

Few things about...

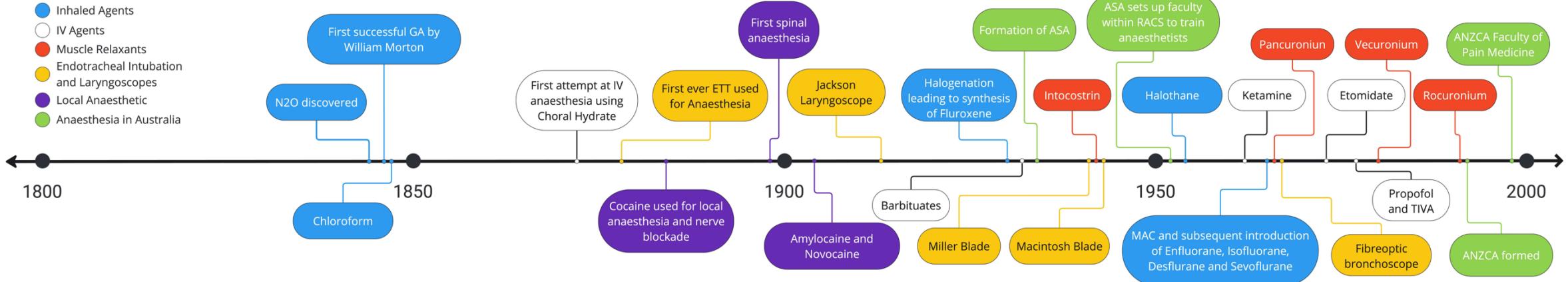
1. Puntualità, 9:15 --> 10:45. 10 min pausa
2. Presenze, solo all'inizio, qr code numerico dinamico
3. NO Slides
4. NO Pre appello
5. Iscrizione all'esame solo su ESSe3
6. Le date di appello non modificabili
7. Contatti

documento
Anesthesia
riservato

Prof. Erik Roman-Pognuz MD, PhD
Prof. Roman-Pognuz
University of Trieste

What is Anesthesia?

- Temporary, **controlled** and **reversible** depression of sensation ± consciousness
- Targets (“triad”): **hypnosis**, **analgesia**, **akinesia** (± autonomic control)
- Achieved with **single** or **combined** techniques (balanced anesthesia)
- Always paired with **physiological monitoring** and **support**



A Short History

- 1846: Morton's public ether demo; rapid global adoption
- Chloroform era → toxicity lessons → safer agents
- Introduction of muscle relaxants (curare) & opioids
- Modern era: halogenated volatiles, propofol, regional anesthesia, ultrasound, safety culture

documento
riservato
Prof. Roman-Pognuzzi

From Ether to Balanced Anesthesia (1846–1980s)

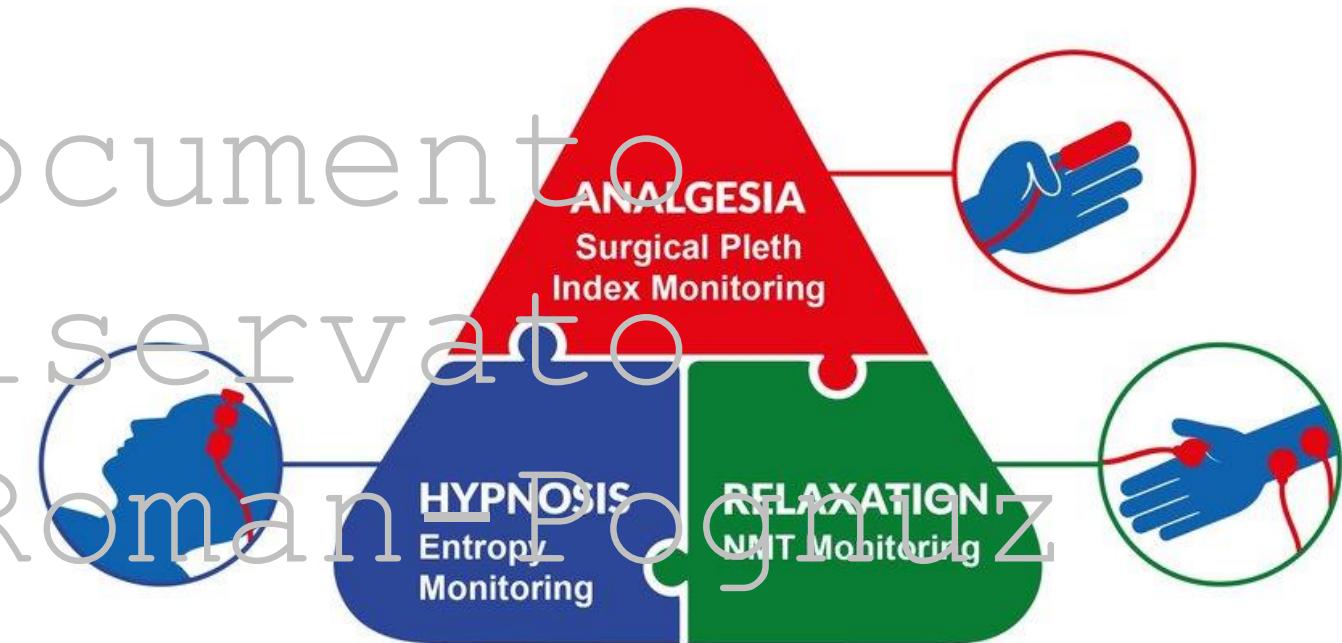
- 1846 Ether (Morton): first public surgical anesthesia → surgery becomes planned, humane
- 1847 Chloroform (Simpson): potent but toxic → early safety lessons
- 1884–1898 Local & Spinal: cocaine nerve blocks; Bier's spinal → anesthesia without unconsciousness
- 1900–1930s Airway & Machines: Magill intubation; Boyle machine → controlled delivery & ventilation
- 1934 Thiopental: reliable IV induction
- 1942 Curare: true muscle relaxation independent of depth → enables “balanced” anesthesia
- 1950s–70s Volatiles & Opioids: halothane → isoflurane; fentanyl family → smoother maintenance, better control

Monitoring, Safety, and Precision (1980s–Today)

Prof

- Safety Monitoring: pulse oximetry + capnography become standards; ASA/Harvard guidelines → major mortality drop
- 1986 Propofol: rapid-on/off, antiemetic → cornerstone of TIVA and fast recovery
- Depth & Neuromuscular Monitoring: processed EEG (BIS/PSI), TOF → titration to effect, fewer complications
- Ultrasound Guided Regional: visualized nerves, fewer failures/complications → wider adoption of blocks
- Perioperative Medicine: ERAS, multimodal analgesia, opioid-sparing pathways
- Precision Delivery: target-controlled infusions, advanced hemodynamics, POCUS, checklists, emerging AI/closed-loop systems

The Four Pillars of Modern Anesthesia



1. Hypnosis (loss of awareness)
2. Analgesia (blunting nociception)
3. Muscle relaxation (surgical conditions)
4. Autonomic stability (control of reflexes & stress response)

Delivered via balanced or TIVA
strategies

Triad of general anaesthesia

perioperative monitoring

Hypnosis (Loss of awareness & amnesia)

Goal: suppress cortical/thalamocortical connectivity → no awareness/recall

- Main agents: propofol (fast on/off), sevo/des/iso (volatiles), etomidate (CV stability), ketamine* (NMDA)
- Dosing approach: titrate to effect; reduce doses in frail/elderly/hypovolemic patients
- Monitoring: clinical signs + processed EEG (BIS/PSI target ~40–60 in GA); MAC 0.8–1.2 for volatiles
- Common pitfalls: hypotension (propofol/volatiles), delayed emergence, awareness if under-dosed
- Rescue: treat cause—fluids/vasopressors for BP, adjust depth, check infusion/rate/line patency
- Note: Ketamine preserves airway reflexes & BP; pair with midazolam if dysphoria is a concern.
- Delivery context: hypnosis via balanced anesthesia (volatile or IV) or TIVA (propofol ± adjuncts)

HYPN○-ANESTHESIA

REDISCOVERING THE POWER OF THE MIND TO ELIMINATE PAIN

Antonio Jaimez

Analgesia (blunting nociception & stress response)

Physiology/target: block peripheral/central transmission and spinal wind-up.

- Main levers: opioids (fentanyl/remifentanil), multimodal (acetaminophen, NSAIDs, ketamine low-dose, lidocaine infusion, dexmedetomidine), regional/neuraxial blocks.
- Monitoring/proxies: hemodynamic responses (HR/BP), surgical pleth index, NOL index (if available), patient report post-op.
- Endpoint: minimal autonomic responses to surgical stimulus; low post-op pain scores with opioid sparing.
- Pitfalls: respiratory depression (opioids), bleeding/renal risk (NSAIDs).
- Rescue: titrate short-acting opioid (remi), add regional, non-opioids, adjust volatile

Muscle relaxation (optimal surgical conditions, immobility)

Physiology/target: neuromuscular junction blockade.

- Main levers: depolarizing (succinylcholine) for rapid sequence; non-depolarizing (rocuronium, cisatracurium) for maintenance.
- Monitoring: quantitative TOF (ulnar nerve/adductor pollicis); aim TOF 1–2 twitches intraop when needed.
- Endpoint: still field; no diaphragmatic/bucking during critical steps.
- Pitfalls: residual paralysis → airway risk.
- Reversal: sugammadex (for aminosteroids) or neostigmine + anticholinergic; extubate only if TOF ratio ≥ 0.9 (ideally ≥ 1.0).

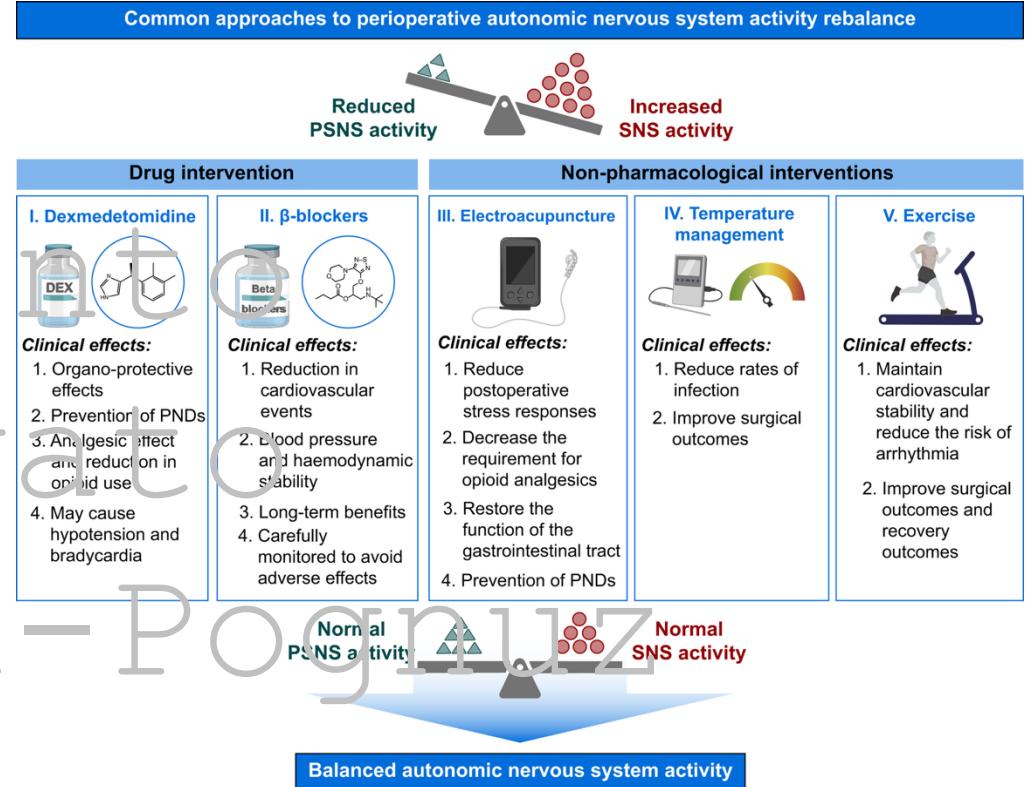
Quantitative TOF Monitoring — Ulnar Nerve / Adductor Pollicis

Why quantitative? Objective block assessment; visual “fade” is unreliable.

- **Site & muscle:** Stimulate **ulnar nerve at the wrist**; measure **adductor pollicis** (thumb).
- **Device:** Acceleromyography or EMG preferred.
- **Calibration:** Establish baseline (TOF ratio ≈ 1.0), ensure **supramaximal current**, good electrode contact.
- **Conditions:** Maintain **normothermia**, avoid arm compression/edema; secure hand/accelerometer.
- **Protocol:** Deliver **Train-of-Four (TOF) = 4** stimuli at **2 Hz** (every 0.5 s), repeat every **12–20 s**.
- **When to use PTC:** If TOF = 0/4 and you need depth info, use **post-tetanic count** (profound block).
- **Onset vs recovery:** Facial nerve/orbicularis oculi tracks **laryngeal onset**; **adductor pollicis best for recovery** decisions.

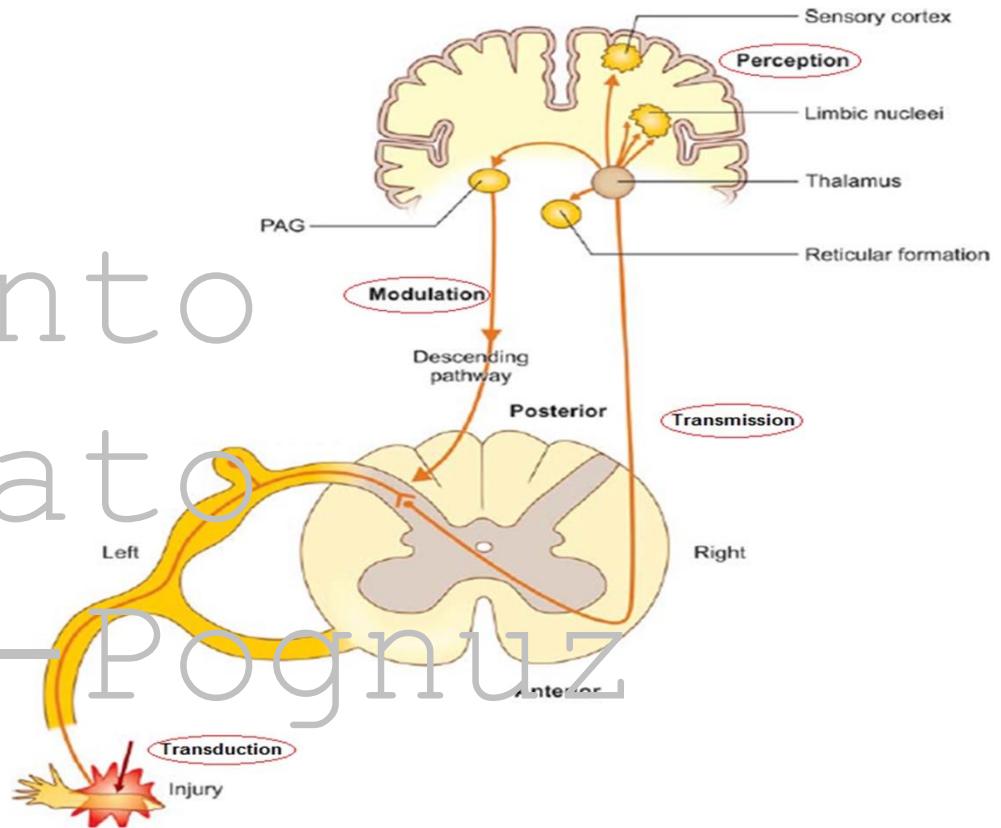
Targets, Interpretation & Actions (Aim: TOF 1-2 Twitches Intraop)

- Induction/intubation: Target TOF 0/4 (consider PTC 1–2 for profound block).
- Intraoperative relaxation: Aim TOF 1–2/4 twitches when paralysis is required; titrate to surgical need.
- Recovery/extubation: Require TOF ratio ≥ 0.9 (ideally ≥ 1.0) plus clinical readiness (ventilation, airway reflexes).
- Pitfalls: Hypothermia, poor electrodes, tucked arms; drug interactions (e.g. magnesium, aminoglycosides); residual block risk.


Actions.

- Inadequate relaxation → check TOF, then top up NMBA judiciously.
- Excess block → hold dosing, ventilate, plan reversal.
- Reversal: Sugammadex for aminosteroids (dose by depth/TOF/PTC) or neostigmine 0.04–0.07 mg/kg + glycopyrrolate.

Autonomic stability (control of reflexes & stress response)


Physiology/target: temper sympathetic/parasympathetic swings;
maintain perfusion.

- Main levers: adequate depth/analgesia; vasopressors (phenylephrine, norepinephrine), anticholinergics, beta-blockers; regional techniques reduce afferent input.
- Monitoring: continuous ECG, NIBP/arterial line, EtCO₂, temperature; consider advanced CO/PPV/echo in high-risk cases.
- Endpoint: MAP within target (often ≥ 65 mmHg; individualized), stable HR, normocapnia, normothermia.
- Pitfalls: hypotension from volatiles/propofol or high neuraxial; hypertension/tachycardia from inadequate analgesia.
- Rescue: treat cause first (depth/analgesia/fluids), then vasoactive drugs.

Nociception Pathway: From Stimulus to Perception

- **Transduction (periphery):** Nociceptors (free endings) convert thermal/mechanical/chemical stimuli via **TRPV1/2**, **ASICs**, **Nav channels**.
- **Primary afferents:**
 - **A δ fibers** (thin, myelinated) \rightarrow **fast, sharp pain**.
 - **C fibers** (unmyelinated) \rightarrow **slow, burning/aching pain**.
- **First synapse (spinal cord):** Dorsal horn laminae I/II (substantia gelatinosa) & V.
 - Neurotransmitters: **glutamate** (AMPA/NMDA), **substance P**, **CGRP**.
- **Ascending tracts:**
 - **Spinothalamic (lateral):** location/intensity (\rightarrow **thalamus VPL/VPM** \rightarrow **S1/S2**).
 - **Spinoreticular/spinomesencephalic:** arousal/affect (\rightarrow **insula**, **ACC**, **amygdala**).
- **Perception (brain):** Sensory-discriminative (**S1/S2**), affective-motivational (**ACC/insula**), cognitive-evaluative (**PFC**).

Pain \neq nociception alone—cortical networks shape what the patient “feels.”

Modulation, Sensitization & Where Anesthetics Act

Prof Roman Pogatzki

- **Segmental modulation (spinal “gate”):**
 - Inhibitory interneurons (**GABA, glycine, enkephalins**) dampen input in dorsal horn.
- **Descending control: PAG → RVM → dorsolateral funiculus;** transmit **5-HT, NE (α2)**, endogenous opioids.
 - Can be **inhibitory or facilitatory** (context-, stress-, and disease-dependent).
- **Peripheral sensitization:** Inflammatory soup (**PGE₂, bradykinin, histamine, TNF-α/IL-1, NGF**) lowers nociceptor thresholds → **primary hyperalgesia**.
- **Central sensitization (“wind-up”):** Repetitive C-fiber input → **NMDA activation, Ca²⁺ influx, microglial BDNF/cytokines, disinhibition** → **secondary hyperalgesia/allodynia**.
- **Therapeutic targets (multimodal):**
 - **Peripheral:** **NSAIDs/COX-2, steroids (↓inflammation); local anesthetics block Nav.**
 - **Spinal:** **Epidural/spinal LA, opioids (μ pre/post-synaptic), α2-agonists (dex/clonidine), ketamine(NMDA), Mg²⁺ (NMDA), gabapentinoids (α2δ Ca²⁺).**
 - **Supraspinal: Propofol/volatiles (↑GABAergic tone), acetaminophen (central), opioids.**
- **Clinical implications:** Prevent/treat sensitization with **pre-emptive and multimodal analgesia**; watch for **opioid-induced hyperalgesia** in high-dose remifentanil contexts.

Spinal gate (Control theory)

A functional inhibitory “checkpoint” in the dorsal horn of the spinal cord (mainly **lamina II, substantia gelatinosa**) that regulates how much nociceptive (A δ /C) input is allowed to reach projection neurons (lamina I/V “wide-dynamic-range” cells) and ascend to the brain.

How it works (circuit logic)

- **Closes the gate (↓ pain transmission):** Low-threshold A β touch fibers activate **inhibitory interneurons** (GABA, glycine, enkephalin) → **pre-synaptic inhibition** of A δ /C terminals (↓ glutamate/Substance P release) and **post-synaptic inhibition** of projection neurons (hyperpolarization).
- **Opens the gate (↑ pain transmission):** Strong or persistent A δ /C **nociceptive activity** and **descending facilitatory signals** suppress these inhibitory interneurons → more excitatory drive to projection neurons.

Modulators

- **Descending inhibitory pathways** (PAG → RVM; **noradrenergic α_2 , serotonergic**) help **close** the gate.
- **Inflammation/central sensitization** (NMDA activation, microglial BDNF/cytokines, disinhibition) tend to **open** it → hyperalgesia/allodynia.
- **Clinical corollaries**
- Rubbing the skin/TENS activates A β input → **closes** the gate (less pain).
- **Spinal/epidural local anesthetics, spinal opioids, α_2 -agonists** enhance dorsal horn inhibition → close the gate.
- **Neuropathic pain** often reflects **gate failure** (loss of inhibition/disinhibition).

DRUGS

documento
riservato

Prof Roman-Pognuz

Hypnotics (Part 1: Mechanisms & Dosing)

Prof. Roman-Pogonuz

- Mechanisms
 - **Propofol:** ↑GABA_A → cortical/thalamic depression (rapid on/off)
 - **Etomidate:** ↑GABA_A; minimal CV depression
 - **Ketamine:** **NMDA antagonism** → dissociative anesthesia; analgesic at low dose
- Adult IV dosing (typical)
 - Propofol: induction 1.5–2.5 mg/kg; maintenance 50–200 µg/kg/min
 - Etomidate: induction 0.2–0.3 mg/kg (bolus; avoid prolonged infusions)
 - Ketamine: induction 1–2 mg/kg; analgesic 0.1–0.3 mg/kg bolus → 0.1–0.4 mg/kg/h
- Adjuncts
 - Lidocaine (reduce propofol injection pain); midazolam with ketamine to limit dysphoria
- Titrate to effect
 - Reduce doses in **elderly, frail, hypovolemic**, or with severe valvular/cardiac disease

Hypnotics (Part 2: Effects, Use Cases, Pitfalls, Monitoring)

- **Physiologic effects**
 - **Propofol:** ↓SVR/contractility → **hypotension**; respiratory depression; antiemetic
 - **Etomidate:** hemodynamic stability; **myoclonus**; transient **adrenal suppression**
 - **Ketamine:** ↑BP/HR, bronchodilation; preserves airway reflexes/resp drive; salivation; emergence phenomena
- **Use cases**
 - **Propofol:** TIVA, neuro (↓CMRO₂/CBF), day surgery
 - **Etomidate:** tenuous **cardiac function**, shock
 - **Ketamine:** trauma/hypovolemia, bronchospasm, opioid-sparing
- **Pitfalls & monitoring**
 - Treat hypotension (fluids/vasopressors), capnography for hypoventilation
 - **Context-sensitive half-time:** propofol short (good for TIVA); ketamine intermediate; etomidate for bolus use
 - Depth: clinical signs + **processed EEG** (BIS/PSI target ~40–60 in GA)

Opioids

(Part 1: Mechanism, Agents, Dosing, Kinetics)

- **Mechanism:** μ -receptor agonists \rightarrow \downarrow nociceptive transmission (spinal & supraspinal)
- **Key agents & adult dosing**
 - **Fentanyl:** bolus 1–2 μ g/kg; infusion 1–5 μ g/kg/h
 - **Remifentanil:** 0.05–0.2 μ g/kg/min (T_{1/2} ~1–6 ng/mL); **ultra-short** (esterase metabolism)
 - (PACU context: **Morphine** 0.05–0.1 mg/kg, **Hydromorphone** 0.01–0.02 mg/kg)
- **Pharmacokinetics**
 - **Remifentanil:** context half-time \sim 3–5 min (constant even after long infusions)
 - **Fentanyl:** context half-time **increases** with duration (tissue accumulation)
- **Role intraop:** Blunt stress response (HR/BP), allow lower hypnotic/volatile dose

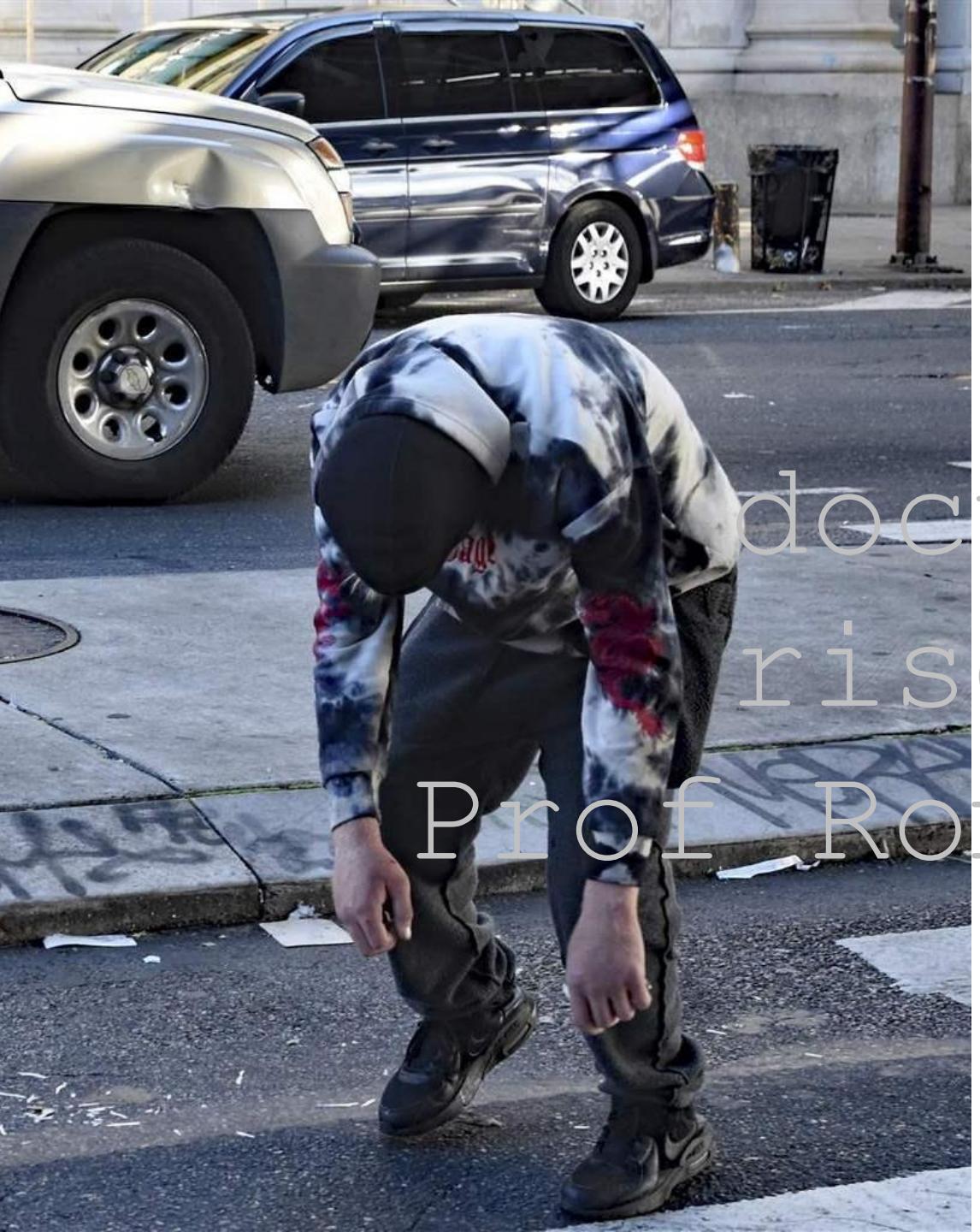
Order from strongest to weakest

- Fentanyl _____
- Buprenorphine _____
- Levorphanol _____
- Oxymorphone _____
- Hydromorphone _____
- Phenazocine _____
- Methadone _____
- Oxycodeone _____
- Morphine _____
- Hydrocodone _____
- Tapentadol _____
- Dihydrocodeine _____
- Tramadol _____

Potent

Fentanyl (clinical essentials)

Class & mechanism: synthetic μ -opioid receptor agonist; 50–100 \times morphine potency \rightarrow profound analgesia, rapid CNS penetration.


