrrev = dUsurr

Dal II principio: dS surr = dqsurr

T surr = −dqsys

T sys

dS tot = dS sys − dqsys

T sys ≥ 0

Infine:
TdS − dq ≥ 0

Condizione di spontaneità ed equilibrio che fa riferimento solo alle
variabili termodinamiche del sistema
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Criteri di spontaneità ed equilibrio

processi a T e p costanti: energia libera di Gibbs

Per processi a p costante, dq = dqp = dH (solo lavoro pV)

Energia libera di Gibbs: G = H − TS

funzione termodinamica di stato: dG è un differenziale esatto
proprietà estensiva
Se T è costante: dG = dH − TdS

(dG )T ,p ≤ 0

processo reversibile: (dG )T ,p = 0
processo spontaneo: (dG )T ,p < 0
in un processo spontaneo a T e p costanti, il sistema si muove verso
uno stato di minima G
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Criteri di spontaneità ed equilibrio

processi a T e V costanti: energia libera di Helmholtz

Per processi a V costante, dq = dqV = dU (solo lavoro pV)

Energia libera di Helmholtz: A = U − TS

funzione termodinamica di stato: dA è un differenziale esatto
proprietà estensiva
Se T è costante: dA = dU − TdS

(dA)T ,V ≤ 0

processo reversibile: (dA)T ,V = 0
processo spontaneo: (dA)T ,V < 0
In un processo spontaneo a T e V costanti, il sistema si muove verso
uno stato di minima A
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Esempio

H2O(l) a T =100◦C è in equilibrio con H2O(g) alla pressione p = 1.00
atm. Se ∆vapH(100◦C)=40.60 kJmol−1, calcolare ∆G e ∆S .

Per la condizione di equilibrio, ∆G = 0

∆S =
∆vapH

T = 40.60×103Jmol−1

373.15K =108.803 JK−1mol−1
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Esempio

Se H2O(l) a T =100◦C è in contatto con H2O(v) alla pressione p = 0.9
atm, calcolare ∆G e ∆S per il processo H2O(l) → H2O(g)

Per il processo H2O(g, p=1.00 atm) → H2O(g, p=0.9 atm),

∆S = R ln
(
p1
p2

)
=8.314 JK−1mol−1 × ln 1.00atm

0.9atm =0.876 JK−1mol−1

Consideriamo il processo come somma due processi consecutivi:

H2O(l) → H2O(g, p=1.00 atm) ∆S=108.803 JK−1mol−1

H2O(g, p=1,00 atm) → H2O(g, p=0.9 atm) ∆S=0.876 JK−1mol−1

H2O(l) → H2O(g, p=0.9 atm) ∆S=109.68 JK−1mol−1

∆G = ∆H − T∆S=40.60×103Jmol−1 -373.15 K× 109.68

JK−1mol−1=-0.326 kJmol−1

Il processo di vaporizzazione è spontaneo
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs standard di formazione

energia libera di Gibbs molare standard di formazione di un composto (∆f G
◦)

∆G per la reazione di formazione del composto nel suo stato
standard a partire dagli elementi nei rispettivi stati di riferimento

stato standard di una sostanza: sostanza pura alla p di 1.00 bar

alla T di interesse (di solito 25.0 ◦C)

stato di riferimento degli elementi: forma più stabile alla p di 1.00 bar

eccetto P (fosforo bianco, forma più riproducibile, non la più stabile)
∆f G

◦ = 0 (es. C(s,graphite)−→C(s,graphite))

∆f G
◦[CH4,(g)]: ∆G della reazione C(s,graphite)+2H2(g)−→ CH4(g)

Composti esoergonici: ∆f G
◦ < 0

Composti endoergonici: ∆f G
◦ > 0

la maggior parte dei composti sono esoergonici
più stabili degli elementi costituenti
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs standard di formazione
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs standard di reazione

∆rG◦ da valori di ∆f G
◦

Si usa la legge di Hess:

∆rG
◦ =

∑
∆f G

◦(prod.)−
∑

∆f G
◦(react.) =

∑
j

νj∆f G
◦(j)

νj : coefficienti stechiometrici con segno
∆f G

◦(j): energia di Gibbs di formazione del composto j

Reazioni esoergoniche: ∆rG
◦ < 0

Reazioni endoergoniche: ∆rG
◦ > 0
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs standard di reazione

esempio

Calcolare ∆rG
◦ per la reazione N2(g)+3H2(g) −→ 2NH3(g), sapendo

che ∆f G
◦[NH3(g)]=-16.45 kJ mol−1 a T =298K.