- **Formulations (medical):** IV bolus/infusion, transdermal patch (chronic pain), transmucosal (breakthrough cancer pain).
- **Typical intra-op dosing (adults):** bolus 1–2 μ g/kg; infusion 1–5 μ g/kg/h (titrate to effect).
- **PK/PD pearls:** very **lipophilic** \rightarrow fast onset; redistribution determines offset after bolus; **context-sensitive half-time increases** with long infusions (plan emergence accordingly).

Pros: potent analgesia; blunts sympathetic responses; hemodynamically stable at modest doses.

Adverse effects: respiratory depression, chest wall rigidity (rapid/high dose), bradycardia, pruritus, **FO&NV**.

- **Interactions/risks:** synergy with sedatives/hypnotics; caution in OSA/obesity; naloxone reverses but may require infusion for renarcotization.
- **Contrast with remifentanil:** remi has **ultrashort, infusion-independent** context half-time (~3–5 min) \rightarrow exquisite moment-to-moment control but **no residual analgesia** (plan postop meds).

Why fentanyl dominates the U.S. drug crisis

- **Extreme potency → easy trafficking:** micro-doses deliver effects; **tiny shipments** supply large markets; **low cost to produce** synthetically (vs. plant opioids). **Fentanyl ≈100× morphine; ≈50× heroin** (analgesic potency). [DEA](#)
- **Counterfeit pill & contamination market:** illicitly manufactured fentanyls (IMFs) are **pressed to look like oxycodone/benzodiazepines**; also **mixed into heroin, cocaine, meth**, driving unintentional exposure. [DEA+1](#)
- **Sheer scale of supply:** >60 million fentanyl-laced fake pills and ~8,000 lb powder seized by DEA in 2024 (≈380 million “potentially lethal doses”). [DEA](#)
- **Overdose toll (recent):** ~105k U.S. overdose deaths in 2023; ~76% involved opioids. About 70% of 2023 overdose deaths involved IMFs. (Provisional 2024 data show a **decline**, but levels remain very high.) [CDC+2](#)[CDC+2](#)
- **Why people keep using despite risk:** high **reinforcement** (potency), **unpredictable dose** in illicit pills/powders, **tolerance** & withdrawal cycles; barriers to treatment access. [National Institute on Drug Abuse](#)

Public-health responses (what works):

- **MOUD** (buprenorphine/methadone), **naloxone** distribution, **fentanyl test strips**, safer-supply strategies, and **settlement-funded** prevention/recovery—expansions linked with recent mortality improvements but require sustained investment

Opioids (Part 2): Effects, Risks, Reversal, Pearls)

- **Adverse effects**
 - **Respiratory depression**, chest wall rigidity (rapid/high dose), bradycardia
 - **PONV**, pruritus; **opioid-induced hyperalgesia (OIH)** with high-dose remifentanil
- **Reversal & mitigation**
 - **Naloxone** 20–40 μ g IV increments; consider infusion to prevent renarcotization
 - **Multimodal analgesia** (acetaminophen, NSAIDs/COX-2, ketamine, lidocaine, dexmedetomidine, regional)
- **Clinical pearls**
 - **Remifentanil**: superb moment-to-moment control but **no residual analgesia** → plan PACU/ward analgesia
 - **Fentanyl/Hydromorphone**: useful when some **postop** analgesia is desired
 - Reduce opioid load in **OSA/elderly**; anticipate PONV prophylaxis per risk (e.g., Apfel)

NMBAs

(Part 1: Classes, Dosing, Indications, Contra)

Purpose: paralysis for intubation/surgical conditions (not hypnosis/analgesia)

- **Depolarizing**

- **Succinylcholine 1–1.5 mg/kg** (onset 30–60 s; duration 5–10 min)
- Pros: fastest RSI; Cons: $\uparrow K^+$ 0.5–1.0 mEq/L, myalgia, masseter spasm, $\uparrow IOP/ICP$, **MH trigger**
- **Contraindications:** burns/SCI/denervation/immobilization ≥ 24 –48 h, neuromuscular disease (e.g., Duchenne), hyperkalemia, pseudocholinesterase deficiency

- **Non-depolarizing (NDMRs)**

- **Rocuronium: 0.6–1.0 mg/kg (RSI 1.2 mg/kg)**; 30–60 min; biliary/renal; **sugammadex** reversible
- **Cisatracurium: 0.1–0.2 mg/kg; Hofmann/ester** (organ-independent) \rightarrow good in renal/hepatic failure

- **Indications**

- Tracheal intubation, abdominal/thoracic/laparoscopic surgery, motionless field for microsurgery

Rapid Revision

Neuromuscular Blockers

Neuromuscular blocking agents (NMBAs) are a class of drugs used primarily in anesthesia to **induce muscle relaxation**, facilitating procedures such as **endotracheal intubation**, **surgery**, or **mechanical ventilation**.

NON-DEPOLARIZING

Act as competitive antagonists at nicotinic acetylcholine receptors (nAChRs). A common side effect is hypotension, typically due to histamine release.

Atracurium

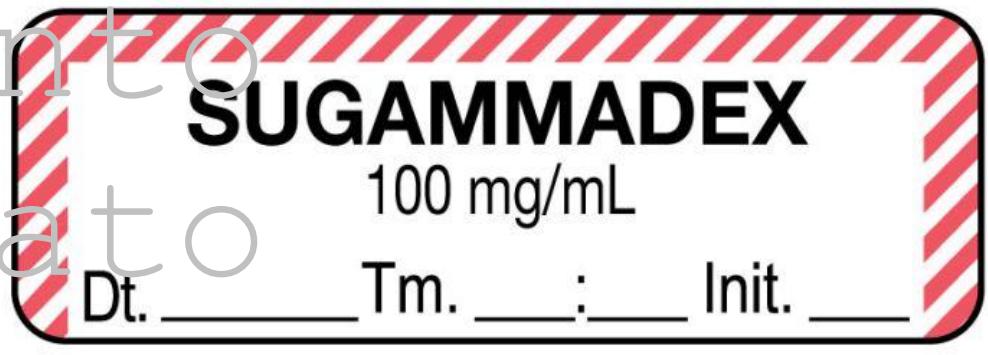
Vecuronium

Pancuronium

Rocuronium

Tubocurarine

DEPOLARIZING



Depolarizes the sarcolemma of the skeletal muscle fiber. Persistent depolarization makes the muscle fiber resistant to further stimulation by ACh. Adverse effects include hyperkalemia, malignant hyperthermia, and muscle pain.

Succinylcholine

NMBAs (Part 2: Monitoring, Targets, Reversal, Pitfalls)

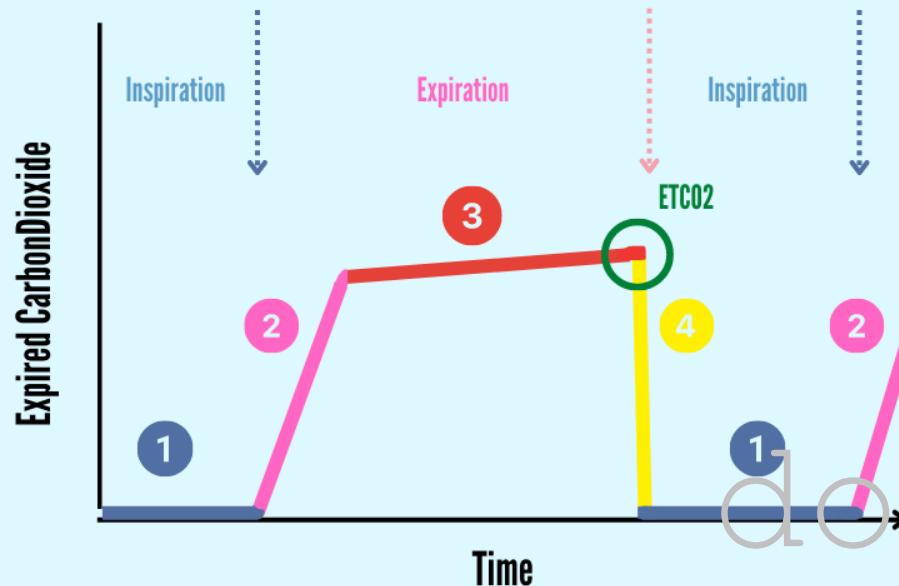
- Monitoring
 - Quantitative TOF (ulnar/adductor pollicis): when relaxation needed, aim TCF 1–2/4 twitches
 - Extubation only if TOF ratio ≥ 0.9 (ideally ≥ 1.0)
- Reversal
 - Sugammadex (for rocuronium/vecuronium):
 - 2 mg/kg (TOF 2/4), 4 mg/kg (deep block PTC 1–2), 16 mg/kg (immediate reversal/RSI)
 - Neostigmine 0.04–0.07 mg/kg + glycopyrrolate (when TOF $\geq 2/4$) for others
- Interactions & pitfalls
 - Potentiation: Mg^{2+} , aminoglycosides, CCBs, hypothermia, acidosis, myasthenia
 - Residual paralysis \rightarrow airway risk; anaphylaxis (rare; more reports with rocuronium)
- Strategy
 - Choose agent by **speed, organ function, need for rapid reversal**
 - Dose by **objective TOF**, not clock time; pair paralysis with adequate **hypnosis/analgesia** to prevent awareness

Monitoring

documento

riservato

Prof Roman-Pognuz


Monitoring Standards (ASA/International)

- **Basic:** ECG, NIBP, SpO₂, EtCO₂, temperature
- **Ventilation:** capnography mandatory with airway devices
- **Depth:** clinical signs ± processed EEG (BIS/PSI)
- **Neuromuscular:** TOF for NMBAs
- **Advanced:** A-line, central access, cardiac output, ultrasound

“You can’t manage what you don’t monitor.”

Basic Monitoring (ASA/International Standards)

- **Core aims:** continuous evaluation of **oxygenation, ventilation, circulation, temperature** during anesthesia.
What you put on every patient under GA (and most under RA/sedation):
- **ECG** (lead II for rhythm; add **V5** for ischemia).
 - Watch for ST-trends, QRS widening (electrolytes), arrhythmias during induction/emergence.
- **NIBP** (q 3–5 min) or invasive BP if indicated.
 - Trends > single numbers; check cuff size/position (too small → falsely high).
- **SpO₂ (pulse oximetry)**
 - Reads oxygenation, not ventilation. Pleth waveform helps detect hypoperfusion/vasoconstriction.
 - Artifacts: motion, dyes (methylene blue), poor perfusion, ambient light.
- **EtCO₂ (capnography)** — see next slide for depth; mandatory with advanced airways.
- **Temperature** (core when GA/long cases): esophageal, nasopharyngeal, bladder, rectal, or tympanic-membrane probes.
 - Aim **normothermia**; active warming (forced-air, warmed fluids). Hypothermia → coagulopathy, delayed recovery, shivering.

Ventilation Monitoring: Capnography (Mandatory with Airway Devices)

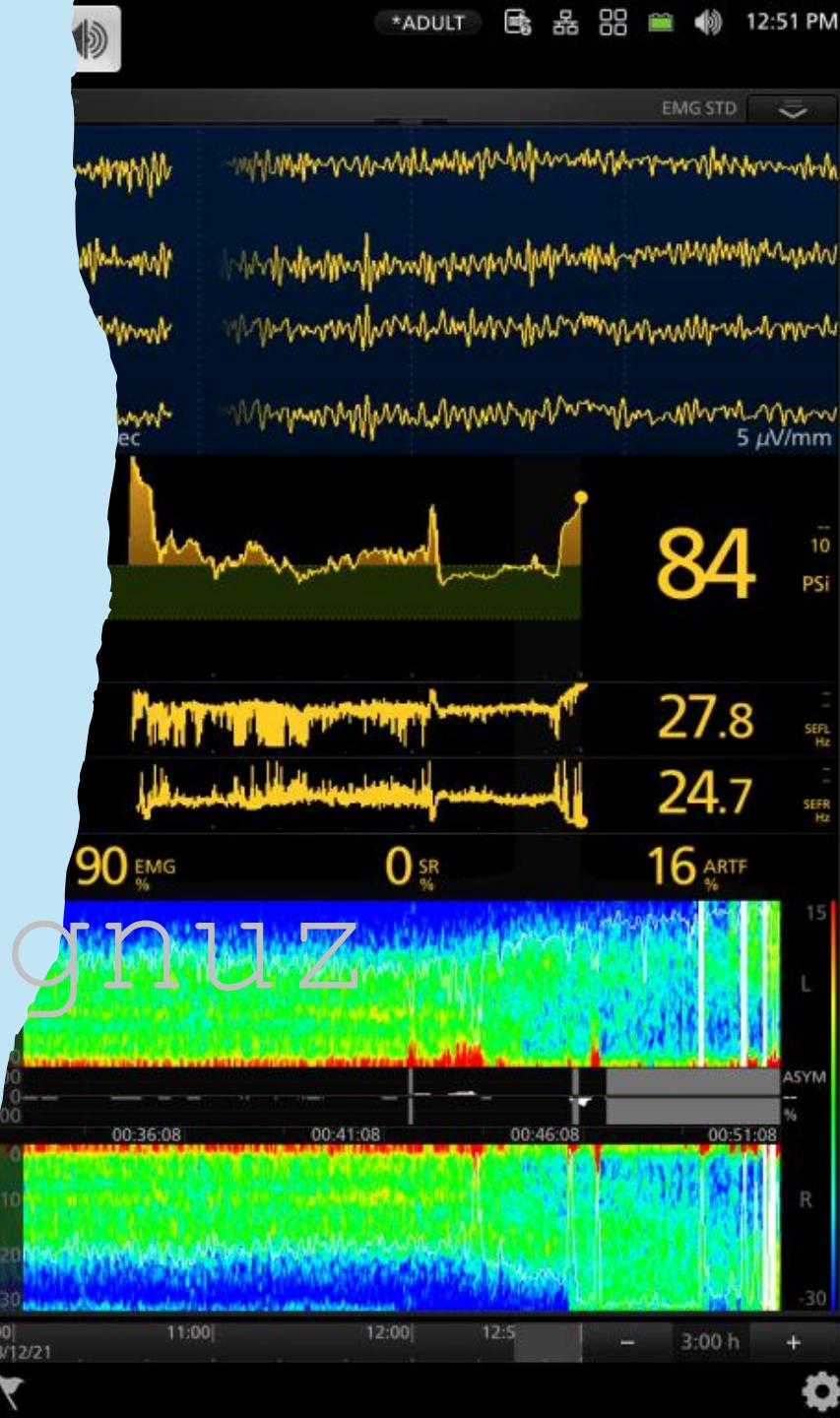
What it measures: Exhaled CO₂ concentration vs time → confirms ventilation and airway integrity.
Normal values: EtCO₂ ~ 35–45 mmHg; typically 2–5 mmHg lower than PaCO₂ (V/Q effects).

- **Waveform anatomy (use it diagnostically):**
- **Phase I (baseline):** inspired CO₂ ≈ 0.
- **Phase II (upstroke):** mixing of dead space + alveolar gas.
- **Phase III (plateau):** alveolar emptying (slope ↑ with V/Q mismatch).
- **Phase IV (downstroke):** inspiration starts.

Key patterns & causes:

- **Sudden loss to zero** → circuit disconnect, apnea, esophageal intubation, cardiac arrest.
- **Progressive rise** → hypoventilation, CO₂ absorption (laparoscopy), malignant hypermetabolism.
- **Low EtCO₂** → hyperventilation, pulmonary embolism, low cardiac output.
- **Elevated inspiratory CO₂ / “shark fin”** → rebreathing (faulty valve, exhausted soda lime) / bronchospasm.
- **Curare cleft** on plateau → spontaneous breaths/insufficient paralysis.

Depth of Anesthesia: Clinical Signs ± Processed EEG


Why monitor depth? Avoid **awareness** and **overdose-related hypotension**; tailor to surgical stimulus & patient risk.

Clinical & gas proxies:

- **Volatiles:** monitor **MAC** (age-adjusted); typical maintenance **0.8–1.2 MAC**.
- **Signs:** movement, tearing, tachycardia/HTN (also reflect pain/autonomics). Drugs (beta-blockers) can blunt signs.

Processed EEG (BIS/PSI):

- **Target range in GA:** ~40–60 (device-specific).
- **Benefits:** titration in TIVA/low-gas states; reduces drug use/recovery time in some settings.
- **Limitations/confounders:** EMG activity (tight facial muscles), **ketamine**, N₂O, electrocautery, hypothermia, poor sensor contact.
- **Plain EEG (pattern awareness):**
 - Light anesthesia: high-frequency/low-amplitude;
 - Adequate: delta/spindle dominance;
 - Too deep: burst suppression/isoelectric (avoid unless neuro strategy).

Neuromuscular Monitoring: Quantitative TOF

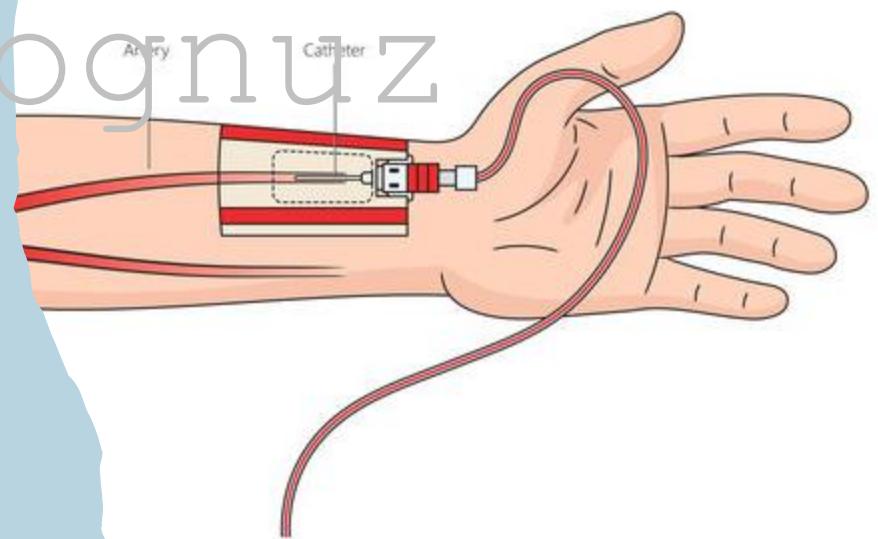
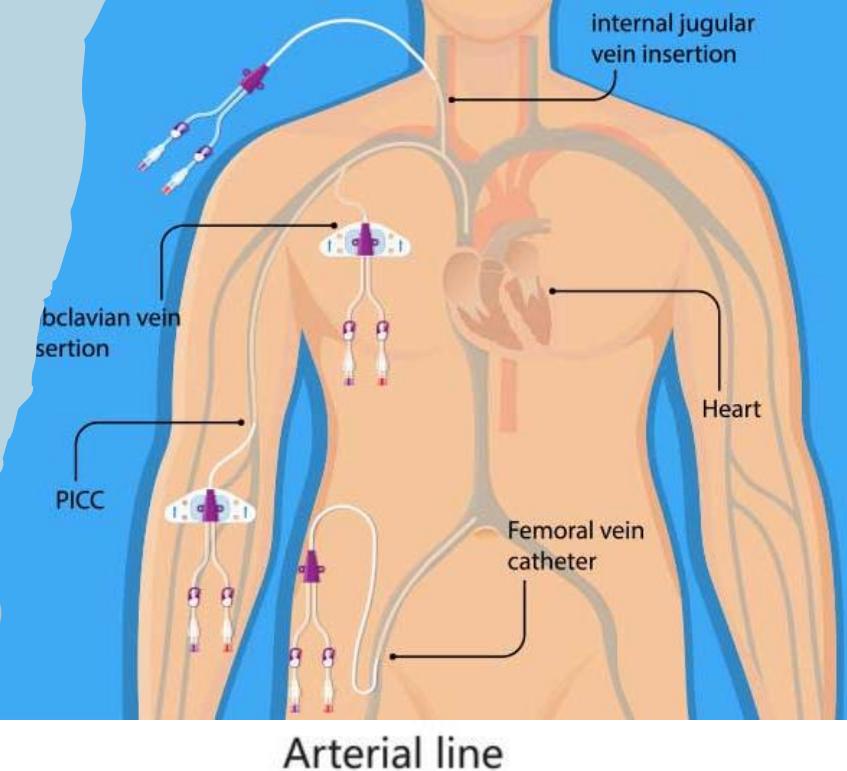
Goal: ensure adequate paralysis when needed and **full reversal** before extubation (patient safety).

How to do it:

- **Site:** **ulnar nerve** at wrist; record at **adductor pollicis** (acceleromyography/EMG preferred).
- **Setup:** baseline calibration (**TOF ratio ≈ 1.0**), **supramaximal current**, good electrode contact, **normothermia**.
- **Protocol:** deliver **Train-of-Four** (4 stimuli at 2 Hz) q **12–20 s**. Use **post-tetanic count (PTC)** if $TOF=0/4$ to gauge deep block.

Targets & decisions:

- **Intubation:** $TOF 0/4$ (or PTC 1–2 if needed).
- **Intraop relaxation:** $TOF 1–2/4$ **twitches** when paralysis is required.
- **Extubation:** TOF ratio ≥ 0.9 (ideally ≥ 1.0) **plus** clinical readiness (ventilation, airway reflexes).
- **Common pitfalls:** residual blockade (airway risk), hypothermia, magnesium/aminoglycosides potentiation, facial nerve for onset vs ulnar for recovery.
- **Reversal:** **Sugammadex** for rocuronium/vecuronium (dose by depth/TOF/PTC); **Neostigmine + glycopyrrolate** when $TOF \geq 2/4$ for other agents.



Arterial Line & Central Venous Access

Arterial line (A-line)

- **Indications:** beat-to-beat BP (major surgery/shock), frequent ABCs, vasoactive drugs.
- **Site & setup:** radial (Allen/Barbeau if needed) → transducer **zeroed, leveled at phlebostatic axis** (4th ICS, mid-axillary).
- **Quality check:** Fast-flush/square-wave test → avoids **over/under-damping** (misleading SBP/PP).
- **Waveform pearls:** dicrotic notch = aortic valve closure; low amplitude = hypotension/over-damping; PP ↑ with vasodilation.
- **Complications (minimize with ultrasound & asepsis):** thrombosis/ischemia, hematoma, infection, nerve injury.
- **Troubleshooting:** check tubing for bubbles/kinks, transducer height, clot in catheter; correlate with NIBP.

Central venous access (CVC)

- **Indications:** vasoactive infusions, limited peripheral access, hemodialysis, frequent blood sampling.
- **Approach:** Ultrasound-guided IJ/subclavian/femoral; full sterile bundle (cap, mask, gown, drape, chlorhexidine).
- **Tip confirmation:** waveform + CXR or **POCUS (saline "swirl")**; ECG-guided methods where available.
- **Complications:** arterial puncture, pneumothorax (subclavian), air embolism, malposition, infection, thrombosis.
- **Prevention:** smallest lumens needed, securement, CHG dressing, daily necessity review, remove early.

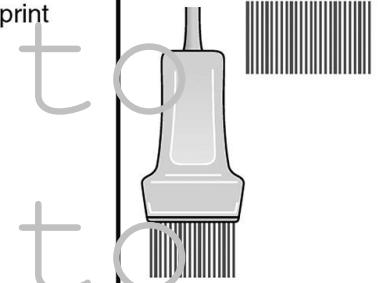
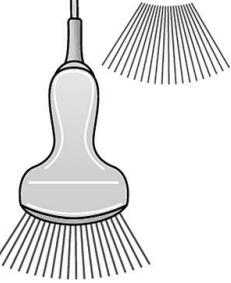
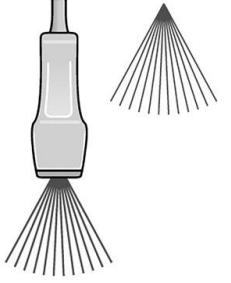
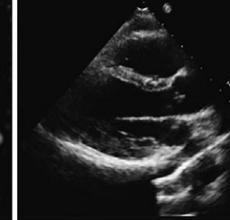
Cardiac Output, Dynamic Indices & Perioperative Ultrasound

document to

ri servato

Prof. Roman - Pognuzzi

← 360 →





Cardiac output (CO) monitoring

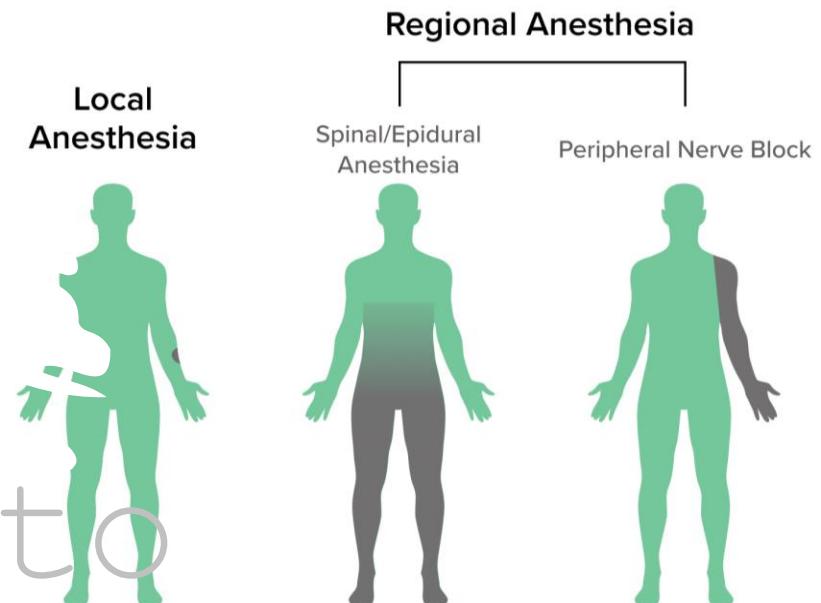
- **Techniques:** pulse-contour analysis (FloTrac/PiCCO/LiDCO), **esophageal Doppler**, **PAC** (thermodilution), TEE/TTE estimates.
- **Use:** trend CO/SV, guide fluids/pressors/inotropes; validate trends against clinical picture & labs.
- **Dynamic preload indices (predict fluid responsiveness)**
- **PPV/SVV** valid only if: **controlled ventilation, regular rhythm, $TV \geq \sim 8 \text{ mL/kg}$, closed chest**, no large inspiratory efforts.
- **Typical cutoffs:** PPV $>12\text{--}13\%$ or SVV $>10\text{--}12\%$ \rightarrow likely fluid responsive (context-dependent).
- **When unreliable:** AF/ectopy, spontaneous breathing, low TV, high PEEP, open chest, severe RV failure.

Perioperative ultrasound (POCUS/TEE/TTE)

- Cardiac: LV/RV size & function, pericardial effusion, LVOT VTI for SV/CO, dynamic LVOT obstruction, tamponade signs.
- Lung: B-lines (edema), consolidation, pleural effusion, pneumothorax (absent sliding/Barcode sign).
- Vascular: IVC size/collapsibility (supportive, not definitive), DVT screening, real-time vascular access.
- Airway & gastric: confirm ETT depth, gastric content/volume to assess aspiration risk.
- Integration: combine CO trends + dynamic indices + POCUS to choose fluids vs vasopressor vs inotrope; reassess after each intervention.

Transducer type	Linear	Curvilinear	Phased array
Frequency range	5–10 MHz	2–5 MHz	1–5 MHz
Imaging depth	9 cm	30 cm	35 cm
Footprint			
Image			
Applications	Arteries/veins Procedures Pleura Skin/soft tissues Musculoskeletal Testicles/hernia Eyes Breast	Gallbladder Liver Kidney Bladder Abdominal aorta Abdominal free fluid Uterus/ovaries	Heart Inferior vena cava Lungs Pleura Abdomen

Classification of Anesthesia

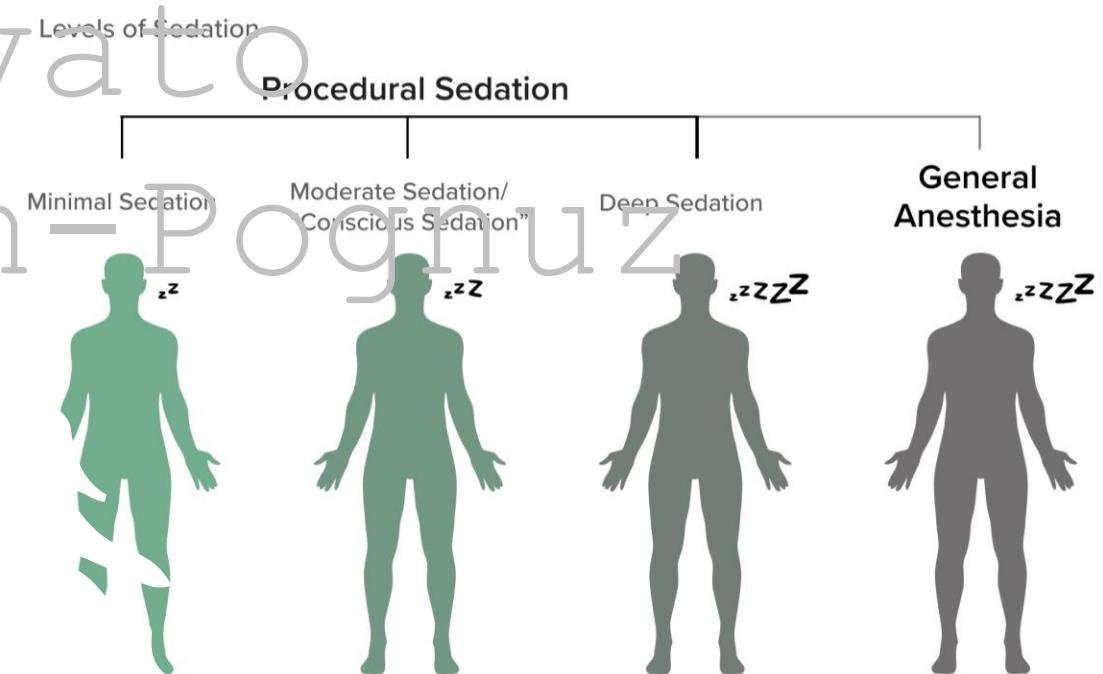

- **General anesthesia (GA)**
- **Regional anesthesia (RA):** neuraxial & peripheral nerve blocks
- **Local anesthesia (infiltration/topical)**
- **Sedation** (minimal → moderate → deep; continuum)

Notes: Same patient may receive combinations (e.g., GA + block).

General Anesthesia: Definition, Safety Checks & Pre-oxygenation

Definition & goals

- Controlled, reversible unconsciousness with amnesia, immobility, analgesia, and autonomic control.
- Delivered as **Balanced GA** (volatile/IV + opioid ± NMBA ± regional) or **1IVA** (propofol + short-acting opioid).

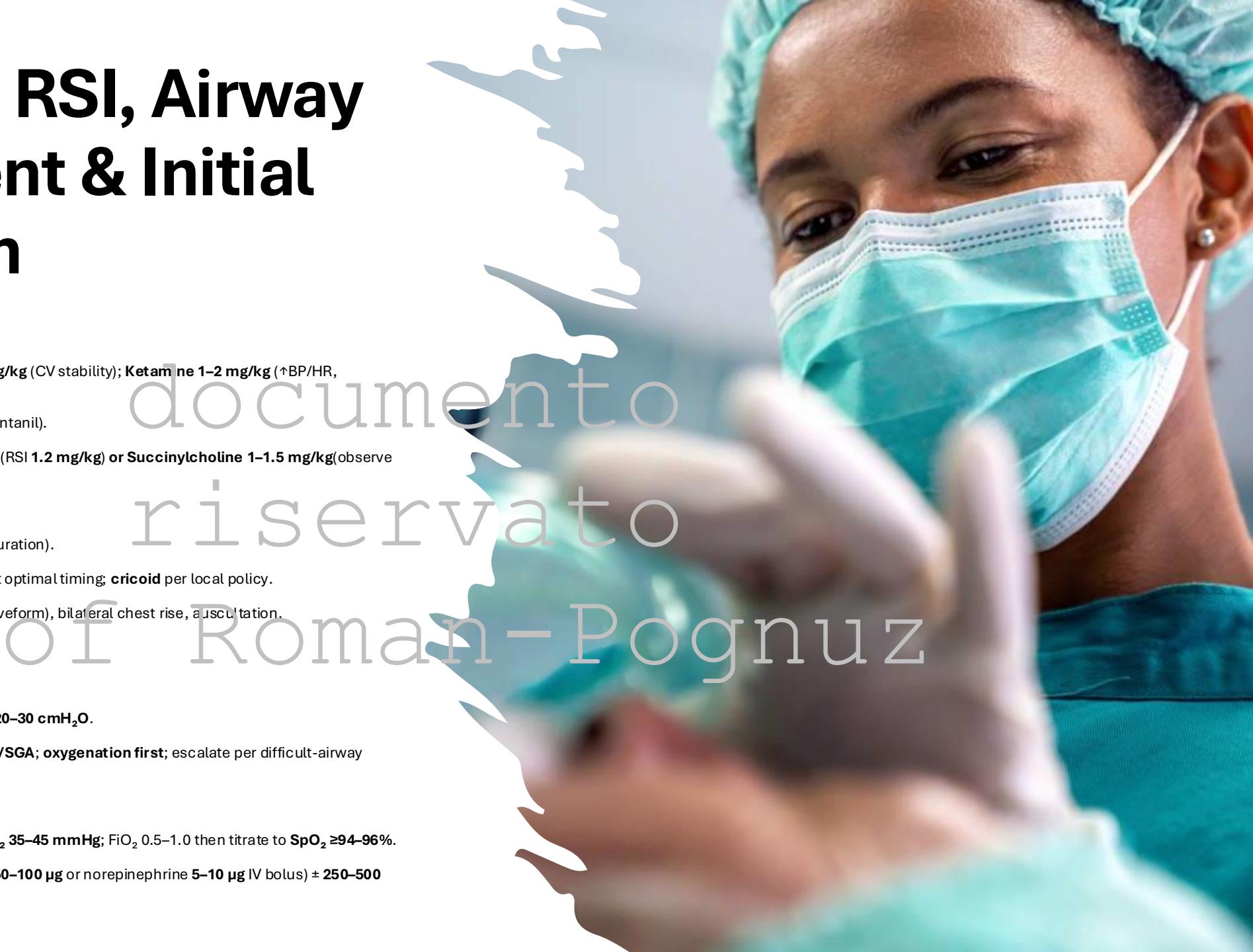


Pre-induction safety bundle (2-3 min)

- Verify **fasting, consent, allergies, OSA/MH history, last anticoagulant/antiplatelet dose**.
- Place monitors: **ECG, NIBP q3-5 min, SpO₂**, capnography ready, temperature for GA/long cases.
- Airway plan **A-B-C**: mask → SGA → ETT; **video laryngoscope** available; **cric kit** visible.
- Prep & **label drugs**: induction agent, opioid, **NMBA**, **vasopressor** (phenylephrine/norepinephrine), ephedrine, atropine, bronchodilator.
- Equipment: suction, oxygen source, circuit check, **ambu-bag**, working capnograph; **IV access x1-2**; patient **positioning/ramping** as needed.
- **PONV prophylaxis strategy** considered (risk-based).

Pre-oxygenation (denitrogenation)

- Tight mask, **100% O₂**: 3-5 min tidal breathing **or** 8 vital-capacity breaths.
- Aim **EtO₂ ≥ 0.8**; consider **apneic oxygenation** via nasal cannula 10-15 L/min in expected difficult/RSI cases.
- Rationale: **prolongs safe apnea time**, reduces desaturation during airway manipulation.

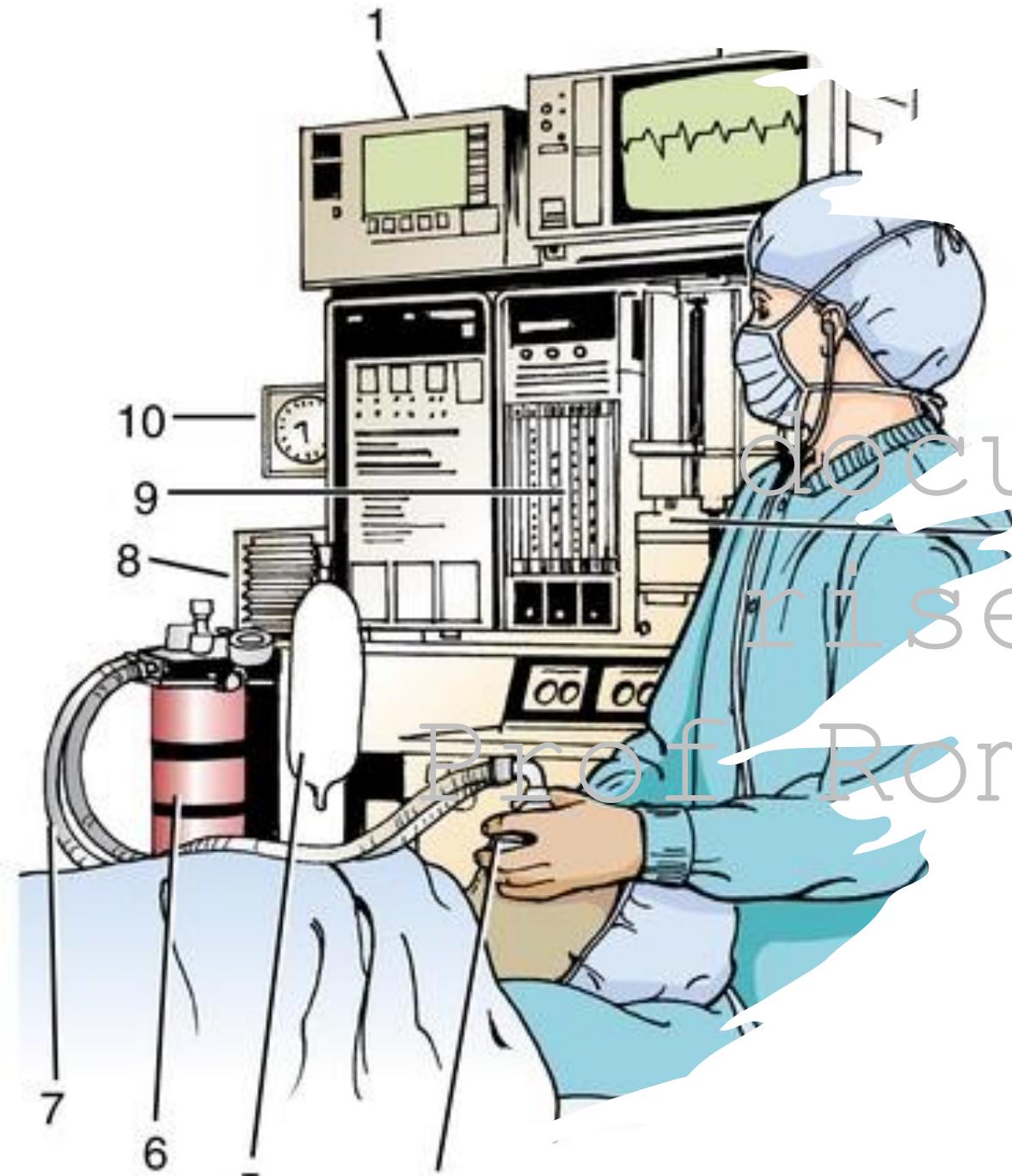

Induction, RSI, Airway Securement & Initial Ventilation

IV induction (typical adult—titrate to effect)

- Propofol 1.5–2.5 mg/kg (↓SVR); Etomidate 0.2–0.3 mg/kg (CV stability); Ketamine 1–2 mg/kg (↑BP/HR, bronchodilation).
- Analgesic blunting: Fentanyl 1–2 µg/kg (or start remifentanil).
- Paralysis (if ETT planned): Rocuronium 0.6–1.0 mg/kg (RSI 1.2 mg/kg) or Succinylcholine 1–1.5 mg/kg (observe contraindications).
- **Rapid Sequence Induction (aspiration risk)**
- No mask ventilation (or gentle ≤10–12 cmH₂O if desaturation).
- Induction agent → **immediate NMBA** → laryngoscopy at optimal timing; **cricoid** per local policy.
- **Confirm tracheal intubation by EtCO₂** (sustained waveform), bilateral chest rise, auscultation.

Airway securement & verification

- ETT depth ~21–23 cm at teeth in adults; cuff pressure 20–30 cmH₂O.
- If difficulty: switch to **video laryngoscopy**, use **bougie/SGA**; **oxygenation first**; escalate per difficult-airway algorithm.
- **Initial ventilation & hemodynamics**
- V_t 6–8 mL/kg PBW, PEEP 5 cmH₂O, adjust RR to EtCO₂ 35–45 mmHg; FiO₂ 0.5–1.0 then titrate to SpO₂ ≥94–96%.
- **Induction hypotension:** treat quickly (phenylephrine 50–100 µg or norepinephrine 5–10 µg IV bolus) ± 250–500 mL balanced crystalloid.
- Begin **active warming** early.


Maintenance: Strategy, Depth, Analgesia & Neuromuscular Block

Maintenance strategies

- **Balanced GA:** sevo/des/iso at $\sim 0.8\text{--}1.2$ MAC + opioid \pm NMBA \pm regional.
- **TIVA:** Propofol $50\text{--}200$ $\mu\text{g/kg/min}$ + Remifentanil $0.05\text{--}0.2$ $\mu\text{g/kg/min}$ (or TCI). Choose by patient factors (e.g., PONV risk, neuro cases, MH risk).
- **Depth of anesthesia**
- Track **clinical signs + processed EEG (BIS/PSI $\sim 40\text{--}60$)**; understand confounders (EMG, ketamine, N_2O , cautery).
- Avoid awareness and **over-deep anesthesia** (hypotension, burst suppression).

Analgesia (multimodal, intraop)

- **Acetaminophen:** 1 g IV/PO; NSAIN/COX-2 if appropriate.
- **Ketamine** low-dose: $0.1\text{--}0.3$ mg/kg bolus $\rightarrow 0.1\text{--}0.2$ mg/kg/h infusion.
- **Lidocaine** infusion $1\text{--}1.5$ mg/kg/h (avoid in significant conduction disease).
- **Dexmedetomidine** $0.2\text{--}0.7$ $\mu\text{g/kg/h}$ (bradycardia risk).
- **Regional/neuraxial** when feasible to blunt afferent input and reduce opioids.
- **Neuromuscular block (when required)**
- **Quantitative TOF** (ulnar/adductor pollicis): target **1-2/4 twitches** for surgical relaxation.
- Re-dose by **TOF**, not clock; plan **reversal** strategy early (sugammadex vs neostigmine).

Autonomic Management, Ventilation, Emergency & PACU Handover

Autonomics & physiology

- **MAP goal ≥ 65 mmHg** (individualize for CAD/CKD/elderly).
- **Hypotension**: treat cause (depth/analgesia/bleeding) \rightarrow fluids if responsive \rightarrow **phenylephrine** (vasodilation), **norepinephrine** (vasodilatory hypotension); **ephedrine** if low HR + low BP.
- **Hypertension/tachycardia**: increase analgesia/depth; consider **esmolol/nitroglycerin**.
- Ventilation: maintain **EtCO₂ 35–45**, treat **bronchospasm** (deepen anesthesia, inhaled β_2 -agonist; severe \rightarrow epinephrine).
- **Temperature**: forced-air warming, warmed fluids; target **36–37 °C**.
- Fluids: aim **euvolemia**; use **goal-directed** indices when valid. Check labs (glucose, Hb, ABG/electrolytes) as indicated.

Emergence & extubation

- Wean volatile/propofol; stop remifentanil; ensure **residual analgesia** (opioid/NSAID/acetaminophen/regional).
Reverse NMB: **Sugammadex** (2–4–10 mg/kg per depth) or **Neostigmine 0.04–0.07 mg/kg + Glycopyrrolate** when TOF $\geq 2/4$.
- Extubate only when: **TOF ratio $\geq 0.9–1.0$** , follows commands, adequate ventilation (Vt > 5 mL/kg, acceptable **EtCO₂**), stable oxygenation/hemodynamics, **normothermia**.
- High-risk airway (ENT, prone, OSA, edema): consider **awake** or **delayed extubation** (PACU/ICU).
- **PACU handover (SBAR) & early priorities**
- **Surgery & key intraop events; Baseline risks/comorbidities; Anesthetics/analgesics/NMBA doses & reversal, fluids/EBL/vasoactives/blocks; Recommendations (pain plan, PONV meds, O₂, monitoring, labs)**.
- **PACU focus**: airway patency, pain control, PONV treatment, temperature, bleeding, urinary retention, early complications.

IV Induction (Propofol / Etomidate / Ketamine)

Prof

Goal: rapid, controllable loss of consciousness with airway/hemodynamic safety.
Agents & typical adult doses (titrate to effect):

- **Propofol 1.5–2.5 mg/kg** → very fast onset; ↓SVR/contractility → **hypotension**, apnea; antiemetic.
- **Etomidate 0.2–0.3 mg/kg** → **hemodynamic stability**; myoclonus; transient adrenal suppression (avoid prolonged use).
- **Ketamine 1–2 mg/kg** → **sympathomimetic** (↑BP/HR), bronchodilation; preserves respiratory drive/reflexes; salivation, emergence phenomena (mitigate with midazolam).
When IV is preferred: full stomach/**RSI**, aspiration risk, predicted difficult airway (video scope ready), **hemodynamic lability** (etomidate/ketamine), bronchospasm (ketamine).
- Technique essentials: preoxygenate ($\text{EtO}_2 \geq 0.8$), blunted response (fentanyl 1–2 $\mu\text{g}/\text{kg}$ or remifentanil), give **NMBAs** if intubating (rocuronium 0.6–1.0 mg/kg; RSI 1.2 mg/kg or succinylcholine 1–1.5 mg/kg if no contraindications), confirm ETT by **capnography**.
- Pitfalls & fixes: hypotension (phenylephrine 50–100 μg / norepinephrine 5–10 μg + fluids), apnea (bag–mask/SGA), jaw stiffness (succinylcholine-related), awareness risk if under-dosed (watch signs/EEG).

Inhalational Induction

Who/why: Pediatrics (needle-free, cooperative), needle-averse adults **without** aspiration risk; reactive airways (bronchodilation).

Why sevo? Non-pungent, rapid alveolar wash-in, favorable bronchodilatory profile.

How to do it: Fresh gas flow **6–8 L/min** (O₂/air), **sevo 8%** “vital-capacity” or step-up technique; maintain **spontaneous breathing**; obtain IV after loss of consciousness, then secure airway (mask/SGA/EIT).

Adjuncts: N₂O may speed onset/MAC-sparing; avoid in **closed-space** pathology (pneumothorax, bowel obstruction).

Cautions/limits: not for **full stomach/RSI**; slower control in adults; early **hypotension** possible; risk of airway obstruction—use jaw thrust, CPAP, oral/nasal airway.

Troubleshooting waveform: rising EtCO₂ with poor chest excursion → obstruction; “shark-fin” → bronchospasm (deepen anesthesia, β₂-agonist).

Volatile Maintenance (Sevo / Des / Iso)

- **Dose target:** age-adjusted **~0.8–1.2 MAC**; consider **low-flow** once stable.
Pros: simple titration via vaporizer; **sevo** bronchodilation; minimal equipment dependence.
- Cons: **↑PONV**, dose-dependent **hypotension** (\downarrow SVR), respiratory depression; **MH trigger**; OR pollution.
Agent nuances:
- **Sevoflurane:** smooth, non-pungent; great with masks/bronchospasm; follow local guidance for very low flows.
- **Desflurane:** fastest titration; airway irritant at high % (tachycardia/cough).
- **Isoflurane:** cost effective; slower kinetics; good for long cases if hemodynamics tolerate.
Physiology & management: anticipate \downarrow BP → optimize depth/analgesia first, then vasoressor; maintain EtCO₂ 35–45; active warming to 36–37 °C.
- When volatiles shine: reactive airways, straightforward logistics, limited infusion pump availability, cost constraints.
- Risk notes: avoid in **MH-susceptible** patients; plan PONV prophylaxis (Apfel-based).

TIVA Maintenance (Propofol + Remifentanil + Adjuncts)

Prof Roman-Pognuz

- Typical dosing: Propofol 50–200 µg/kg/min + Remifentanil 0.05–0.2 µg/kg/min (or TCI). Consider adjuncts: low-dose ketamine, lidocaine, dexmedetomidine.
- Pros: **low PONV**, excellent neuro profile (↓ICP/clean EEG), **no MH trigger**, no OR gas pollution, ideal for **shared airway** surgery and when rapid, smooth wake-up desired.
- Cons: **hypotension** (propofol), needs reliable IV access & pumps/TCI expertise; line dislodgement risk; **remifentanil** leaves **no residual analgesia**—plan PACU pain control.
- Monitoring: favor **processed EEG** (BIS/PSI \approx 40–60) to reduce awareness risk; secure lines; clearly **label infusions**.
- When TIVA shines: **high PONV risk**, **MH susceptibility**, **neurosurgery** (ICP/evoked potentials), ENT/shared airway, situations needing minimal movement and fast wake-up.
 - Choice algorithm (quick):
 - PONV↑ / Neuro goals / MH risk / Shared airway \rightarrow TIVA
 - Bronchodilation need / Simpler logistics / Cost concerns \rightarrow Volatile.

Always integrate **regional blocks** to reduce opioids and improve autonomic stability.

AIRWAY MANAGEMENT

documento
riservato
Prof Roman-Pognuz

THIS HELICOPTER MUST BE OPERATED
IN COMPLIANCE WITH THE OPERATING
LIMITATIONS SPECIFIED IN THE
APPROVED HELICOPTER FLIGHT MANUAL.
MINIMUM COCKPIT WEIGHT 170 LBS.
SELECTIVE PASSENGER LOADING
WHEN BOTH CREW SEATS ARE OCCUPIED
ONLY ONE (1) MID PASSENGER IS
PERMITTED UNLESS THERE ARE TWO (2)
PASSENGERS
WHEN ONLY ONE (1) CREW SEAT IS OCCUPIED
NO MORE THAN TWO (2) AFE PASSENGERS
ARE PERMITTED UNLESS THERE IS ONE (1)
MID PASSENGER.
DO NOT USE THE ALTERNATE
PASSENGER LOADING ZONE TO SIGN
PASSENGER LOADING AND BALANCE FOR
ADDITIONAL LOADING OPERATIONS.