Dato che ∆f G
◦[N2(g)] = ∆f G

◦[H2(g)] = 0,
∆rG

◦ = 2∆f G
◦[NH3(g)]=2×-16.45 kJ mol−1=-32.90 kJ mol−1

esempio

Calcolare ∆rG
◦ per la reazione H2(g)+

1
2O2(g) −→ H2O(l), dai dati

riportati in Tabella:

∆fH
◦(kcal mol−1) ∆f G

◦(kcal mol−1) S◦ (cal K−1mol−1)

H2(g) 0.0 0.0 31.21
O2(g) 0.0 0.0 49.00
H2O(l) -68.32 -56.69 16.72
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs standard di reazione

esempio

Dai ∆f G
◦ tabulati, ∆rG

◦ = ∆f G
◦[H2O(l)] =-56.69kcal mol−1

Usando la relazione ∆rG
◦ = ∆rH

◦ − T∆rS
◦:

∆rH
◦ = ∆fH

◦[H2O(l)]=-68.32kcal mol−1

∆rS
◦ = S◦[H2O(l)]− 1

2S
◦[O2(g)]− S◦[H2(g)] =

(16.72− 1
2 × 49.00− 31.21)cal K−1mol−1=-39.00 cal K−1mol−1

∆rG
◦ = −68.32kcal mol−1-(298 K)× (-39.00×10−3kcal

K−1mol−1)=-56.69 kcal mol−1
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs standard di reazione

esempio

Calcolare ∆rG
◦ per Ag(s)+ 1

2Hg2Cl2(s) −→ AgCl(s)+Hg(l), dai dati
riportati in Tabella:

∆fH
◦(kcal mol−1) ∆f G

◦(kcal mol−1) S◦ (cal K−1mol−1)
Ag(s) 0.0 0.0 10.21
Hg2Cl2(s) -63.32 -50.35 46.8
AgCl(s) -30.36 -26.22 22.97
Hg(l) 0.0 0.0 18.5

∆rG
◦ = ∆f G

◦[AgCl(s)]− 1
2∆f G

◦[Hg2Cl2(s)] =-1.045kcal mol−1

Usando ∆rG
◦ = ∆rH

◦ − T∆rS
◦:

∆rH
◦ =1.30 kcal mol−1

∆rS
◦ =7.86 cal K−1mol−1

∆rG
◦ =-1.0423kcal mol−1
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs e lavoro

espansione isoterma reversibile di un gas ideale

∆U = ∆H = 0

wrev = −nRT ln V2
V1

< 0 se V2 > V1

qrev = −wrev = nRT ln V2
V1

∆S = qrev
T = nR ln V2

V1

∆G = ∆H − T∆S = wrev < 0 se V2 > V1

−∆G = −wrev

−∆G eguaglia il lavoro fatto dal sistema

Dr. Daniele Toffoli (DSCF, UniTS) II e III principio 93 / 112



Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Gibbs e lavoro

processi a p e T costante

wtot = wpV + wnon-pV

wpV: dovuto ad un ∆V durante il processo
wnon-pV: lavoro di altra natura (osmotico, elettrico, magnetico, . . .)

G = H − TS = U + pV − TS

Per un processo infinitesimo (T e p costanti):

(dG )T ,p = dwpV + dwnon-pV︸ ︷︷ ︸
dwtot

+dqP + pdV − TdS

= dwnon-pV + dqP − TdS

dS ≥ dqP
T =⇒ −(dG )T ,p ≥ −dwnon-pV

Processo reversibile: − (dG )T ,p = −dwnon-pV

−(∆G )T ,p rappresenta il massimo wnon-pV fatto dal sistema in un
processo spontaneo a p e T costanti
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Energia libera di Helmholtz

processi a V e T costante

A = U − TS

Per un processo infinitesimo (T costante):

(dA)T = dwpV + dwnon-pV︸ ︷︷ ︸
dwtot

+dq − TdS

= dwtot + dq − TdS

dS ≥ dq
T =⇒ −(dA)T ≥ −dwtot

Processo reversibile: − (dA)T = −dwtot

−(∆A)T rappresenta il wtot massimo ottenibile dal sistema in un
processo spontaneo a T costante (A: funzione lavoro)
-(dA)T ,V = −dwnon-pV