Airway Management in GA

- Preop assessment: **Mallampati**, mouth opening, TMD, neck mobility
- Devices: mask, **supraglottic** (LMA), **ETT** (oral/nasal)
- Strategies: standard vs **RSI** (aspiration risk)
- Rescue: adjuncts, **video laryngoscopy**, bougie, **surgical airway** (rare)
- **Notes:** Always have a plan B (and C).

The Mallampati Score

Class 1

Class 2

Class 3

Class 4

Pre-op Airway Assessment & Setup (Plan A-B-C)

Prof

- **History & risks:** prior difficult airway, OSA (STOP-BANG), reflux/full stomach, facial/neck radiation, tumors, pregnancy, trauma.

Look & measure (predictors):

- **Mallampati I-IV** (tongue vs pillars)
- **Mouth opening (inter-incisor) ≥ 3 cm** ($\approx 2-3$ fingerbreadths)
- **Thyromental distance (TMD) $\geq 6.5-7$ cm; Sterno-mental $\geq 12-13$ cm**
- **Upper-lip bite test** (mandibular protrusion)
- **Neck:** flexion/extension limitation; circumference > 40 cm (obesity)

Pre-op Airway Assessment & Setup (Plan A–B–C)

Dentition: loose/capped teeth; beard, micro/retrognathia

- Difficult mask ventilation (DMV) clues: Obesity, Beard, Edentulous, OSA, Age>55, Snoring, Limited jaw protrusion.
- Scales: LEMON (Look-Evaluate-Mallampati-Obstruction-Neck), MACOCHA (ICU).
- Optimization: head-elevated/ramped position (tragus ↔ sternal notch horizontal), suction ready, two IVs if high-risk, bite block, eye protection
- Preoxygenation: 100% O₂ (3–5 min tidal or 8 VC breaths), aim EtO₂ ≥0.8; consider apneic oxygenation (nasal 10–15 L/min).
- Kit out (labelled): mask/OPAs/NPAs, SGA (2nd-gen), ETTs (female 7.0–7.5, male 7.5–8.5), bougie, video laryngoscope, suction, eFONA set; vasopressor, bronchodilator.
- Declare plans: Plan A (primary), Plan B (SGA or alt device), Plan C (wake/awake FOI), Plan D (eFONA).

DIFFICULT AIRWAY ASSESSMENT

LOOK EXTERNALLY
EVALUATE (3-3-2 RULE)

MALLAMPATI SCORE
OBSTRUCTED AIRWAY

NECK MOBILITY

Pre-op Airway Assessment & Risk Stratification

1 Prof

History red flags

- Prior difficult mask/intubation, OSA (STOP-BANG ≥ 3), reflux/full stomach, pregnancy, trauma/burns/airway tumors, cervical spine disease, neck radiation.
- Look & measure (predictors of difficulty)
- Mallampati I–IV: tongue vs faucial pillars/uvula (III–IV \uparrow difficulty).
- Mouth opening (inter- incisor): ≥ 3 cm (2–3 fingerbreadths) desirable.
- Thyromental distance (TMD): ≥ 6.5 –7 cm; Sterno-mental ≥ 12 –13 cm.
- Upper-lip bite test (mandibular protrusion): Class I easiest \rightarrow III hardest.
- Neck mobility: flex–extend; limited extension \uparrow difficulty.
- Dentition & facial features: loose teeth, micro/retrognathia, beard, large neck circumference (>40 cm).
- Predictors of difficult mask ventilation (DMV)
- Obesity, Beard, Edentulous, Age >55 , Snoring/OSA, poor jaw protrusion.

Pre-op Airway Assessment & Risk Stratification

Prof Roman Pogruz

Risk tools

- LEMON (Look–Evaluate–Mallampati–Obstruction–Neck).
- MACOCHA (ICU): Mallampati III/IV, Apnea (OSA), Cervical limitation, Opening mouth <3 cm, Coma, Hypoxia, Non-anesthesiologist.

Preparation & positioning

- Plan A–B–C–D declared (primary, backup, wake/awake FOI, eFONA).
- Ramped/head-elevated (external auditory meatus aligned with sternal notch).
- Two IVs if high-risk; suction; video laryngoscope available; cric kit visible.
- Preoxygenation (denitrogenation)
- 100% O₂ via tight mask 3–5 min (or 8 vital-capacity breaths); aim EtO₂ ≥0.8.
- Consider apneic oxygenation (nasal O₂ 10–15 L/min) for RSI/difficult airway.

documento
DEVICES FOR VENTILATION
Prof. Roman-Pognuz

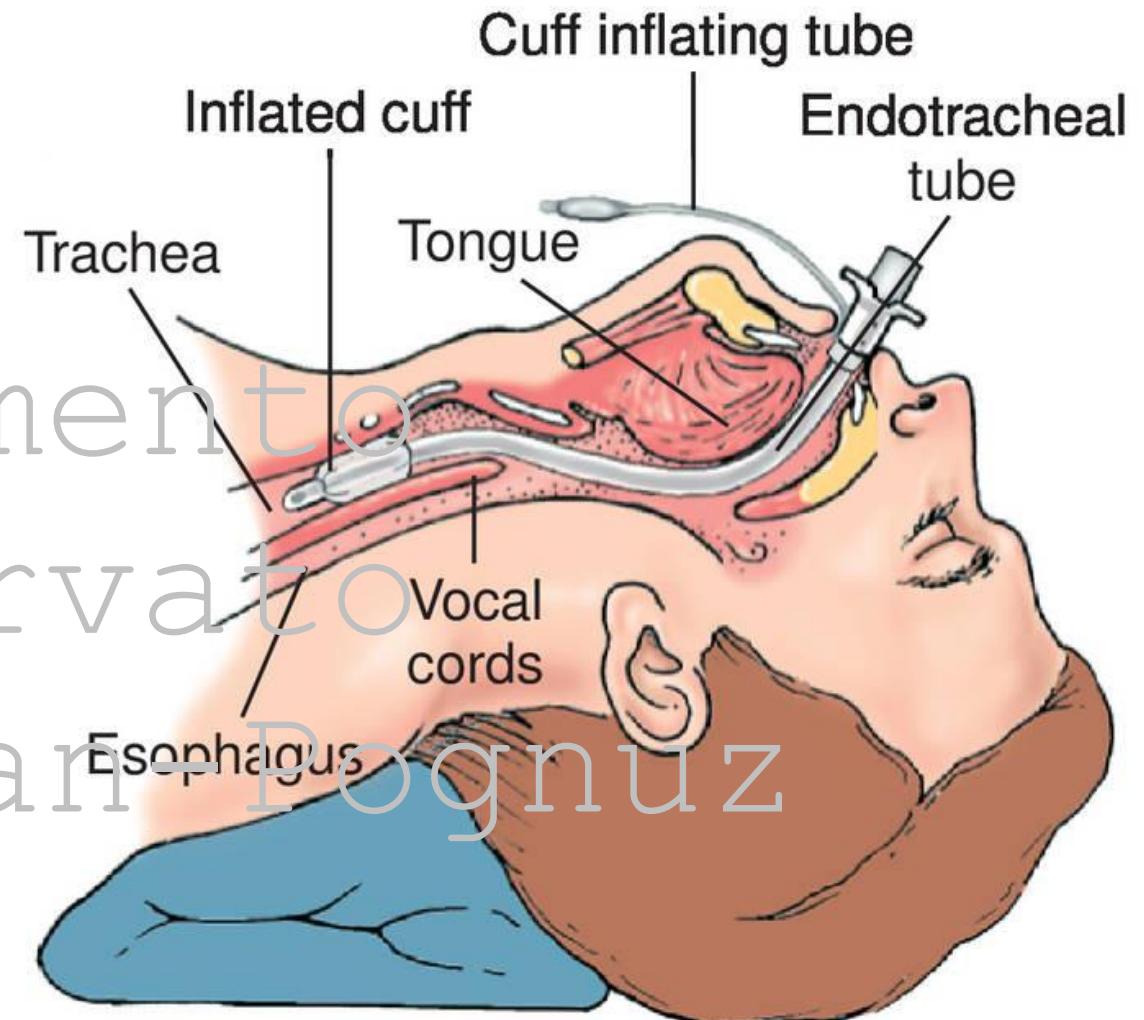
Training & Guidance

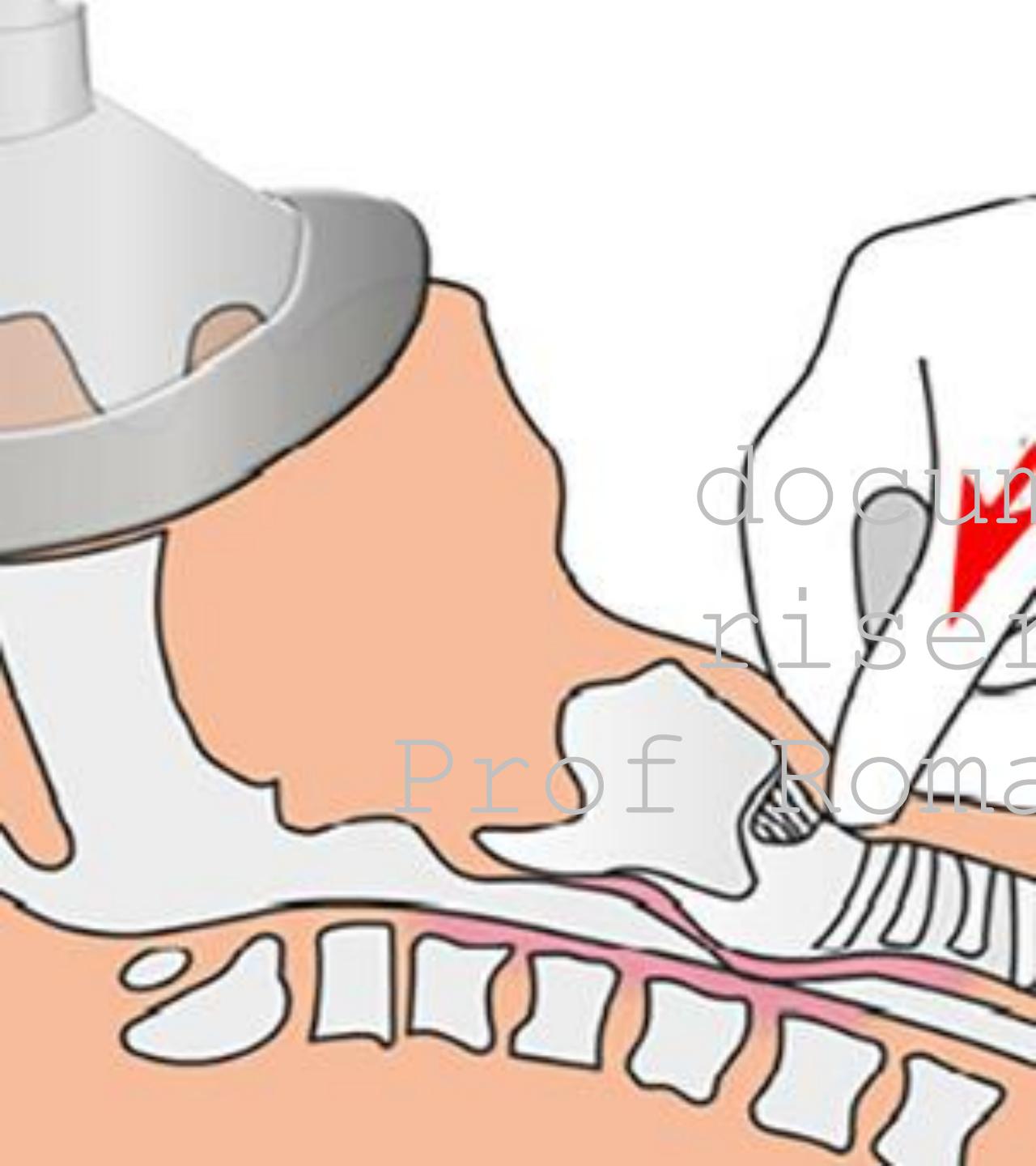
Devices & When to Use Them

documento riservato

Prof. Roman-Pognuzzi

Supraglottic airway (SGA; e.g., LMA, i-gel)

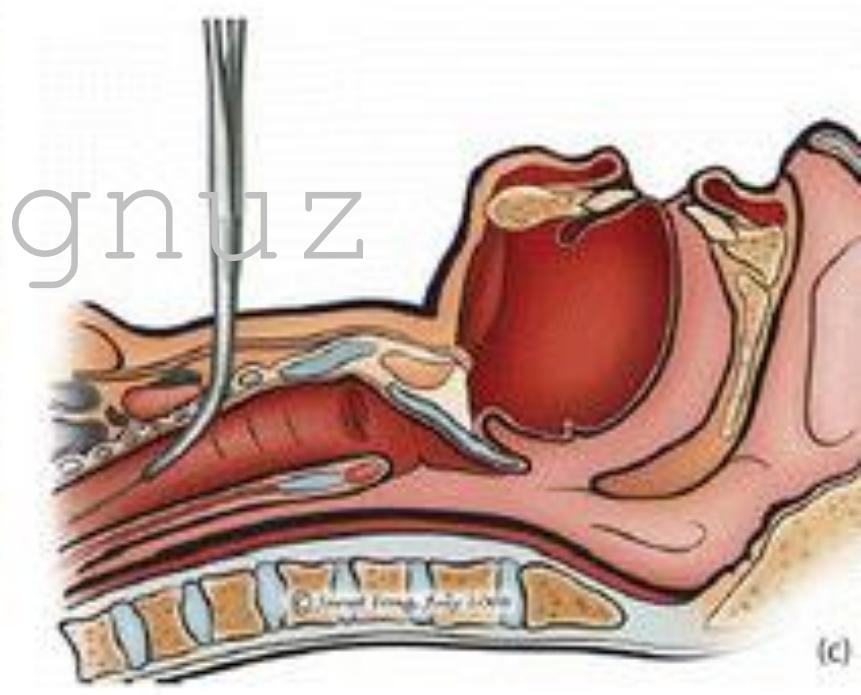
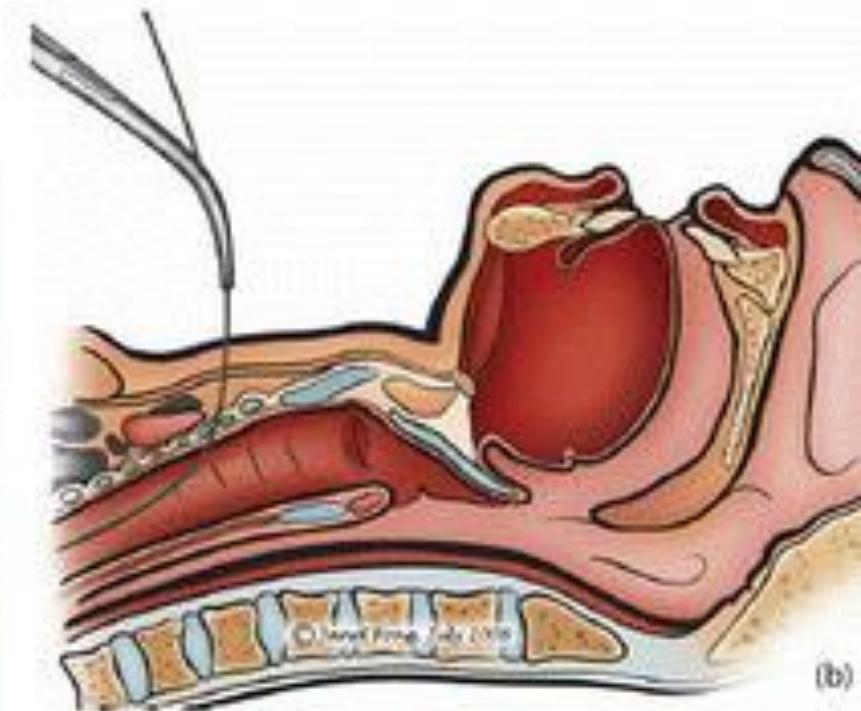

- Indications: rescue ventilation; primary airway in low-risk cases.
- Prefer 2nd-gen SGA: higher seal, gastric drain → better rescue/aspiration protection (not equivalent to ETT).
- Adult sizes: 3 (30–50 kg), 4 (50–70 kg), 5 (>70 kg).
- Pearls: correct depth/position, check leak pressure, consider intubation through SGA with fiberoptic if needed.


Endotracheal tube (ETT)

- Oral (standard) or nasal (smaller ID by 0.5-1.0 mm; lube + vasoconstrictor; beware epistaxis).
- Sizing (typical adults): women 7.0–7.5, men 7.5–8.5.
- Depth: ~21–23 cm at teeth (confirm with auscultation/POCUS + continuous capnography).
- Cuff pressure: 20–30 cmH₂O.

Visualization & aids

- Video laryngoscopy (often first-line): better glottic view, especially in predicted difficulty.
- Bougie/stylet: “bougie-first” for grade 2–3 views; feel tracheal clicks/hold-up.
- Flexible bronchoscope: awake or asleep; ideal through SGA or for distorted airways.

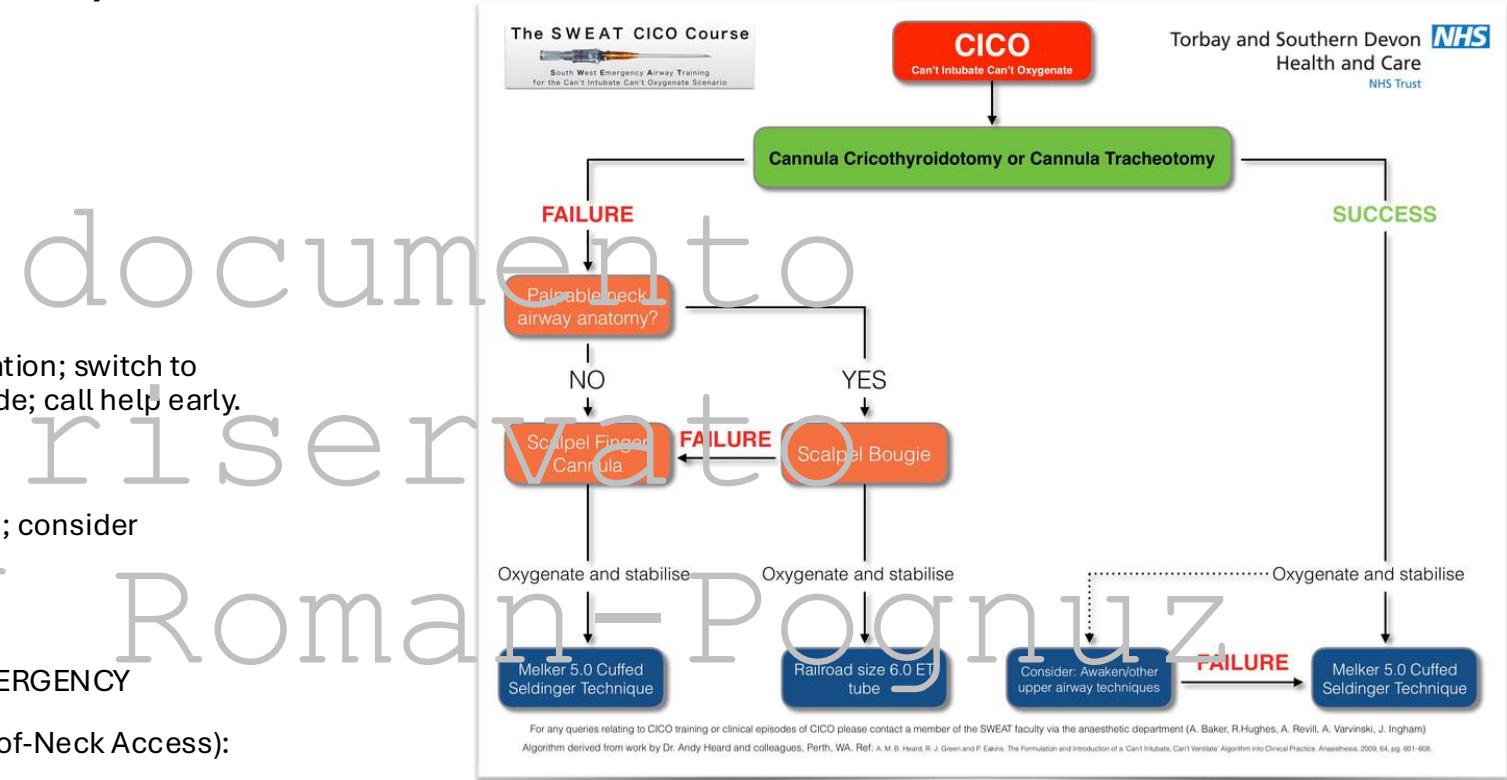


Strategies: Standard Sequence vs Rapid Sequence Induction (RSI)

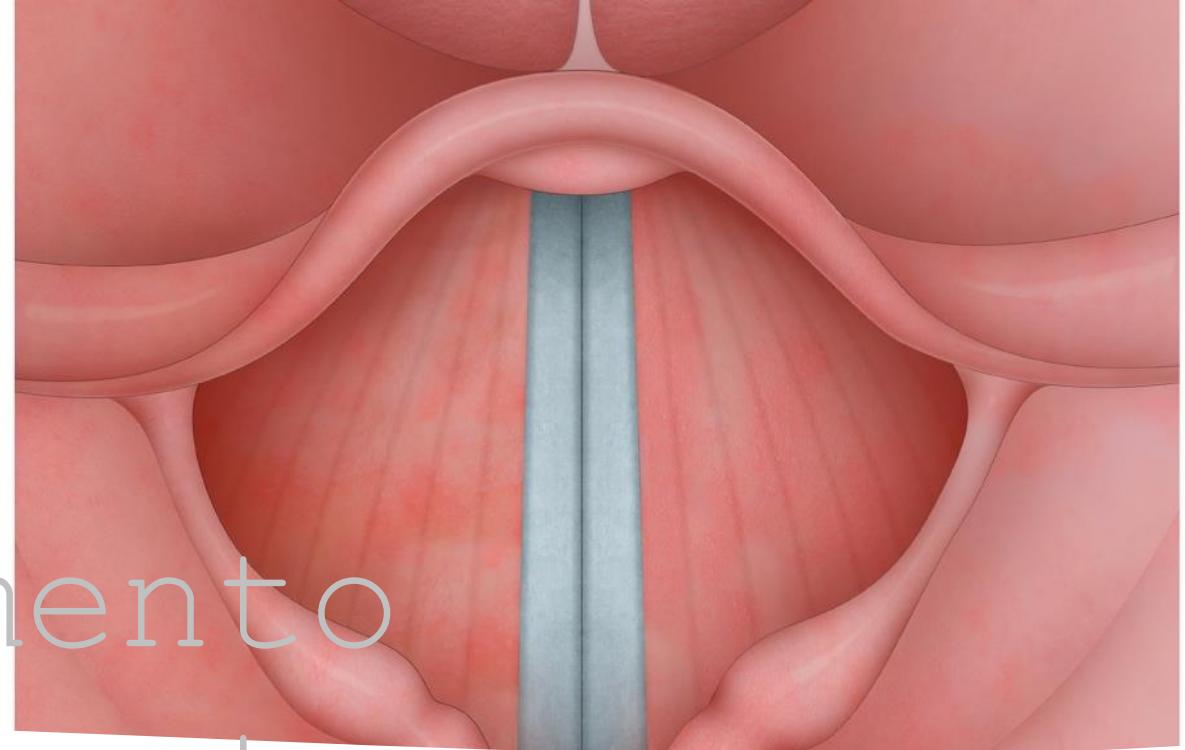
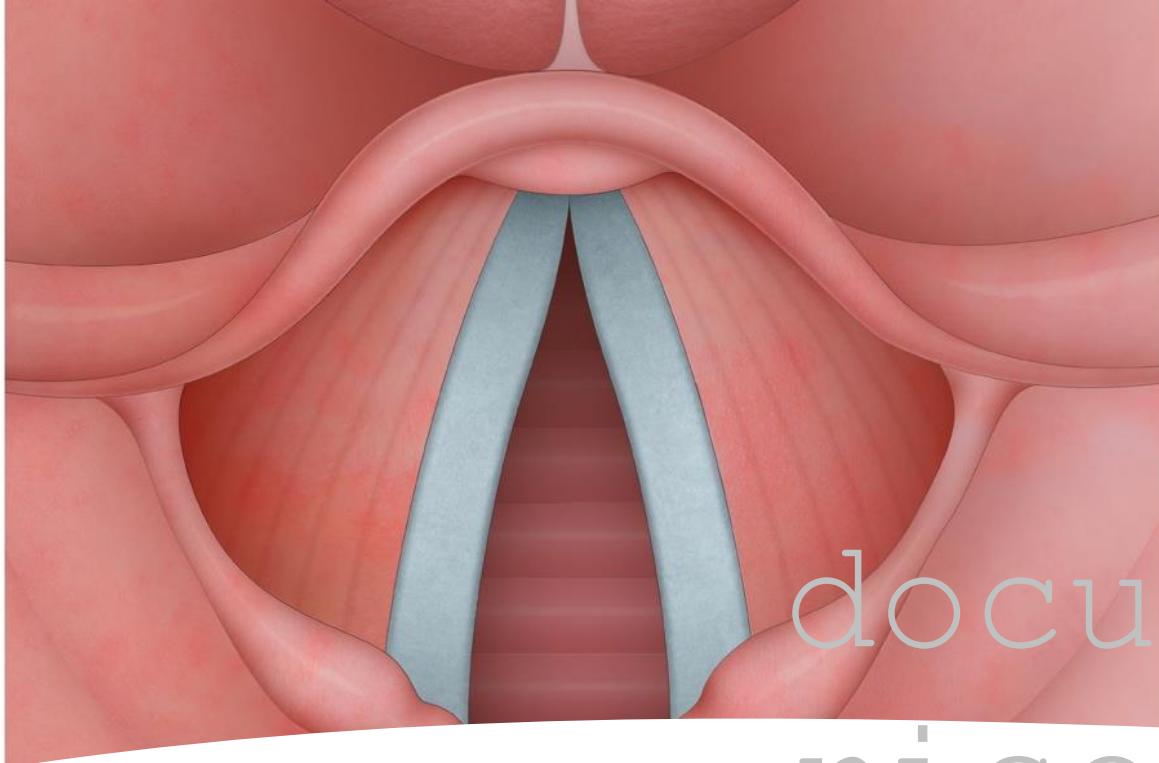
Standard sequence (low aspiration risk)

- Preoxygenate ($\text{EtO}_2 \geq 0.8$).
- IV analgesic + hypnotic (e.g., fentanyl + propofol/etomidate/ketamine).
- Ensure mask ventilation is possible.
- Give NMBA (e.g., rocuronium 0.6–1.0 mg/kg).
- Laryngoscopy (video preferred), ETT/SGA, capnography confirmation.
- RSI (aspiration risk: full stomach, ileus, pregnancy >20 w, severe GERD, GI bleed, trauma)
- Preoxygenate thoroughly; consider nasal apneic O_2 .
- Rapid hypnotic + full-dose NMBA (rocuronium 1.2 mg/kg or succinylcholine 1–1.5 mg/kg if no contraindications).
- No mask ventilation (or very gentle $\leq 10\text{--}12 \text{ cmH}_2\text{O}$ if desaturating).
- Intubate at optimal relaxation; confirm with sustained ETCO_2 waveform.
- Cricoid pressure only if your institution mandates it and trained staff apply it correctly (may worsen view—be ready to release).

Tracheostomy

- Awake options (when losing the airway is dangerous)
- Awake video/fiberoptic intubation with topicalization (2–4% lidocaine), possible superior laryngeal + transtracheal blocks; light sedation (dexmedetomidine/remifentanil).
- Consider awake tracheostomy in extreme distortion/obstruction.
- <https://www.youtube.com/watch?v=YBZFlcIDhQw>
- <https://www.youtube.com/watch?v=njE3Qlkh044>


Rescue & “Can’t Intubate / Can’t Oxygenate” (CICO) Algorithm



If laryngoscopy view poor (can ventilate)

- Optimize position; external laryngeal manipulation; switch to video; smaller tube; bougie-first; alternate blade; call help early.
- If cannot intubate but can ventilate
- Insert 2nd-gen SGA for oxygenation/ventilation; consider fiberoptic-guided intubation through SGA.

If cannot intubate, cannot oxygenate (CICO) → EMERGENCY

- Call for help; 100% O₂; move to eFONA (Front-of-Neck Access):
- Scalpel-bougie-tube: vertical skin incision → horizontal cricothyroid membrane stab → bougie → 6.0 ETT over bougie → confirm with capnography.

documento
riservato


Common intra- op airway events & fixes

Laryngospasm: jaw thrust + 100% O₂ + CPAP → deepen anesthesia (propofol) → succinylcholine 0.1–0.5 mg/kg IV (or 4 mg/kg IM) if persistent.

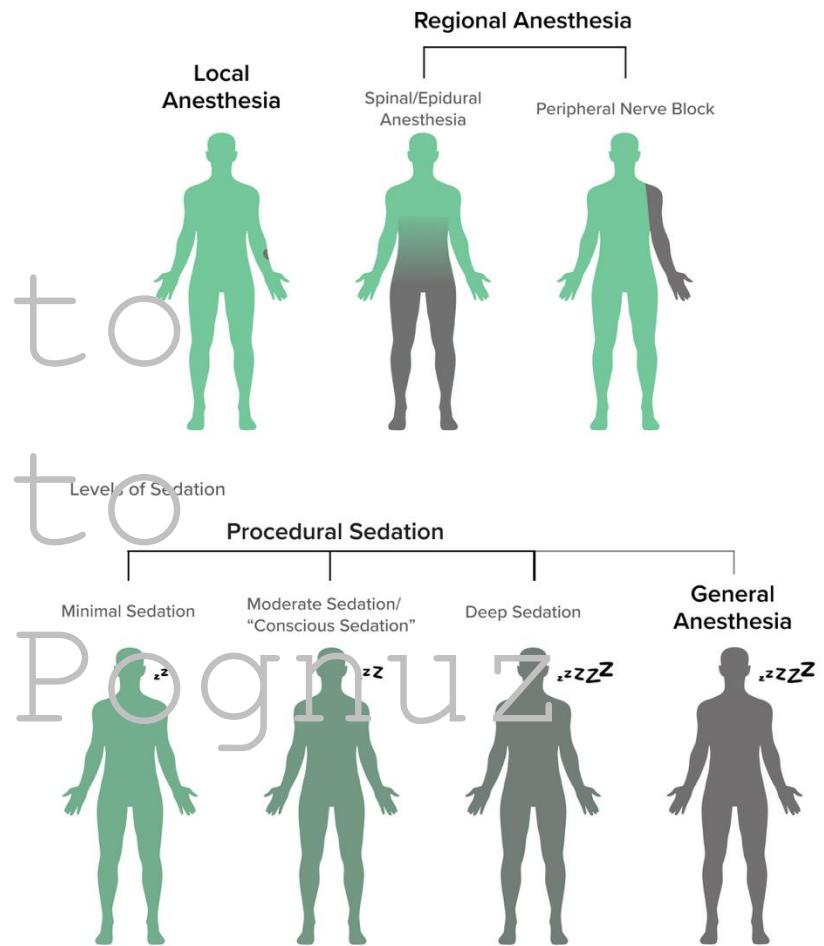
- Bronchospasm: deeper anesthetic (sevo/propofol/ketamine), inhaled β_2 -agonist, consider epinephrine if severe

Mainstem intubation: withdraw ETT 1–2 cm; re-auscultate/POCUS.

- Aspiration suspected: suction oropharynx, head-down/right side, oxygenate, apply PEEP as appropriate; manage hypoxemia; bronchoscopy if obstruction.
- Cuff leak/high cuff pressure: adjust to 20–30 cmH₂O; replace tube if persistent leak threatens ventilation.

documento
riservato
REGIONAL ANESTHESIA
Prof Roman-Pognuz

What Regional Anesthesia Is (and where it fits)


Definition: Targeted, reversible interruption of nerve conduction using local anesthetics (LAs) at neuraxial (spinal/epidural/CSE) or peripheral (plexus/single nerve/fascial plane) sites.

- Goals: Analgesia ± surgical anesthesia; reduce stress response; enable ERAS pathways.
- Taxonomy (with examples):
- Neuraxial: spinal (subarachnoid), epidural, combined spinal-epidural.
- Upper limb: interscalene, supraclavicular, infraclavicular, axillary.
- Lower limb: femoral/adductor canal, sciatic (popliteal), IPACK.
- Truncal/Chest: paravertebral, PECS I/II, serratus plane, ESP, TAP.

When to choose RA: Ortho, thoracic, abdominal, breast, rib fractures; high opioid-risk pts (OSA/frail), when early mobilization is desired.

Types of Anesthesia

apsf apsf.org/patient-guide

Why Regional? (Benefits you can explain to patients & surgeons)

- Superior analgesia vs systemic opioids → lower pain scores, improved patient satisfaction.
- Opioid sparing → ↓ PONV, pruritus, ileus, respiratory depression—especially valuable in OSA/elderly.
- Improved physiology: less catecholamine surge, better pulmonary mechanics (rib fractures / thoracotomy), ↓ ileus (abdomen).
- Faster milestones: earlier mobilization, participation in PT, potential ↓ LOS and complications in ERAS.
- Procedural advantages: smoother emergence, lower anesthetic requirements, better hemodynamic stability in selected cases.
- Caveat: Benefit is technique- and execution-dependent; use the right block, dose, and catheter plan.

How to Do It (setup, imaging, injection safety)

Prof Roman-Poagu

- Asepsis & monitoring: full skin prep (chlorhexidine), sterile probe cover/gel, mask/cap/gloves; standard monitors; IV access; resuscitation drugs + lipid emulsion in room.
- Patient communication: explain benefits/risks; maintain light sedation so the patient can report paresthesias/pain.

Ultrasound (first-line):

- Probe choice: linear (10–15 MHz) for superficial; curvilinear (2–5 MHz) for deep.
- Technique: in-plane (see shaft + tip) or out-of-plane (track the tip carefully); hydrodissection to open fascial planes; seek circumferential spread.
- Needle: echogenic (80–100 mm for deep blocks).
- Nerve stimulation (adjunct): 0.3–0.5 mA motor response is acceptable; <0.2 mA raises intraneuronal concern—withdraw.
- Injection pressure monitoring: keep opening injection pressure < 15 psi (if high → stop, reposition).
- Fractionated injection: aspirate every 3–5 mL, inject incrementally, reassess spread and patient symptoms continuously.
- Test dose (neuraxial/epidural): low-dose lidocaine + epinephrine to detect intrathecal/intravascular placement (per institutional policy).

Local Anesthetics: choices, doses, adjuvants (the practical table in prose) 1

Common LAs & profiles

- Lidocaine 1–2%: fast onset, short–intermediate duration (infiltration/IVRA/short blocks).
- Bupivacaine 0.25–0.5%: slower onset, long duration (dense sensory; caution cardiotoxicity).
- Ropivacaine 0.2–0.5%: long duration, motor-sparing at lower % (good for analgesic infusions).
- Mepivacaine 1–1.5%: fast onset, intermediate duration (diagnostic/short procedures).
- Typical single-shot concentrations (examples; tailor to block & patient):
 - Interscalene: 0.5% ropi 10–15 mL (or 0.25% 15–20 mL analgesic-biased).
 - Adductor canal: 0.2–0.375% ropi 15–20 mL (motor-sparing).

Local Anesthetics: choices, doses, adjuvants (the practical table in prose) Prof Roman-Pognuz 2

TAP/ESP: 0.25–0.375% ropi or bupi 20–30 mL per side/level.

Maximum dose guides (approx., adults):

Lidocaine: 4.5 mg/kg (max ~300 mg); with epi up to 7 mg/kg (max ~500 mg).

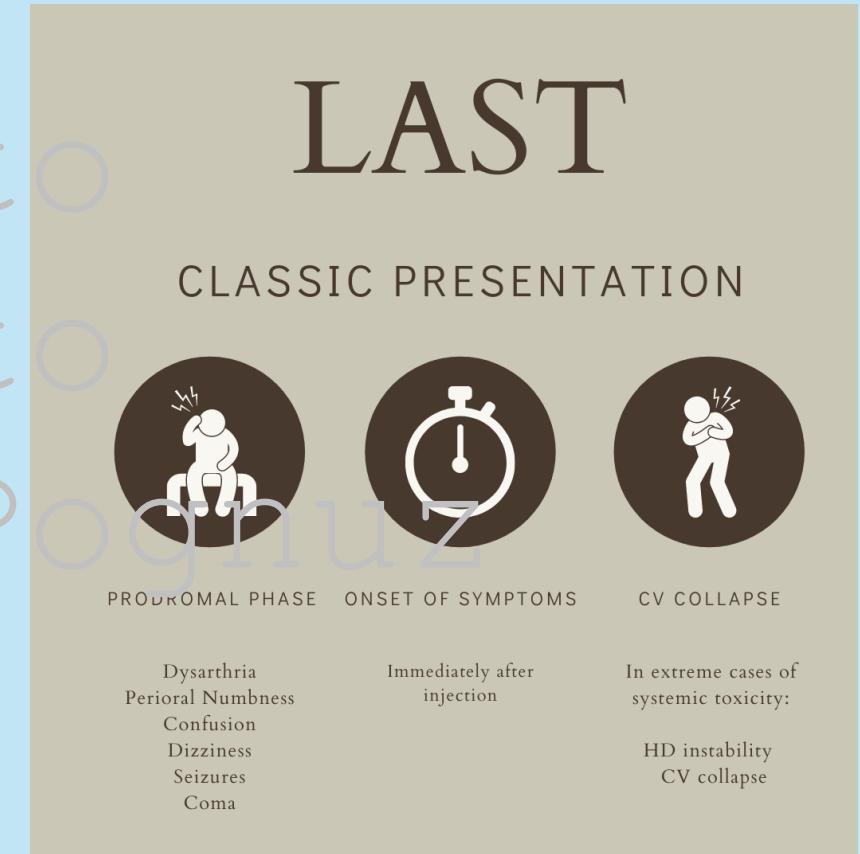
Bupivacaine: 2.5 mg/kg (max ~175 mg); with epi ~3 mg/kg (max ~225 mg).

Ropivacaine: ~3 mg/kg (commonly max 200–250 mg).
(Always correct for frailty, pregnancy, blocks with high vascular uptake, and cumulative mixtures.)

Adjuvants:

Epinephrine (1:200k–1:400k) ↓ systemic uptake, marker for intravascular injection.

Dexmedetomidine (perineural 25–50 µg) or clonidine (30–150 µg) may prolong block (watch for bradycardia/hypotension).


Dexamethasone 4–8 mg IV (or 2–4 mg perineural, off-label) extends duration; consider glycemic impact.

Continuous catheters: securement + sterile dressing; ropivacaine 0.1–0.2% at 5–8 mL/h (bolus 3–5 mL PRN); daily site checks.

Safety: complications you must name (and how to handle them)

Local Anesthetic Systemic Toxicity (LAST)

- Early signs: circumoral numbness, tinnitus, metallic taste, agitation; then seizures, ↓LOC; CV: arrhythmias, hypotension, cardiac arrest.
- Immediate actions: STOP injection, call help, airway/oxygen ventilation, treat seizures (benzodiazepine), avoid large propofol doses if unstable.
- Lipid rescue (20%): Bolus 1.5 mL/kg, then 0.25 mL/kg/min infusion; repeat bolus x2 for persistent instability; increase infusion to 0.5 mL/kg/min if needed; continue ~10 min after stability; max \approx 10–12 mL/kg
- Nerve injury: avoid intraneural injection (monitor pressure, US tip visualization, paresthesia/pain on injection); document baseline neuro exam; most deficits are transient—arrange follow up.
- Hematoma/bleeding: compressible sites safer; avoid deep blocks in coagulopathy.
- Infection: strict asepsis; higher risk with catheters \rightarrow daily inspection, remove if erythema/fever/pus.
- Neuraxial specific: hypotension/bradycardia (treat with vasopressor/fluids), high/total spinal (support airway/ventilation, vasopressors), PDPH after dural puncture (epidural blood patch if symptomatic).
- Phrenic nerve paresis (interscalene): counsel dyspneic/resp-limited patients; consider suprascapular + axillary or low-volume/more distal approaches.

Contraindications, Anticoagulation & Must-do Checks

- Absolute contraindications (most RA): patient refusal, active infection at site, true LA allergy.
- Neuraxial specific absolute: raised ICP with mass lesion, uncorrected hypovolemia/shock, untreated coagulopathy.
- Relative contraindications: bacteremia/sepsis (individual risk), severe aortic/mitral stenosis (sympathetic block risk), pre-existing neuro deficits (document), distorted anatomy.
- Anticoagulation/antiplatelets (principles; follow latest ASRA/ESAIC + local policy):
- Aspirin/NSAIDs: usually not a contraindication to single-shot peripheral blocks or neuraxial alone, but combine therapies raise risk.
- Clopidogrel/Prasugrel/Ticagrelor: hold 5–7 days before neuraxial; avoid catheters until drug off; peripheral deep blocks often treated as neuraxial-equivalent risk in many centers.
- LMWH: prophylactic → wait ≥12 h (therapeutic ≥24 h) before neuraxial; after catheter removal, delay next dose (usually ≥4 h).
- DOACs (apixaban, rivaroxaban, dabigatran): hold 2–4+ days depending on dose & renal function before neuraxial/deep block; resume ≥24 h after needle/catheter removal.
(Times vary—check current guideline tables and institutional rules.)
- Non-negotiables: Informed consent (benefits/risks/alternatives), anticoagulation review, baseline neuro exam, timeout and side marking, full resus kit + lipid 20% available.

SPINAL

+ • Core Concept,
◦ Indications &
Block Height
Targets
Spinal
Prof. Roman-Pognuz
Anesthesia
(Subarachnoid)

What it is: Injection of local anesthetic (LA) into CSF at L2–L3/L3–L4/L4–L5 → rapid, dense sensory ± motor block with a finite duration.

Primary goals: Surgical anesthesia (below umbilicus) and/or superior postoperative analgesia (with intrathecal opioids).

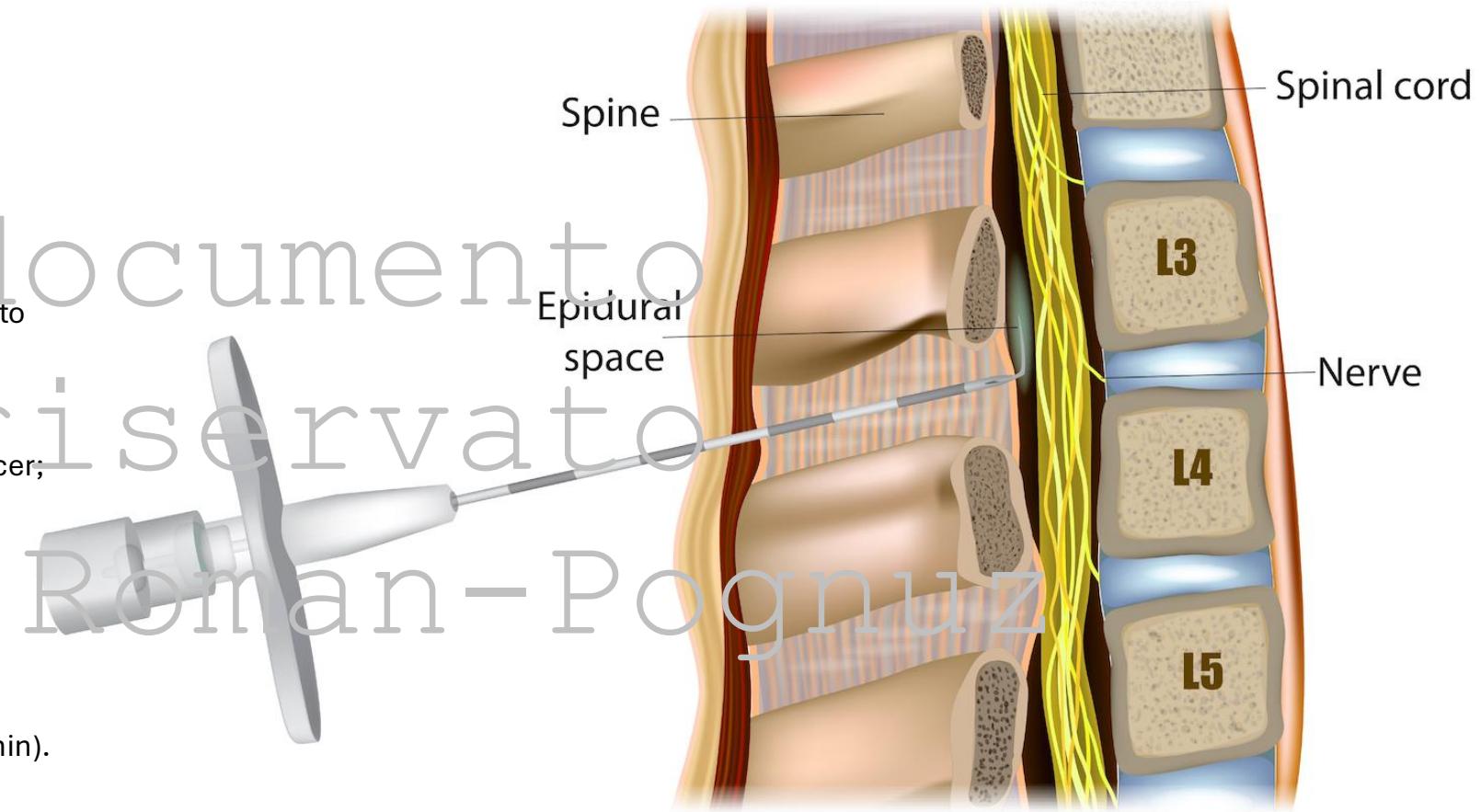
- Common indications (with typical target dermatome)
- Cesarean section → T4 (nipples)
- Lower abdominal (e.g., hernia, pelvic) → T6–T8
- Urology (TURP/TURBT) → T10
- Hip/knee/foot & ankle → T10–L1 (hip often higher than knee/foot)
- Perineal/hemorrhoids → S2–S4

Absolute advantages

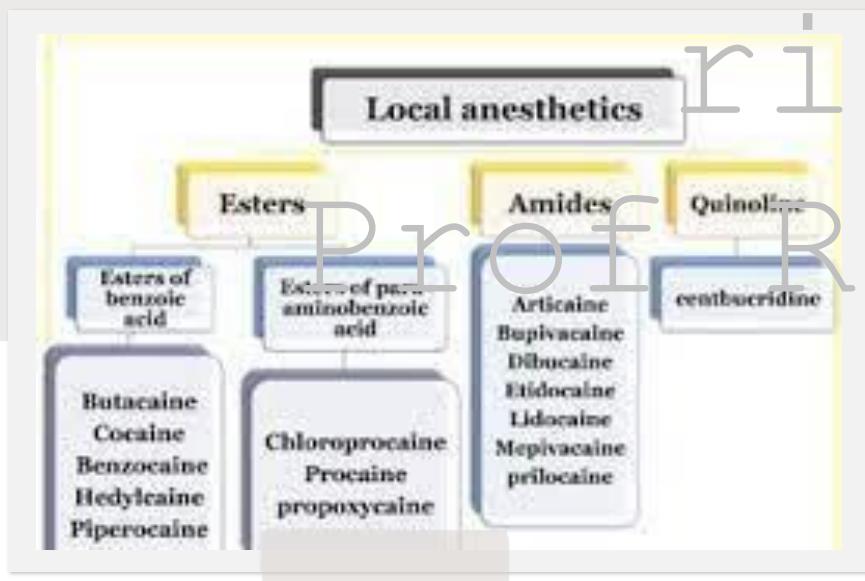
- Fast onset, dense block, minimal drug quantities, less PONV/opioids, excellent operating conditions.
- Key dermatomes to remember
- T4 nipples, T6 xiphoid, T10 umbilicus, L1 inguinal, S2–S5 perineum.

Anatomy, Equipment & Step- by-Step Technique

Anatomy checkpoints


- Adult cord ends at ~L1 → aim below L2 (L3–4 or L4–5; Tuffie's line ≈ L4).
- Layers (midline): skin → subcut → supraspinous → interspinous → ligamentum flavum → epidural space → dura/arachnoid → CSF.

Equipment


- Sterile prep (chlorhexidine), drape, mask/cap/gloves.
- Pencil-point needle (Whitacre/Sprotte) 25–27G + introducer (↓PDPH vs Quincke).
- LA syringes; optional intrathecal adjuvants (opioids).
- Standard monitors; IV access; resuscitation drugs + 20% lipid in the room.

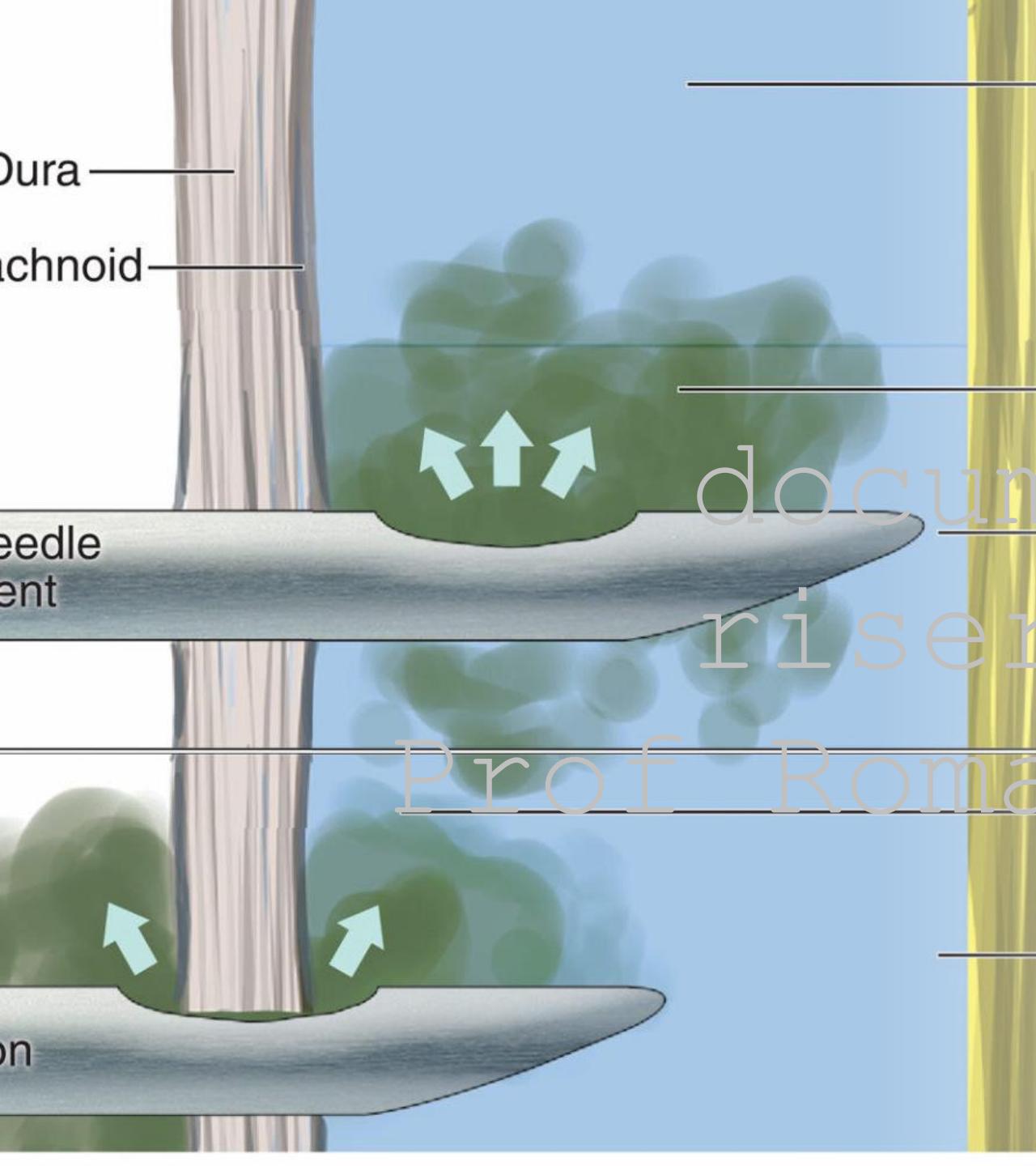
Technique (midline; sitting or lateral)

- Position sitting (flexed, “angry cat”) or lateral (knees to chest).
- Identify interspace; local infiltration.
- Advance introducer → spinal needle through introducer; feel “pops” (ligamentum flavum, dura).
- CSF flow confirmation → aspirate gently (clear, free-flowing) → inject slowly (no pain/paresthesia).
- Remove needle, lay patient immediately; position to direct spread (see Slide 4).
- Start hemodynamic vigilance (q1–2 min for first 10 min).
- Paramedian approach helpful in elderly/calcified ligaments: 1–2 cm lateral, aim medially/cephalad.