−(∆A)T ,V rappresenta il massimo wnon-pV fatto dal sistema in un
processo spontaneo a V e T costanti
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Relazioni di Maxwell per un sistema chiuso

Consideriamo un processo infinitesimo, che coinvolge solo lavoro pV

energia interna, U

dU = dq + dw = TdS − pdV =⇒ U = U(S ,V )

dU =
(
∂U
∂S

)
V
dS +

(
∂U
∂V

)
S
dV

T =
(
∂U
∂S

)
V

p = −
(
∂U
∂V

)
S

entalpia, H

dH = dU + pdV + Vdp = TdS + Vdp =⇒ H = H(S , p)

dH =
(
∂H
∂S

)
p
dS +

(
∂H
∂p

)
S
dp

T =
(
∂H
∂S

)
p

V =
(

∂H
∂p

)
S
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Relazioni di Maxwell per un sistema chiuso

Consideriamo un processo infinitesimo, che coinvolge solo lavoro pV

energia libera di Helmholtz, A

dA = dU − TdS − SdT = −SdT − pdV =⇒ A = A(T ,V )

dA =
(
∂A
∂T

)
V
dT +

(
∂A
∂V

)
T
dV

S = −
(
∂A
∂T

)
V

p = −
(
∂A
∂V

)
T

energia libera di Gibbs, G

dG = dH − TdS − SdT = Vdp − SdT =⇒ G = G (T , p)

dG =
(
∂G
∂T

)
p
dT +

(
∂G
∂p

)
T
dp

S = −
(
∂G
∂T

)
p

V =
(

∂G
∂p

)
T
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Relazioni di Maxwell per un sistema chiuso

dU, dH, dA, dG sono differenziali esatti

relazioni di Maxwell(
∂T
∂V

)
S
= −

(
∂p
∂S

)
V

(dU = TdS − pdV )(
∂T
∂p

)
S
=
(
∂V
∂S

)
p
(dH = TdS + Vdp)(

∂S
∂V

)
T
=
(

∂p
∂T

)
V

(dA = −pdV − SdT )

−
(
∂S
∂p

)
T
=
(
∂V
∂T

)
p
(dG = Vdp − SdT )
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Equazioni termodinamiche di stato

Espressioni in cui U e H sono scritte come funzioni delle variabili
macroscopiche p, V , e T .

(
∂U

∂V

)
T

=

(
∂(A+ TS)

∂V

)
T

=

(
∂A

∂V

)
T

+ T

(
∂S

∂V

)
T

= −p + T

(
∂p

∂T

)
V

(
∂H

∂p

)
T

=

(
∂(G + TS)

∂p

)
T

=

(
∂G

∂p

)
T

+ T

(
∂S

∂p

)
T

= V − T

(
∂V

∂T

)
p
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Equazioni termodinamiche di stato

applicazione: coefficiente di Joule-Thompson, µ

µ =
(
∂T
∂p

)
H
= −

(
∂H
∂p

)
T

( ∂H
∂T )p

= −
(

∂H
∂p

)
T

Cp

µ = 1
Cp

[
T
(
∂V
∂T

)
p
− V

]
= V

Cp
(αT − 1)

α = 1
V

(
∂V
∂T

)
p
: espansività termica

Gas ideale: µ = 0

T di inversione di Joule-Thompson: µ = 0 =⇒ T = α−1
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Equazioni termodinamiche di stato

applicazione: equazione di van der Waals, (p + a
V 2
m
)(Vm − b) = RT

πT =
(
∂U
∂V

)
T
= −p + T

(
∂p
∂T

)
V(

∂p
∂T

)
V
= R

Vm−b = 1
T

(
p + a

V 2
m

)
πT = a

V 2
m
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Variazione di G con la pressione

equazione generale

Da Vm =
(
∂Gm
∂p

)
T
=⇒ dGm = Vmdp (T costante)∫ Gm,f

Gm,i
dGm =

∫ pf
pi

Vmdp =⇒ Gm(pf ,T ) = Gm(pi ,T ) +
∫ pf
pi

Vmdp

Vm(g) >> Vm(l) ∼ Vm(s)
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Variazione di G con la pressione

liquidi e solidi

Scarsamente comprimibili:

in buona approx. Vm indipendente da p

Gm(pf ,T ) = Gm(pi ,T ) + Vm (pf − pi )︸ ︷︷ ︸
∆p
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Variazione di G con la pressione

gas perfetti

dGm = Vdp = RT dp
p a T costante∫

dGm = RT
∫ dp

p + c =⇒ Gm = RT ln p + c

c = G 0
m − RT ln p0

G 0
m: energia di Gibbs molare standard (p=p0=1.00 bar)