Drugs, Doses, Baricity & Adjuvants (Intrathecal)

Local anesthetics (common)

- Bupivacaine 0.5% hyperbaric (“heavy,” in dextrose) or isobaric (“plain”)
- Dose ranges (adults, single-shot):
 - Cesarean: 10–12.5 mg (often with opioids)
 - Lower abd/T6–T8: 12–15 mg
 - T10 targets (TURP/LL ortho): 7.5–12 mg (elderly often need lower dose)
- Duration: ~90–150 min surgical anesthesia (longer sensory than motor).
- Chloroprocaine (preservative-free) 2–3%: 30–60 mg for short cases (30–60 min.).
- Tetracaine 0.5% (“heavy”): 5–15 mg for very long cases (less common now).
- Lidocaine (intrathecal): historical (TNS risk with 5% heavy); modern practice largely avoids.


Prof Roman-Pognuzzi

Baricity (drives spread with gravity)

- **Hyperbaric** (heavier than CSF; in dextrose): settles **dependent**; you can “steer” with tilt.
- **Isobaric** (\approx CSF): more position independent spread; slower cephalad spread.
- **Hypobaric** (lighter): rare elective use (e.g., perianal in jackknife).

Intrathecal adjuvants

- **Fentanyl 10–25 µg** \rightarrow faster onset, better intra-op comfort.
- **Morphine 100–200 µg** \rightarrow 12–24 h analgesia (watch **delayed respiratory depression**—monitor for ≥ 12 h per local policy).
- **Clonidine 15–45 µg (off-label)** \rightarrow prolongs block; risks **hypotension/sedation**.
(*Avoid preservatives; use spinal-approved ampoules only.*)

Factors Affecting Block Height & Practical Positioning

Determinants of spread

- Dose (mg), baricity, volume, injection speed, CSF volume.
- Patient factors: pregnancy (\downarrow CSF volume \rightarrow higher spread \rightarrow use lower dose), elderly (\downarrow CSF), obesity (compression), height (minor effect).

Positioning:

- Hyperbaric: cephalad with Trendelenburg, caudad with reverse Trendelenburg.
- Isobaric: less position-sensitive; slower cephalad spread.
- Unilateral block: lateral position with operative side down during/after injection of hyperbaric solution.

Hemodynamic Physiology, Prophylaxis & Treatment

- Why hypotension/bradycardia happen
- Sympathetic block (T1–L2) → **venodilation & ↓SVR**; high thoracic spread may block **cardioaccelerator (T1–T4)** and trigger **Bezold–Jarisch reflex** (bradycardia + hypotension + nausea).
- Prevention (modern approach)
 - **Co-load** crystalloids (e.g., 500–1000 mL) at time of spinal; **pre-load alone is insufficient**.
 - **Vasopressor-first mindset** in high-risk/OB:
 - **Phenylephrine** infusion **25–50 µg/min** (or bolus **50–100 µg**) titrated to **MAP ≥65 mmHg** (or SBP within 10% of baseline).
 - **Norepinephrine** **2–5 µg boluses or 0.02–0.05 µg/kg/min infusion** if bradycardic/vasodilatory hypotension.
 - Left uterine displacement in **pregnancy**.

1

Assess level (is it rising?) + airway/oxygen; place A-line if unstable/prolonged.

2

MAP low, HR normal/high → Phenylephrine 50–100 µg IV (repeat/titrate).

3

MAP low, HR low → Ephedrine 5–10 mg IV or norepinephrine 5–10 µg IV; consider atropine 0.5 mg if vagal.

4

Fluids: small balanced boluses (250 mL) if hypovolemia suspected; avoid overload.

5

Reassess every 1–2 min initially; adjust table tilt (reduce Trendelenburg if block is creeping too high).

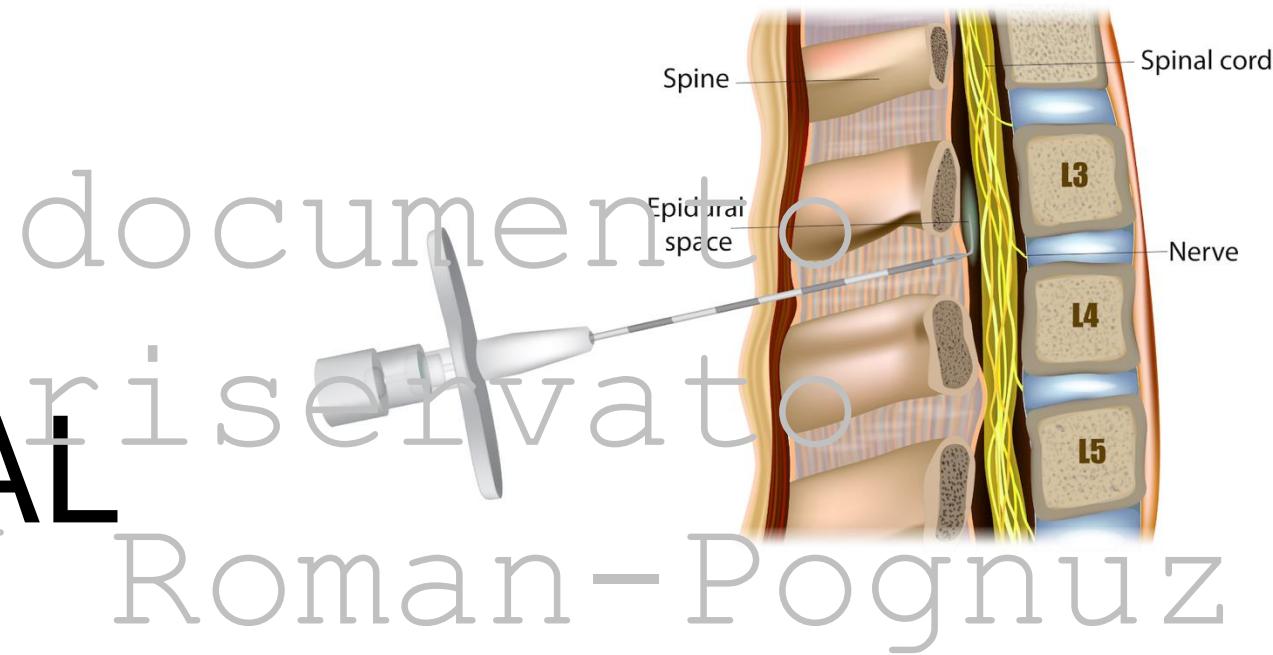
Prof Roman-Pognuzzi

Treatment algorithm

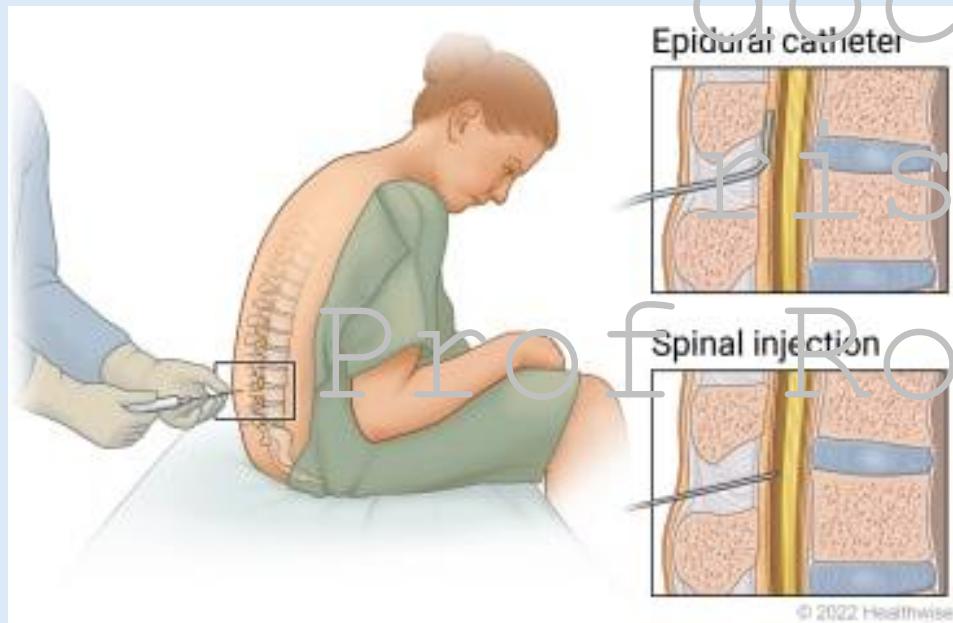
Complications, Contraindications & High/Total Spinal Rescue

Prof Roman-Pogruz

Common/important complications


- PDPH (post-dural puncture headache): orthostatic, occipital/neck; ↑ with young women, large cutting needles; ↓ with 25–27G pencil-point.
- Tx: hydration, caffeine/acetaminophen/NSAIDs, sphenopalatine ganglion block (optional), epidural blood patch (15–20 mL) if persistent/severe.
- High/total spinal (rare): rapidly rising numbness/weak arms → dyspnea → apnea, profound hypotension/bradycardia.
- Rescue: Call help; 100% O₂; bag-mask/ventilate → intubate if needed; vasoressors (phenylephrine/norepinephrine), ephedrine if bradycardic; maintain until block regresses.
- Nausea/vomiting: often hypotension-mediated → treat BP; give antiemetics.
- Urinary retention: monitor; catheter if necessary.
- Rare: infection (meningitis), hematoma (neurologic emergency), nerve injury, TNS (historically with intrathecal lidocaine).

Contraindications (checklist)


- Absolute: patient refusal, infection at puncture site, true LA allergy, uncorrected hypovolemia/shock, increased ICP from mass lesion, major coagulopathy/therapeutic anticoagulation (follow current ASRA/ESAIC & institutional timing tables).
- Relative: bacteremia/sepsis, severe aortic/mitral stenosis (sympathectomy risk), pre-existing neuro deficits (document), spinal deformity/previous surgery.
- Obstetric specifics
- Dose reduction (↓CSF volume/pregnancy), routine vasopressor prophylaxis, left tilt for aortocaval compression; intrathecal morphine 100–200 µg → monitor 12–24 h for late respiratory depression.
- Documentation (non-negotiable)
- Consent (isks/benefits/alternatives), anticoagulation review, approach/space/needle size, drug names/doses/baricity, achieved level, hemodynamics/vasopressors, complications and management.

EPIDURAL

Prof Roman-Pognuz

What an Epidural Is & When to Use It

Definition

- Injection of local anesthetic (\pm adjuvants) into the epidural space, usually via catheter, enabling continuous titration of segmental sensory \pm motor block.
- Where it helps (examples)
- Thoracic: thoracotomy, sternotomy, rib fractures (improves ventilation & cough).
- Abdominal: open/laparoscopic major bowel, AAA, upper abdominal cancer surgery (attenuates ileus & stress).
- Obstetrics: labor analgesia, cesarean (as surgical anesthesia with adequate dosing).
- Major orthopedics: bilateral TKAs/hip revisions (analgesia; note: many centers now prefer peripheral catheters for motor-sparing).

Why choose an epidural?

- Adjustable level & duration, excellent analgesia, opioid sparing (\downarrow PONV, ileus, resp depression), ERAS-friendly.
- Enables hemodynamic modulation (thoracic epidural blunts sympathetic response).
- https://www.youtube.com/watch?v=_mE-rTnb3qE

Anatomy, Equipment & Technique (Step-by- Step)

Key anatomy

- Space runs from foramen magnum to sacral hiatus; bordered by ligamentum flavum posteriorly & dura anteriorly.
- Thoracic epidural is narrower; paramedian approach often easier than midline.
- Equipment & prep
- Full monitors, IV access, resuscitation drugs + lipid 20% present.
- Sterile prep: chlorhexidine (allow to dry), mask/cap/sterile gloves, drape.
- Tuohy needle 17–18G, epidural catheter (multi-orifice preferred), sterile saline for loss-of-resistance (LOR) (saline > air).

Technique (lumbar/thoracic)

- Position: sitting (flexed) or lateral decubitus; identify interspace (US pre-scan helpful).
- Advance Tuohy until LOR to saline (often 4–6 cm lumbar; shallower thoracic).
- Thread catheter 3–6 cm into space (thoracic often 3–4 cm; lumbar 4–6 cm).
- Negative aspiration; test dose (see Slide 5).
- Incremental dosing with frequent aspiration & communication.

Drugs, Doses & Adjuvants (Initial & Top-Up)

Local anesthetics (typical choices)

- Bupivacaine 0.0625–0.25% (denser motor at higher %).
- Ropivacaine 0.1–0.5% (slightly less motor block → good for analgesia/ambulation).
- Lidocaine 1–2% (rapid onset; shorter duration; surgical top-ups).
- Chlorprocaine 2–3% (short surgical cases; rapid offset).

Rule of thumb (segmental spread)

- ~1–2 mL per dermatome targeted; thoracic injections spread more cephalad-caudal per mL than lumbar.

Drugs

Prof Roman-Pognuz

- Example initial doses (titrate to effect, in 3–5 mL increments)
- Thoracic analgesia (rib/upper abd): ropi 0.1–0.2% 5–10 mL → then assess; add opioid (e.g., fentanyl 2–5 µg/mL).
- Lumbar analgesia (hip/knee): ropi 0.1–0.2% 5–10 mL.
- Surgical anesthesia through epidural: bupi 0.5% 10–20 mL slowly (or ropi 0.5% similar) — check BP closely.
- OB labor loading: ropi 0.1–0.2% 8–10 mL + fentanyl 2 µg/mL (or sufentanil 0.5–1 µg/mL).
- Adjuvants (per infusion)
 - Opioids: fentanyl 1–5 µg/mL, sufentanil 0.5–1 µg/mL → improve analgesia, ↓LA dose.
 - Epinephrine: 1:200,000 (5 µg/mL) ↓ systemic uptake (use case-by-case).
 - Clonidine low-dose can prolong block (sedation/hypotension risk).

Maintenance Strategies: CEI, PIEB & PCEA Prof Roman-Pognuz

Continuous epidural infusion (CEI)

- Typical rates: 6–10 mL/h (analgesia concentrations).
- Pros: simple; Cons: risk of ropivacaine/bupivacaine creep → motor block.
- Programmed Intermittent Epidural Bolus (PIEB)
- e.g., 3–6 mL every 20–40 min (smart pump), often + PCEA.
- Pros: better spread, lower LA use & less motor block vs CEI in labor; often superior patient satisfaction.

Patient-Controlled Epidural Analgesia (PCEA)

- Bolus: 3–6 mL, lockout 10–20 min, background CEI 0–6 mL/h or PIEB.
- Titrate to sensory goal (dermatomes) with motor sparing (especially in ERAS/OB).
- Typical OB maintenance recipe (examples)
- Ropi 0.1–0.125% + fentanyl 2 µg/mL; PIEB 4 mL q30 min + PCEA 5 mL, lockout 15 min.
- Aim: pain ≤3/10, Bromage 0–1 (can straight-leg raise).
- Post-op thoracic epidural
- Ropi 0.1–0.2% + fentanyl 2–5 µg/mL at 6–10 mL/h; wean day 2–3 as ileus/pain improve.

Test Dose, Safety Checks & Troubleshooting Patchy Blocks

Prof Roman-Pognuz

Test dose (after negative aspiration)

- Common: 3 mL lidocaine 1.5% + epinephrine 1:200,000 (\approx 45 mg lido + 15 μ g epi).
- Intravascular \rightarrow HR rise \geq 20 bpm within 30–60 s (caution in labor/preeclampsia/beta-blockers).
- Intrathecal \rightarrow rapid motor block of legs within a few minutes.
- OB variant: some avoid epinephrine; use fractionated dosing + careful observation.
- Patchy or unilateral block — fixes
 - Catheter manipulation: withdraw 1 cm (or advance 1 cm), then re-bolus 5 mL.
- Positioning: place patient on the non-blocked side down for 10–15 min; use PIEB.
- Volume & level: switch to larger volume, lower concentration for better spread; use multi-orifice catheter.
- If persistent failure: replace catheter at a different level.

Subdural block (important mimic)

- Clues: delayed onset, extensive sensory spread with minimal motor & relative hemodynamic stability; respiratory compromise if very high.
- Action: stop dosing; support airway; convert plan if surgery imminent; document.

Hemodynamics, Complications & Red Flags

Prof Roman-Pognuz

Hemodynamics

- Sympathetic block → ↓SVR & venous pooling (more with higher thoracic volumes).
- Prevention: preload/co-load judiciously, vasopressor ready (phenylephrine bolus 50–100 µg or infusion; norepinephrine bolus 5–10 µg if bradycardic/vasodilated).
- Treatment: identify cause (depth/bleeding/level), adjust table, small fluid bolus (250 mL) if needed, vasopressor first mindset in high-risk.

Complications

- Intravascular injection / LAST: tinnitus, perioral numbness, seizures → lipid 20% (1.5 mL/kg bolus, then 0.25 mL/kg/min; repeat bolus ×2 as needed; max ≈ 10–12 mL/kg).
- Inadvertent dural puncture (“wet tap”) → PDPH risk; consider intrathecal catheter management per policy vs remove & epidural blood patch later if symptomatic.
- High neuraxial block (if large dose intrathecal): dyspnea → apnea, hypotension/bradycardia → oxygenate/ventilate, vasopressors, support until regression.
- Epidural hematoma/abscess (rare, but critical)

Red flags: new or progressive motor block, new severe back pain, fever, radicular pain, bowel/bladder dysfunction.

- Action: STOP infusion, urgent MRI and neurosurgery consult; decompression ideally <8–12 h from neuro deficit onset.

Contraindications, Anticoagulation Timing & OB Notes

Prof

Absolute contraindications

- Refusal, infection at site, true LA allergy, uncorrected hypovolemia/shock, severe coagulopathy/anticoagulation not appropriately held.

Relative

- Bacteremia/sepsis, severe aortic/mitral stenosis (sympathectomy risk), raised ICP from mass lesion (for epidural bolus caution), pre-existing neuro disease (document baseline), anatomic distortion/spinal surgery.
- Anticoagulation/antiplatelets (principles — follow current ASRA/ESAIC + local policy)
- LMWH prophylactic: wait ≥ 12 h before insert/remove; next dose ≥ 4 h after removal.
- LMWH therapeutic: wait ≥ 24 h before insert/remove.
- DOACs (apixaban/rivaroxaban/dabigatran): hold 2–4+ days (depend on renal function/dose).
- Clopidogrel/prasugrel/ticagrelor: hold 5–7 days before neuraxial; avoid catheter with active therapy.
- Warfarin: INR ≤ 1.4 for placement; verify daily if catheter in situ.
- UFH IV: stop 4–6 h, verify normal aPTT. (Prophylactic SQ heparin: coordinate timing with insertion/removal.)

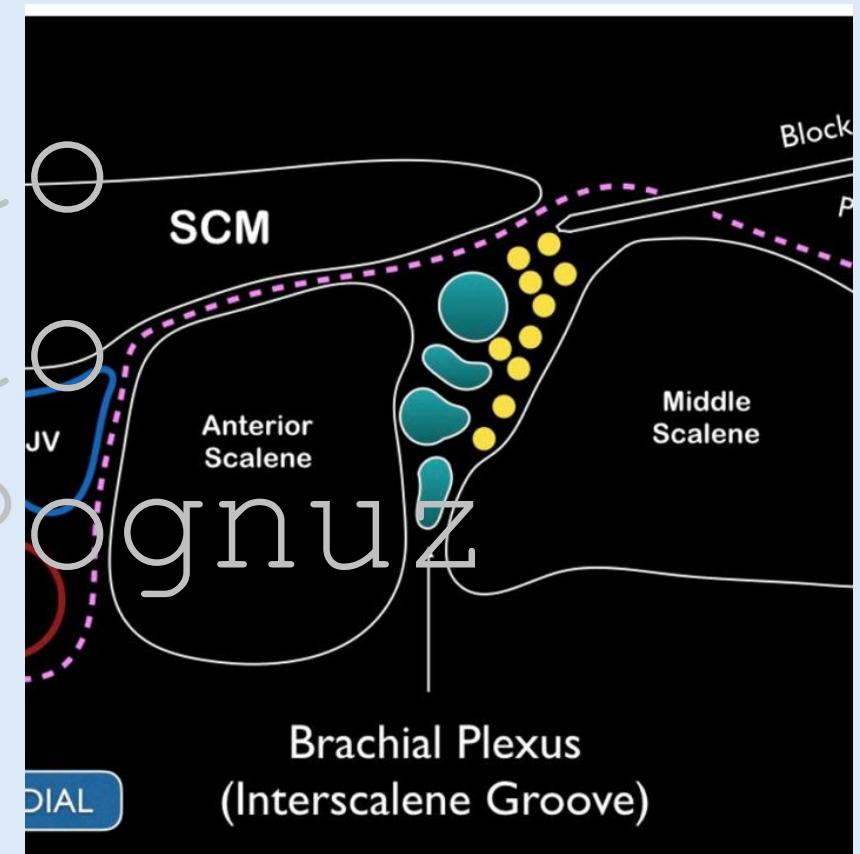
BLOCKS

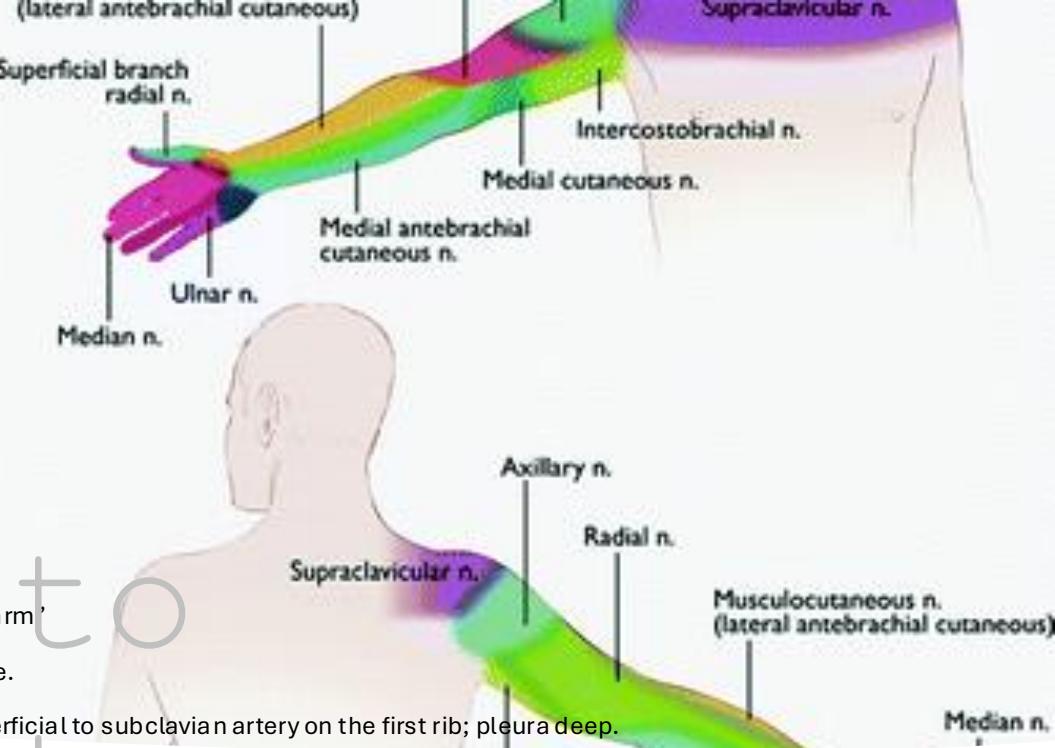
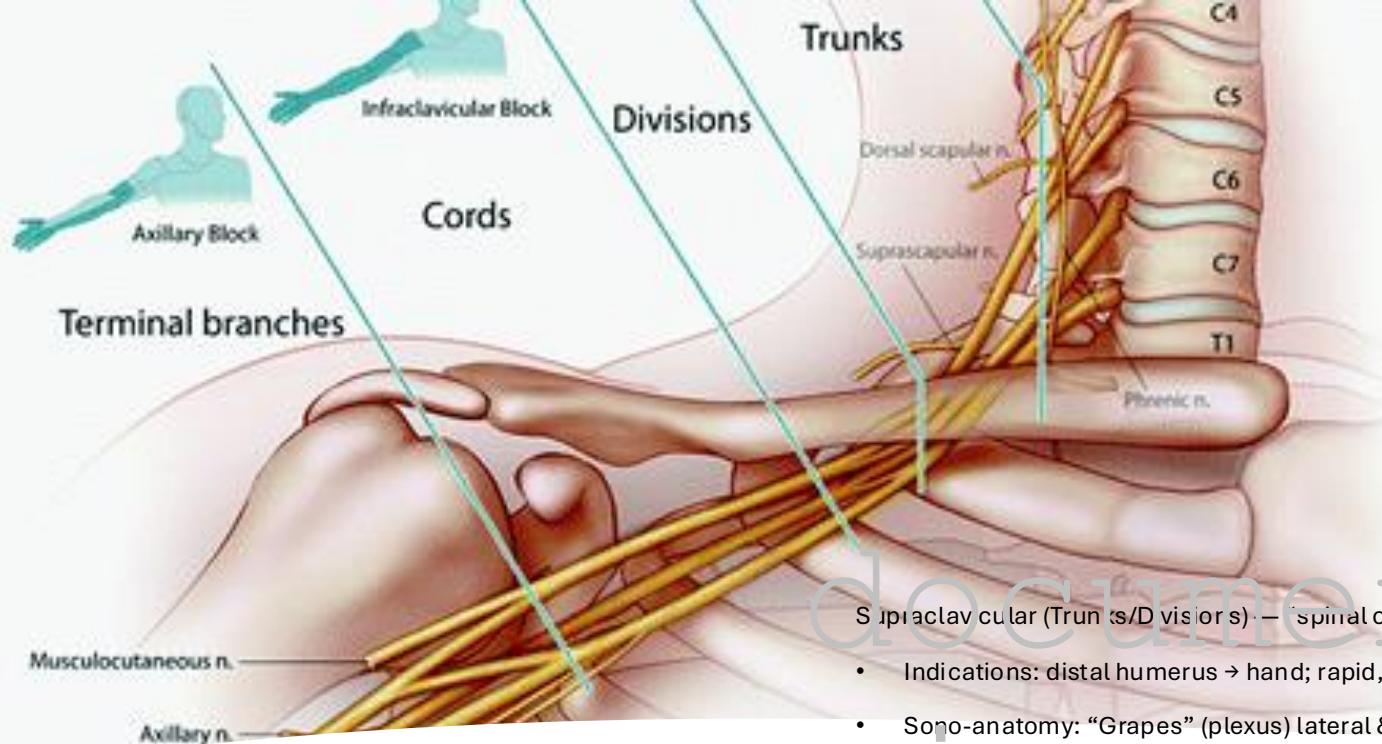
documento

riservato

Prof Roman-Pognuz

PNBs: Concepts, Benefits & Safety Guardrails


- What: Targeted, reversible blockade of peripheral nerves/plexuses with local anesthetic (LA); single-shot or continuous catheter.
- Why: Superior analgesia, opioid-sparing (\downarrow PONV resp depression), better rehab/early mobilization, smoother emergence.



Core safety bundle:

- Standard monitors, IV access, resus drugs + 20% lipid in room.
- Ultrasound guidance first-line; nerve stim as adjunct.
- Incremental injections (3–5 mL), frequent aspiration, low injection pressure (<15 psi), stop if pain/paresthesia/high resistance.
- Dose calculations (mg/kg) — consider cumulative LA dose across blocks/planes.
- Anticoagulation: deep, non-compressible sites (e.g., paravertebral, infraclavicular) \rightarrow stricter timing (treat like neuraxial-equivalent per local policy).
- Adjuvants (off-label per local policy): perineural dexamethasone 2–4 mg (\uparrow duration), dexmedetomidine 25–50 μ g (\uparrow duration, bradycardia risk).
- Catheters: securement + sterile dressing; ropivacaine 0.1–0.2% at 5–8 mL/h, patient-bolus 3–5 mL, lockout 30–60 min.

Upper Limb: Interscalene (Roots C5–7)

- Surgery/analgesia: shoulder/upper humerus; best analgesia but phrenic nerve paresis common.
- Sono-anatomy: C5–7 root “stop-light” between anterior & middle scalene at cricoid (C6).
- Technique: patient supine/semi-sitting, head turned contralateral; in-plane lateral→medial; target spread around C5–C6 roots.
- Volume/concentration (adult): 10–15 mL ropi 0.5% (surgical) or 0.2–0.375% (analgesic); low-volume (5–7 mL) can reduce but not eliminate phrenic paresis.
- Pearls: keep needle superficial to prevertebral fascia; avoid medial/pleural trajectory.
- Complications: hemidiaphragm paresis (~virtually all at standard volumes), Hörner’s syndrome, RLN hoarseness, intravascular (vertebral), neuraxial injection (rare).
- Avoid in: severe pulmonary disease/one-lung dependence—consider suprascapular + axillary nerve combo instead.

Upper Limb: Supraclavicular, Infraclavicular, Axillary

- Indications: distal humerus → hand; rapid, dense.
- Sono-anatomy: “Grapes” (plexus) lateral & superficial to subclavian artery on the first rib; pleura deep.
- Volume: 15–25 mL (up to 0.5% (surgical) or 0.2–0.375% (anesthesia)).
- Risk: pneumothorax (↓ with US); keep needle on rib, avoid medial passes.

Infraclavicular (Cords) — long-acting, catheter-friendly

- Indications: elbow to hand; when catheter desired.
- Sono-anatomy: axillary artery with cords around it (often posterior → deep to artery).
- Volume: 20–30 mL; deeper target → consider longer needle & pressure monitoring.
- Risks: vascular puncture/hematoma; pectoral discomfort during needle passage.

Axillary (Terminal branches) — motor-sparing options

- Indications: forearm/hand; good when pneumothorax risk must be nil.
- Sono-anatomy: radial/median/ulnar around axillary artery; musculocutaneous in coracobrachialis (must inject separately).
- Volume: 20–30 mL total, split 3–5 mL per nerve for completeness.
- Pearl: abduct arm; compressible field = safer in anticoagulated pts (local policy dependent).

Lower Limb: Femoral / Adductor Canal (Saphenous) / Fascia Iliaca

Femoral nerve (inguinal crease)

- Analgesia: anterior knee, femur fractures; quadriceps weakness (fall risk).
- Sono-anatomy: nerve lateral to femoral artery, under fascia iliaca.
- Volume: 10–20 mL ropi 0.2–0.375% (analgesia).
- Pearl: ensure sub-fascia iliaca spread (watch hydrodissection).

Adductor canal (saphenous nerve + vastus medialis branch)

- Analgesia: knee with motor-sparing (quadriceps preserved vs femoral).
- Sono-anatomy: femoral artery under sartorius; mid-thigh; nerve anterolateral to artery.
- Volume: 10–15 mL ropi 0.2–0.375%. Catheter feasible.

Fascia iliaca compartment (FICB)

- Analgesia: hip fracture, lateral thigh; easier, broad spread to femoral/LFCN/±obturator.
- Sono-anatomy: lateral to artery; inject under fascia iliaca (large volume).
- Volume: 30–40 mL dilute ropi 0.1–0.2%.

Lower Limb: Sciatic (Subgluteal) & Popliteal

Sciatic—Subgluteal/Proximal

- Indications: posterior knee, tibia/ankle, Achilles; dense analgesia.
- Sono-anatomy: sciatic deep to gluteus maximus, between quadratus femoris & adductor magnus (variable).
- Volume: 15–25 mL ropi 0.5% (surgical) or 0.2–0.375% (analgesic).
- Pearls: depth requires longer needle, optimize image; consider catheter for amputation analgesia.

Popliteal (sciatic bifurcation region)

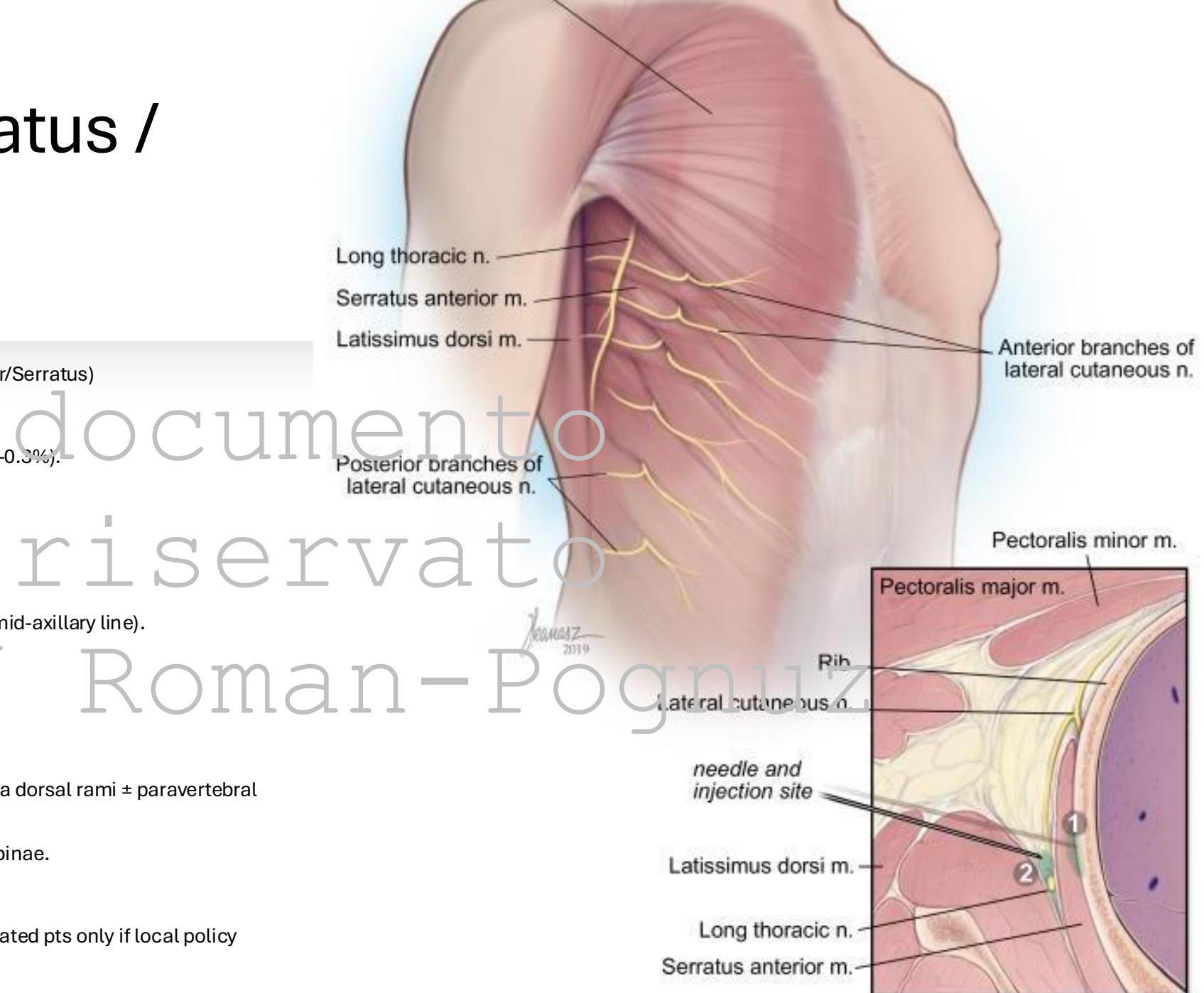
- Indications: foot/ankle surgery, preserves hamstrings (more distal).
- Sono-anatomy: identify tibial & common peroneal nerves proximal to bifurcation, posterior to artery/vein.
- Volume: 15–25 mL around the common sheath (or 10–12 mL each division).
- Complications: foot drop (expected while active), vascular puncture; anticoagulation caution per local policy.

documento
riservato
Prof. Roman-Pognuz

Truncal Plane Blocks: TAP

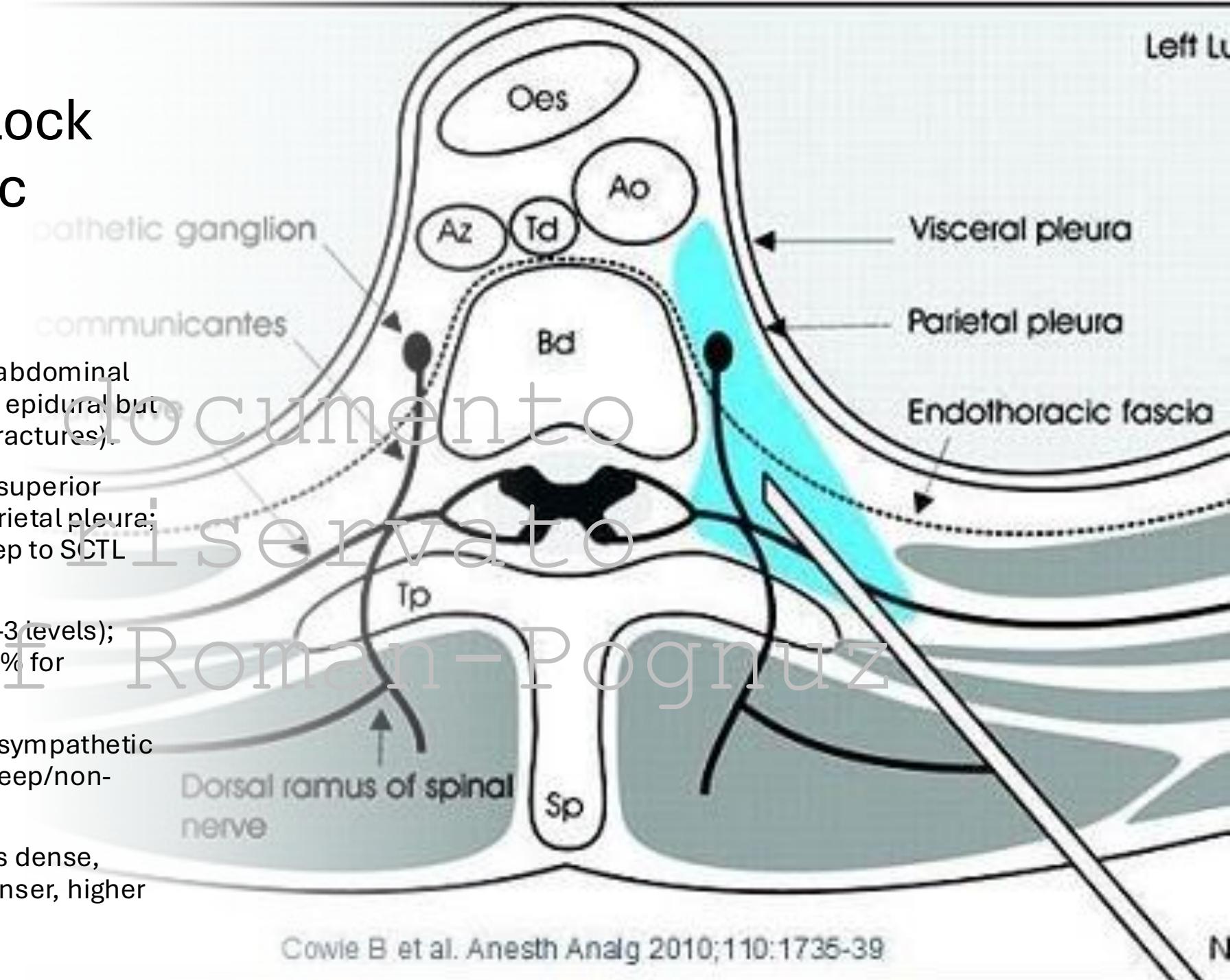
PECS I-II / Serratus / ESP

PECS I (between Pec Major/Minor) & PECS II (between Pec Minor/Serratus)


- Analgesia: breast/axillary surgery, pacemaker pockets.
- Volumes: PECS I ~10 mL, PECS II ~15–20 mL (dilute ropi 0.2–0.3%).
- Pearl: deposit both planes for axillary coverage.

Serratus Anterior Plane (SAP)

- Analgesia: lateral thoracotomy, chest drains, rib fractures (mid-axillary line).
- Volume: 20–30 mL superficial or deep to serratus.


ESP (Erector Spinae Plane)

- Analgesia: thoracic/abdominal/hip fractures; wide spread via dorsal rami ± paravertebral connections.
- Sono-anatomy: transverse process; inject deep to erector spinae.
- Volume: 20–30 mL; catheter friendly.
- Pearl: easier, safer alternative to paravertebral in anticoagulated pts only if local policy allows (still consider depth/compressibility).

Paravertebral Block (PVB) & Thoracic Wall Analgesia

- Why PVB: Unilateral thoracic/upper abdominal anesthesia/analgesia approximating epidural but unilateral (breast, thoracotomy, rib fractures).
- Sono-anatomy: transverse process, superior costotransverse ligament (SCTL), parietal pleura; inject in paravertebral space just deep to SCTL without pleural puncture.
- Volume: 10–20 mL per level (often 2–3 levels); ropi 0.375–0.5% for surgical, 0.2–0.3% for analgesia.
- Risks: pneumothorax, hypotension (sympathetic block), vascular puncture; treat as deep/non-compressible for anticoagulation.
- ESP vs PVB: ESP easier/safer but less dense, more variable visceral block; PVB denser, higher risk profile

Practical Dosing, Duration & Troubleshooting

Prof

Typical single-shot durations (adult, ropivacaine):

- 0.5%: ~8–14 h sensory (site-dependent). 0.2–0.375%: ~6–10 h analgesia with less motor block.

“Surgical vs analgesic” recipe:

- Surgical: higher % (0.5) & moderate **mL** → dense but more motor block.
- Analgesic: lower % (0.2–0.3) & adequate **mL** → better spread, motor-sparing.

Common misses & fixes:

- Axillary: forgot **musculocutaneous** → add 5 mL in **coracobrachialis**.
- Supraclavicular: inadequate **corner-pocket** (inferolateral plexus) → redirect and complete U-shaped spread.
- Adductor canal: inject **anterolateral to artery** under sartorius; avoid too proximal (becomes femoral).
- TAP: wrong plane (between EO/IO) → reposition; confirm **IO-TA** plane with hydrodissection.

Practical Dosing, Duration & Troubleshooting

Prof Roman Pogonuz

Complications overview:

- **LAST** → follow lipid protocol (bolus **1.5 mL/kg**, infusion **0.25 mL/kg/min**, repeat bolus up to total **10–12 mL/kg**).
- **Nerve injury** (rare): avoid intraneural (no high opening pressure, no severe pain on injection).
- **Hematoma/infection**: asepsis; compressible sites safer if anticoagulated.
- **Documentation**: block type/side, LA drug/conc/volume/total mg, adjuvants, US images (if policy), dermatomal/motor checks, complications, discharge instructions (falls risk after femoral; foot drop after sciatic until resolution).

PACU

Prof Roman-Pognuz

documento

riservato

PACU Priorities & Discharge Scoring

Prof Roman Pogonatz

Immediate priorities (ABCTs):

- **Airway** patency (look/listen/feel; OPA/NPA/positioning).
- **Breathing:** RR, work of breathing, **SpO₂**, **EtCO₂** if on supplemental O₂ or high risk.
- **Circulation:** HR, **MAP**, rhythm, cap refill, drain outputs.
- **Temperature:** prevent/treat hypothermia (forced-air warmer; warmed IV fluids).
- **Monitoring frequency:** q5–15 min initially, then titrate by stability; continuous SpO₂; add capnography for high OIRD risk (OSA, high opioids).

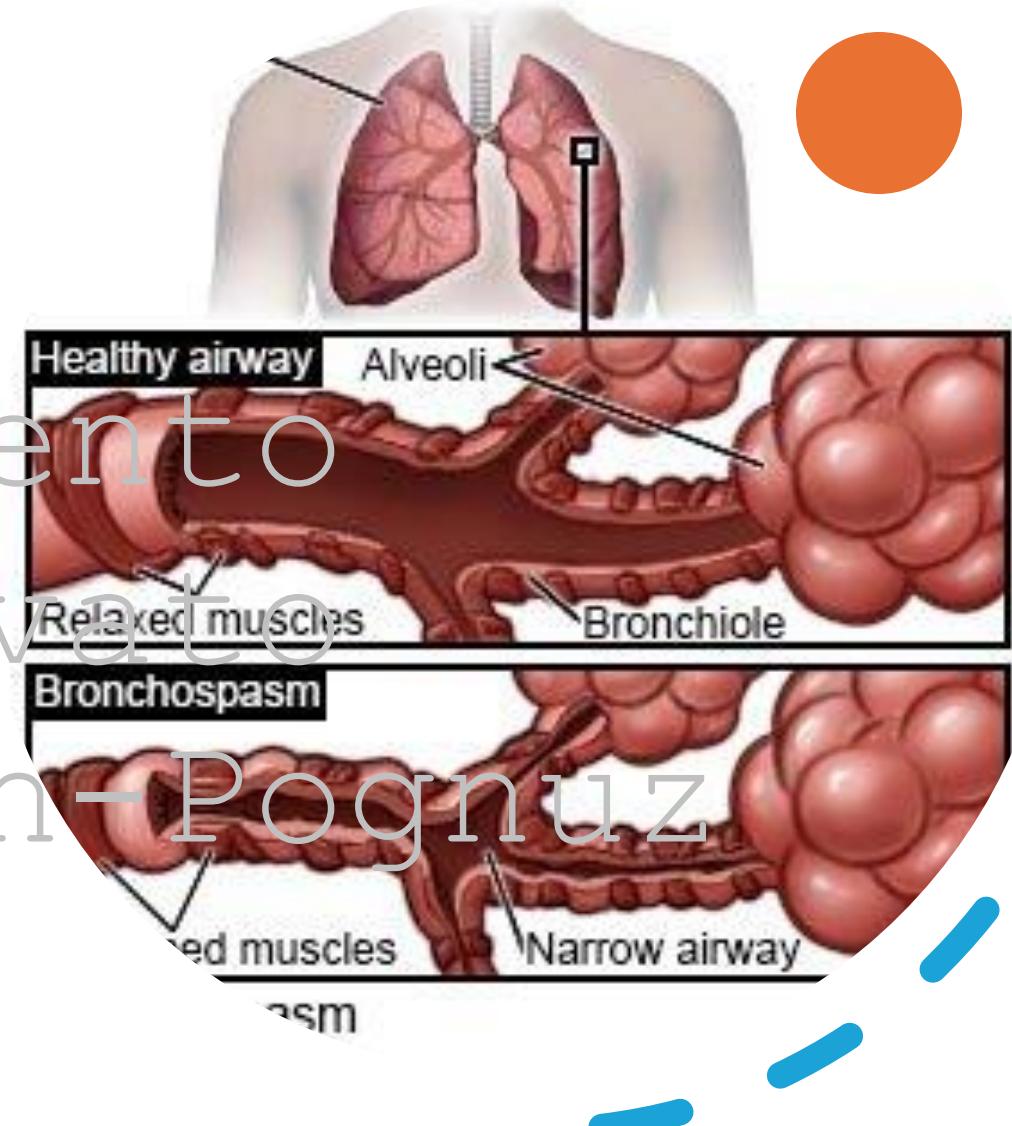
• Discharge scoring (to Phase II/ward):

- **Aldrete/McCabe Aldrete** (activity, respiration, circulation, consciousness, SpO₂) $\rightarrow 9/10$ (or baseline) and clinician judgment.
- **Ambulatory add-ons:** PADS (pain, N/V controlled, oral intake, ambulation, void if indicated, escort arranged).

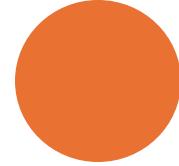
Pain: Assessment & Multimodal Plan

Prof Roman-Pognuz

Assessment tools:


- **NRS 0–10 or VAS; POSS/RASS for sedation; CPOT/BPS for non-verbal.**
- Set a goal (e.g., **NRS ≤3 at rest, ≤5 with movement**). Reassess 15–30 min after interventions.
- **Multimodal foundation (unless contraindicated):**
- **Acetaminophen** 1 g PO/IV q6h (max 3–4 g/day; reduce with liver disease/low weight).
- **NSAID/COX-2** (e.g., **ketorolac 15–30 mg IV q6h**, max 60–120 mg/day): avoid if AKI risk, GI bleed, bleeding risk, third-trimester pregnancy.
- **Regional/epidural:** confirm block function/catheter site; document **dermatomal level** & motor exam (Bromage).
- **Opioid rescue (titrate slowly, monitor sedation/O₂):**
- **Fentanyl 25–50 µg IV q5–10 min PRN** (short-acting).
- **Hydromorphone 0.2–0.4 mg IV q10–15 min PRN** (longer tail).
- **Morphine 1–2 mg IV q10–15 min PRN.**
- Avoid basal infusions in **opioid-naïve** and **OSA**.
- **PCA (if needed, typical starts):**
- **Morphine 1 mg demand, lockout 6–10 min, no basal** (OSA/naïve).
- **Hydromorphone 0.2 mg demand, lockout 6–10 min.**
- **Opioid adverse effects:** pruritus, **respiratory depression**, ileus, urinary retention—treat/prevent (see Slide 5).

PONV: Risk, document to Prophylaxis & iservato Rescue Prof Roman-Pognuz

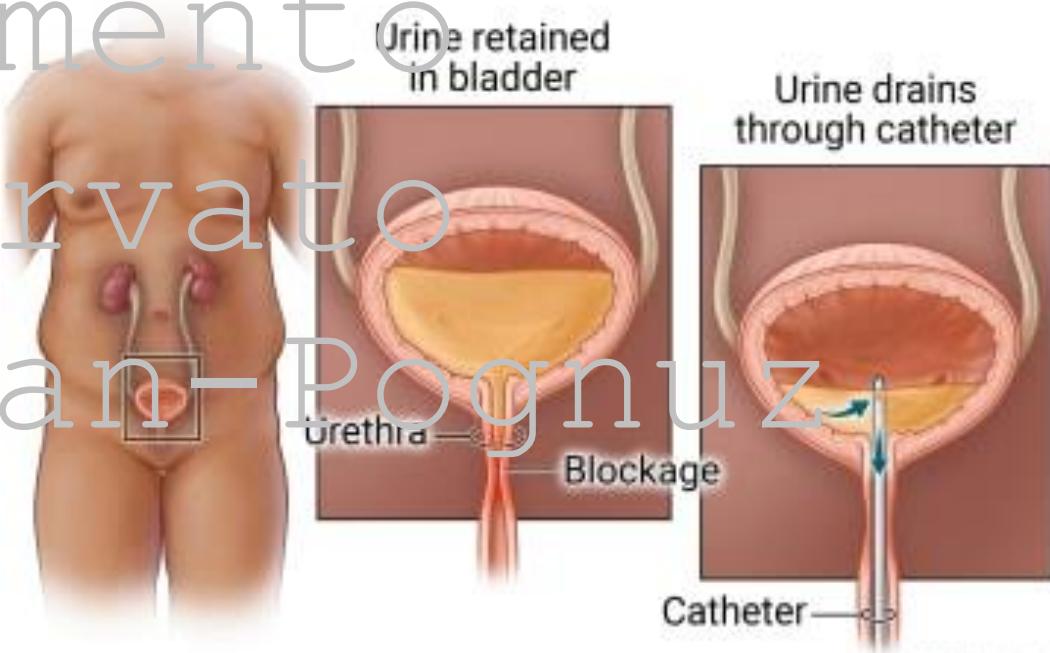

- **Risk stratification (Apfel):** female, non-smoker, PONV history/motion sickness, postop opioids (0–4 points).
- **Prophylaxis (choose ≥2 classes if moderate/high risk):**
- **Dexamethasone 4–8 mg IV** at induction.
- **Ondansetron 4 mg IV** near end of case.
- Consider **droperidol 0.625–1.25 mg IV** (QT caution), **haloperidol 0.5–1 mg IV**, **scopolamine patch**, **aprepitant 40 mg PO** preop for very high risk.
- **Rescue (use a different class than prophylaxis):**
- **Ondansetron 4 mg IV** (if not already used) or **granisetron 1 mg IV**.
- **Droperidol 0.625–1.25 mg IV** or **haloperidol 0.5–1 mg IV**.
- **Metoclopramide 10 mg IV** as adjunct.
- Rehydrate; treat pain/anxiety; **avoid emetogenic opioids** when possible.
- **Disposition:** sustained vomiting, intractable symptoms → observe longer, consider alternative analgesia (regional, ketamine low-dose, acetaminophen/NSAID).