Gm(p,T ) = G 0
m(T ) + RT ln

(
p

p0

)
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Variazione di G con la pressione

potenziale chimico di un gas perfetto

Per una sostanza pura G (p,T ) = nGm(p,T )

Potenziale chimico, µ: µ =
(
∂G
∂n

)
T ,p

= Gm

coincide con la Gm (solo per sostanze pure)
nello stato standard, µ0 = G 0

m

µ(p,T ) = µ0(T ) + RT ln
(

p
p0

)
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Variazione di G con la pressione

gas reali: fugacità

Stessa forma funzionale, opportunamente modificata:

Gm(p,T ) = G 0
m(T ) + RT ln

(
f

p0

)
f : fugacità ([f ]=Pa), ingloba le deviazioni dal comportamento ideale

stato standard: stato ipotetico del gas a fugacità unitaria, che si
comporta idealmente

Dr. Daniele Toffoli (DSCF, UniTS) II e III principio 106 / 112



Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Variazione di G con la pressione

gas reali: coefficiente di fugacità

Definiamo f = pϕ con ϕ coefficiente di fugacità

limp→0 ϕ = 1

µ(p,T ) = µ0(T ) + RT ln

(
p

p0

)
︸ ︷︷ ︸

contributo ideale

+RT lnϕ

Il coefficiente di fugacità viene determinato da dati accurati p–V –T
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Funzioni di stato ausiliarie

Funzioni di stato ausiliarie
Variazione di G con la pressione

determinazione del coefficiente di fugacità

Dalla dG = Vmdp a T costante:

Gm(p2,T ) = Gm(p1,T ) + RT ln

(
p2
p1

)
+

∫ p2

p1

(
Vm − RT

p

)
dp

= Gm(p1,T ) + RT ln

(
p2
p1

)
+ RT

∫ p2

p1

(
Z − 1

p

)
dp

ln
(
ϕ2
ϕ1

)
=
∫ p2
p1

(
Z−1
p

)
dp

Z−1
p = B ′(T ) + C ′(T )p + . . .

per p1 → 0 ln (ϕ) =
∫ p
0

(
Z−1
p′

)
dp′ = B ′(T )p + C ′(T )

2 p2 + . . .
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Funzioni di stato ausiliarie
Variazione di G con la pressione

ln (ϕ) =
∫ p
0

(
Z−1
p′

)
dp′

Forze attrattive dominanti (basse p): ϕ < 1

fattore di compressione Z < 1

Forze repulsive dominanti (alte p): ϕ > 1

fattore di compressione Z > 1
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Funzioni di stato ausiliarie
coefficiente di fugacità

esempio

L’O2 a p non troppo elevate obbedisce all’equazione di stato
p(Vm − b) = RT , con b = 0.0211dm3mol−1. Calcolare:

1 La fugacità di O2(g) a T = 298.15K e p = 1.00bar

RT ln

(
f

p

)
=

∫ p

0
(Vm − RT

p
)dp = bp

f = exp
(

bp
RT

)
= exp

(
0.0211×10−3m3mol−1×1.0×105Pa

8.3145JK−1mol−1×298.15K

)
= 1.0009 bar

2 La pressione alla quale f = 1.00 bar

Dalla p = fe−
bp
RT ∼ f (1− bp

RT ) =⇒ p = RT
RT+b per f = 1.000

p = 0.99914 bar
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Funzioni di stato ausiliarie
Variazione di G con la temperatura

equazione generale(
∂Gm
∂T

)
p
= −Sm (p costante)

Sm(g) > Sm(l) > Sm(s)

Gm diminuisce all’aumentare della T (più marcata per i gas)

Gm = Gm(p,T ) variazione di Gm(α) con la T
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Funzioni di stato ausiliarie
Variazione di G con la temperatura

equazione di Gibbs-Helmholtz(
∂Gm
∂T

)
p
= −Sm =⇒

(
∂∆Gm
∂T

)
p
= −∆Sm

∆S = ∆H−∆G
T

Usando la relazione ∂
∂T

(
∆G
T

)
= 1

T

[(
∂∆G
∂T

)
− ∆G

T

]
:[

∂

∂T

(
∆G

T

)]
p

= −∆H

T 2

In condizioni standard:
[

∂
∂T

(
∆G◦

T

)]
p
= −∆H◦

T 2
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