Early Complication Detection & Management

- **Airway/Respiratory**
- **Obstruction/hypoventilation:** jaw thrust, OPA/NPA, head-elevated; consider residual NME (TOF $\geq 0.9-1.0$ before extubation).
- **Laryngospasm:** 100% O₂ + CPAP, deepen anesthesia (propofol), **succinylcholine 0.1-0.5 mg/kg IV** if persistent.
- **Bronchospasm:** β_2 -agonist neb, deepen anesthesia (sevo/propofol/ketamine), epinephrine if severe.
- **Hypoxemia:** verify airway, atelectasis (incentive spirometry), aspiration, pneumothorax (post block/line) → POCUS/CXR.

Early Complication Detection & Management

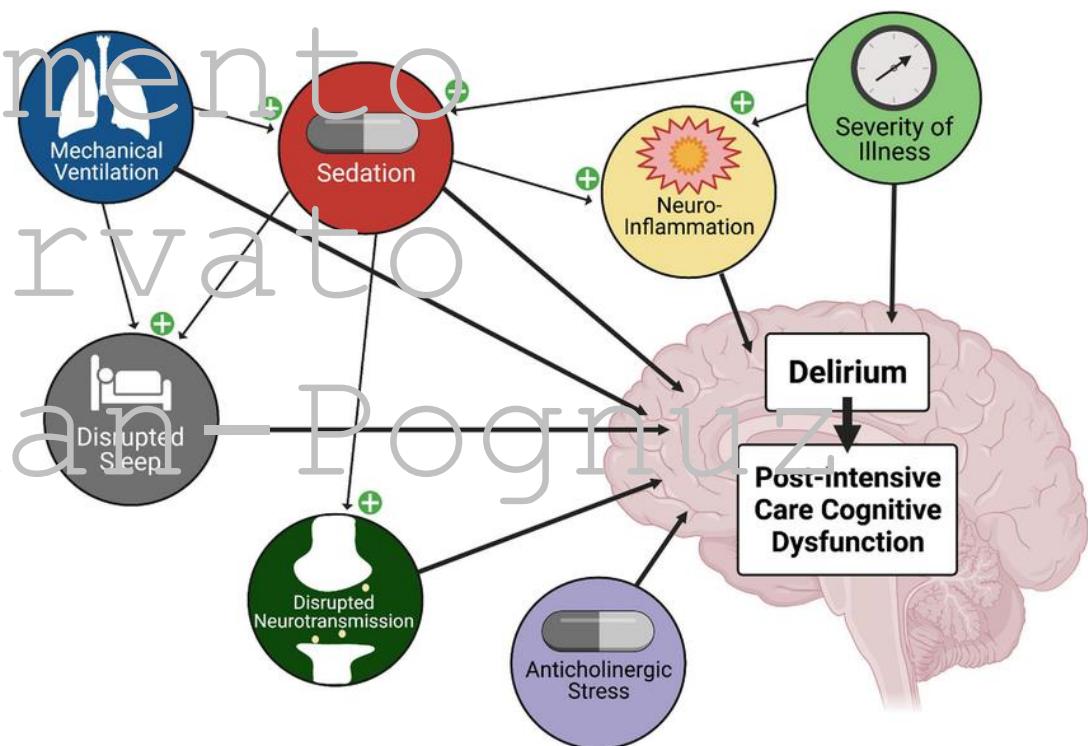
Hemodynamics


- **Hypotension:** r/o bleeding (surgical site/drains), residual anesthetic effect, sepsis; small balanced fluid bolus (250 mL) if responsive; **phenylephrine 50-100 µg IV** or **norepinephrine 5-10 µg IV** for vasodilation; **ephedrine 5-10 mg IV** if low HR + low BP.
- **Hypertension/tachycardia:** pain, bladder distension, hypoxia, withdrawal, thyroid issues; treat cause \pm **esmolol/nitro**.

Temperature/Shivering

- **Active warming** to 36-37 °C; **meperidine 12.5-25 mg IV** for shivering (or clonidine/ondansetron adjuncts).
- **Bleeding**
- Check wound/hematoma; drain outputs; serial vitals; labs (Hb, coagulation) if concern; notify surgeon early.

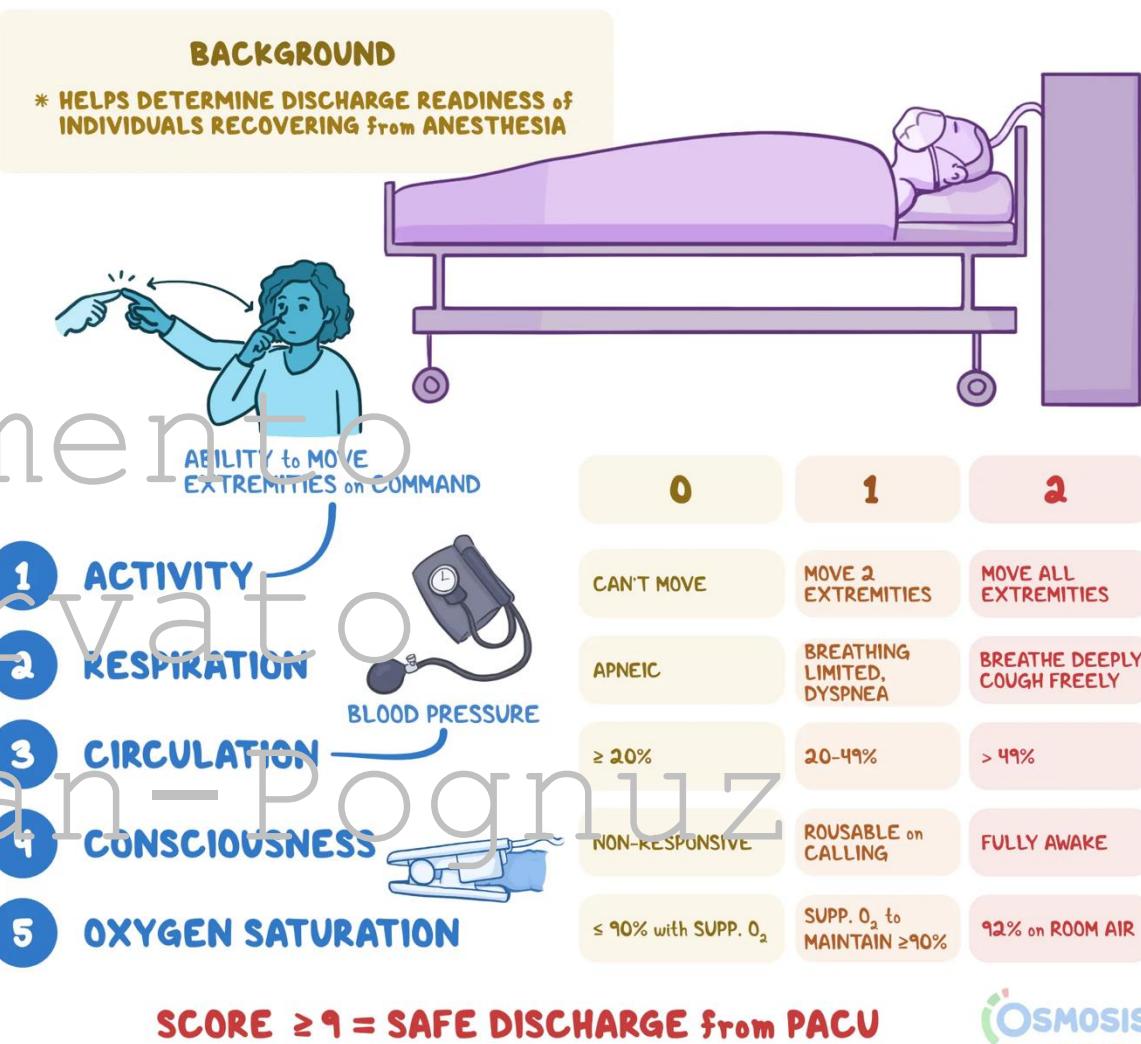
OIRD, Urinary Retention


- **Opioid-Induced Respiratory Depression (OIRD)**
- **High-risk:** OSA, elderly, renal/hepatic impairment, high cumulative opioids, concurrent sedatives.
- **Prevention:** smallest effective opioid dose, avoid basal PCA continuous **pulse oximetry ± capnography**.
- **Treatment:** stimulate, O₂, support ventilation; **naloxone 20–40 µg IV** q2–3 min to effect; consider **infusion 0.04–0.4 mg/h** if long-acting opioids used (avoid abrupt withdrawal).
- **Urinary retention**
- Risk: neuraxial opioids, pelvic/hemia surgery, anticholinergics, high opioid load.
- **Bladder scan** if no void and discomfort; typical threshold **>400–600 mL** → intermittent catheterization.
- Optimize analgesia, mobilize; review meds.

© 2023 Healthwise

OIRD, Delirium & Glycemia

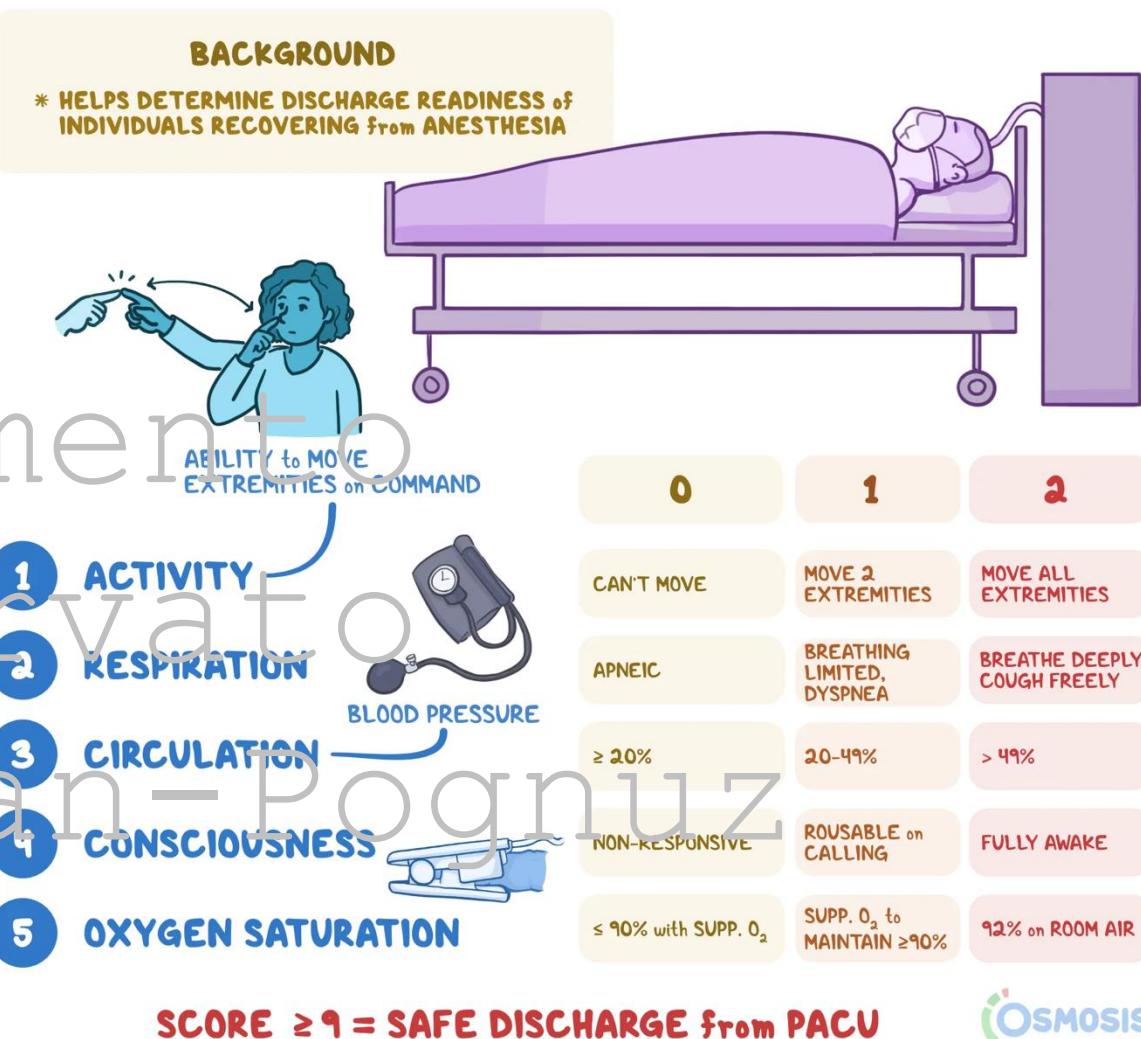
- **Delirium/Emergence agitation**
- Screen (CAM-ICU), correct pain, hypoxia, urinary retention; minimize deliriogenic meds; **dexmedetomidine** low-dose or low-dose antipsychotic if needed (QT/age caution).
- **Glycemic control**
- Target **140–180 mg/dL** (7.8–10 mmol/L); treat hypo-/hyperglycemia per protocol; resume home insulin strategy when eating.


Handover, Ward Transfer & Orders

- **Structured handoff (SBAR)**
- **Surgery & key intraop events.**
- **Baseline comorbidities/risk (OSA, CAD, anticoagulation).**
- **Anesthetics/analgesics (last opioid time/dose; **regional catheters** detail & checks; antiemetics; fluids/EBL; vasoactives; antibiotics).**
- **Recommendations: pain plan, PONV PRNs, oxygen strategy, monitoring level (e.g., continuous oximetry for OSA/high-risk), labs/targets.**

		Room #:	Code:	MD:
		Dx:	Allergies:	
SITUATION		BACKGROUND		
Admit Date Hospital Course		From Reason	Tests Done	PMH
				Psychosocial Decision Maker
ASSESSMENT				
Temperature NOCT-Max Day T-Max		Neuro 4321 <input type="checkbox"/> BVD RASS _____ CAM + - Pain _____ GCS _____	Cardiac EP: _____ Echo Date: _____ Rhythm: _____	Hemodyn <input type="checkbox"/> A-Line <input type="checkbox"/> CVP <input type="checkbox"/> PAC <input type="checkbox"/> NICOM
Respiratory <input type="checkbox"/> Clear <input type="checkbox"/> ET <input type="checkbox"/> Trach <input type="checkbox"/> Ch T <input type="checkbox"/> VS P/F Ratio: _____		Vent Settings <input type="checkbox"/> RT <input type="checkbox"/> ARDS MODE: _____ FiO2: _____ PC: _____ PEEP: _____ RATE: _____	GI <input type="checkbox"/> NG <input type="checkbox"/> OG PEG <input type="checkbox"/> LWS: _____ C Diff: - + Lost BM: _____ Diet	GU <input type="checkbox"/> Foley <input type="checkbox"/> BSC <input type="checkbox"/> Anuric <input type="checkbox"/> Dialysis I/O Heme
Musculoskeletal <input type="checkbox"/> PT <input type="checkbox"/> Special Bed <input type="checkbox"/> Bools <input type="checkbox"/> Ambulating		Skin <input type="checkbox"/> Clear <input type="checkbox"/> Dsing; <input type="checkbox"/> Wounds: DVT & Other Ulcs: Prop/ptx: _____ <input type="checkbox"/> Heparin <input type="checkbox"/> Lovenox <input type="checkbox"/> USCDs <input type="checkbox"/> Cepcid <input type="checkbox"/> Neutroix	Drains	IV Sites <input type="checkbox"/> PIV: <input type="checkbox"/> Central: <input type="checkbox"/> PICC: <input type="checkbox"/> Other:
Gits 1) _____ @ _____ 2) _____ @ _____ 3) _____ @ _____ 4) _____ @ _____ 5) _____ @ _____ 6) _____ @ _____ 7) _____ @ _____		Sepsis <input type="checkbox"/> Infection <input type="checkbox"/> Simple <input type="checkbox"/> Severe Lactate: _____ CVP: _____ ScVO2: _____ <input type="checkbox"/> Abx: _____ Given @: _____ Cultures <input type="checkbox"/> Blood x2 <input type="checkbox"/> Urine <input type="checkbox"/> Sputum	Lab Drawn Accu-Check <input type="checkbox"/> K <input type="checkbox"/> Mg <input type="checkbox"/> Ph <input type="checkbox"/> Ca <input type="checkbox"/> SS <input type="checkbox"/> gtt	Parameters PRNs Given
RECOMMENDATION		TODO LIST		
			Na: _____ K: _____ Mg: _____ Ca: _____ Ph: _____ Cr: _____	

Handover, Ward Transfer & Orders


- Before transfer — must confirm
- Aldrete ≥ 9 , hemodynamically stable, SpO_2 at or near baseline on planned O_2 , pain controlled on oral/IV transition plan, N/V controlled, temp $\geq 36^\circ\text{C}$, no active bleeding, mental status acceptable for destination.
- Regional: document dermatomes, motor exam, catheter depth/rate; provide LAST instructions & lipid availability on the ward if catheter infusing.
- Respiratory risk/OSA: encourage CPAP (use patient's device); no basal PCA; continuous oximetry.

Handover, Ward Transfer & Orders

Postop orders & counseling

- Analgesia:** scheduled acetaminophen ± NSAID/COX-2; opioid PRNs with **clear hold parameters** (sedation score, RR); bowel regimen.
- PONV PRNs** from a different class than prophylaxis.
- Early mobilization**, DVT prophylaxis per protocol, incentive spirometry, diet advancement plan.
- Red flags education** (to nurses/patient): escalating pain/swelling at wound, fever/chills, **increasing somnolence with shallow breathing**, inability to void, intractable N/V, chest pain/shortness of breath.

Future

Prof Roman-Pognuz

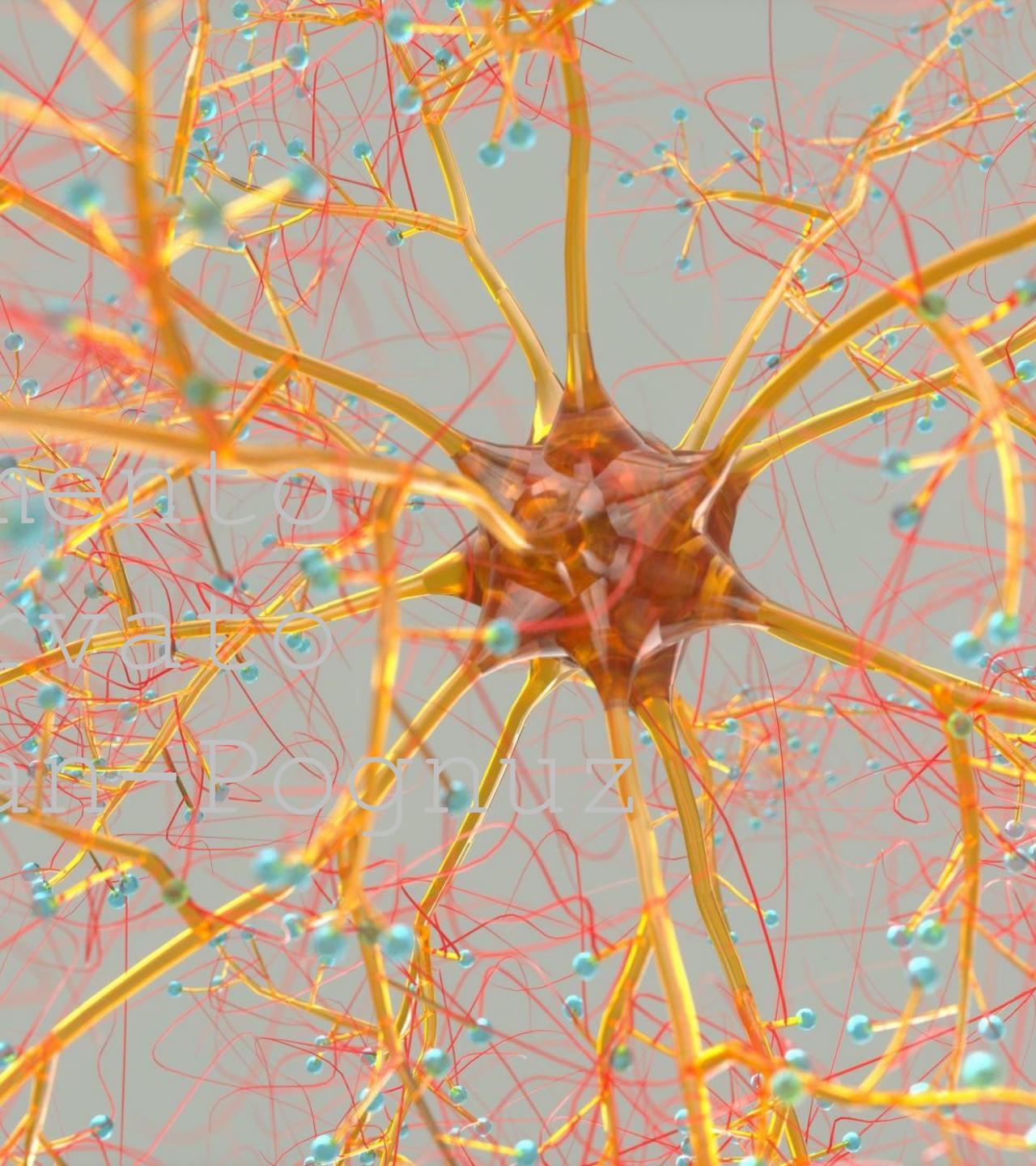
documento

riservato

Precision Anesthesia & Individualized Dosing

documentato
riservato
Prof. Roman - Pognaz

- **What it means:** tailoring hypnotic/analgesic/NMBA plans to a patient's **genotype, phenotype, and physiology** (age, frailty, comorbidities, EHR data).
- **Pharmacogenomics (examples you can teach):**
 - **BCHE variants** → prolonged **succinylcholine/mivacurium effect** (plan: avoid or dose-test; consider rocuronium + sugammadex).
 - **CYP2B6/UGT1A9 variability** → differences in **propofol** clearance (watch hypotension/slow wake in slow metabolizers).
 - **CYP2D6 ultra/poor metabolizers** → altered response to **tramadol/codeine** (prefer direct-acting opioids or non-opioids).
 - **OPRM1 A118G** → reduced opioid sensitivity in some patients (anticipate higher opioid requirement or use multimodal/regional).
 - **MCHR (red hair) associations** → ↑ inhalational anesthetic requirement, ↑ pain sensitivity (anticipate dosing & analgesia adjustments).


Individualized Dosing Preservation

Prof Roman Poognan

- **Phenotype-driven titration:**
 - Frailty index, sarcopenia, OSA risk, hepatic/renal function, **hemodynamic reactivity** during induction.
 - Use **processed EEG** to titrate hypnosis; **quantitative TOF** to titrate NMBAs instead of fixed schedules.
- **Decision support now/near-term:** EHR-based risk scores (PONV, hypotension), smart pump libraries, “suggested dose ranges” that adjust to age/BMI/comorbidity.

Ultrasound-First: Regional & Vascular Access (with Emerging Tech)

- **Standard of care trend: US guidance** for peripheral nerve blocks and central/peripheral vascular access (\uparrow success, \downarrow complications).
- **Block quality mechanics:**
 - **In-plane** needle visualization; deliberate **hydrodissection**; aim for **circumferential LA spread** around nerves/fascial planes.
 - **Low injection pressure** (<15 psi) + **incremental 3–5 mL** injections with frequent aspiration to reduce intraneural/intravascular risk.
- **Vascular access:** dynamic US for IJ/subclavian/axillary; **long-axis cannulation**, confirm with **saline swirl/POCUS**; use microintroducers.

What's next:

- **Needle-tip tracking** (magnetic/reflective), **AI nerve segmentation**, auto-measurements (depth, distance).
- **3D/Matrix probes** for paravertebral/ESF/paraspinal mapping; **handheld** battery probes at bedside and in ambulatory centers.
- **AR overlays** and **haptic feedback** systems to guide trainees.
- **Long-acting local analgesia evolution:** perineural catheters with **ropivacaine 0.1–0.2%** smart-bolus algorithms; newer depot formulations (liposomal/combination) for infiltration—know institutional policies on **mixing/compatibility**.

AI-Assisted Monitoring & Closed-Loop Delivery

documento

riservato a Transforming Healthcare

- AI for prediction & detection:
 - Arterial-waveform-based models that **predict hypotension minutes ahead** → pre-emptive vasopressor/fluids.
 - Automated **alarm filtration** and **artifact rejection**; early detection of bronchospasm, apnea, circuit disconnects.
- **Closed-loop control (human-in-the-loop):**
 - **Hypnosis loop:** propofol TCI adjusted to **EEG index target** (e.g., BIS/PSI 40–60).
 - **Analgesia loop:** remifentanil adjusted to **nociception surrogates** (HR/BP/NOL/SPI) while minimizing opioid exposure.
 - **Vasoactive loop:** phenylephrine/norepinephrine titrated to **MAP setpoint**; fluid-responsiveness logic (PPV/SVV validity checks).
 - **NMB loop:** rocuronium guided by **quantitative TOF** to maintain 1–2 twitches intraop and **TOF ratio ≥0.9–1.0** for reversal.

Opioid-Sparing Pathways & New/Next-Gen Analgescics

- **Pathway design (ERAS mindset):**
 - Preop education + **acetaminophen/NSAID/COX-2 baseline; regional/neuraxial prioritized; intraop ketamine low-dose, lidocaine infusion, dexmedetomidine** where appropriate; postop **scheduled non-opioids** with rescue opioid only.
- **Newer/adjunctive drugs & devices:**
 - **Oliceridine** (biased μ -agonist) — potential less respiratory depression (still opioid stewardship needed).
 - **Liposomal bupivacaine/bupivacaine+meloxicam** infiltration products — extended local effect (efficacy varies by procedure; follow your institution's guidance).
 - **S-ketamine** low-dose infusions for hyperalgesia/OIH reduction; **IV lidocaine** for visceral/neuropathic components.
 - **NaV1.7/1.8-selective blockers** and other non-opioid pipelines (under study).

New/Next-Gen Analgesics

- Non-pharmacologic adjuncts with evidence signals:
 - VR distraction, music therapy, acupuncture, TENS, guided hypnosis → lower pain/anxiety and opioid use.
 - Prehab/sleep optimization and CBT-I approaches decrease perioperative pain catastrophizing.
- Stewardship & safety:
 - Standardized discharge opioid quantities, PDMP checks, naloxone co-prescribing for high-risk patients, and buprenorphine-informed perioperative plans.

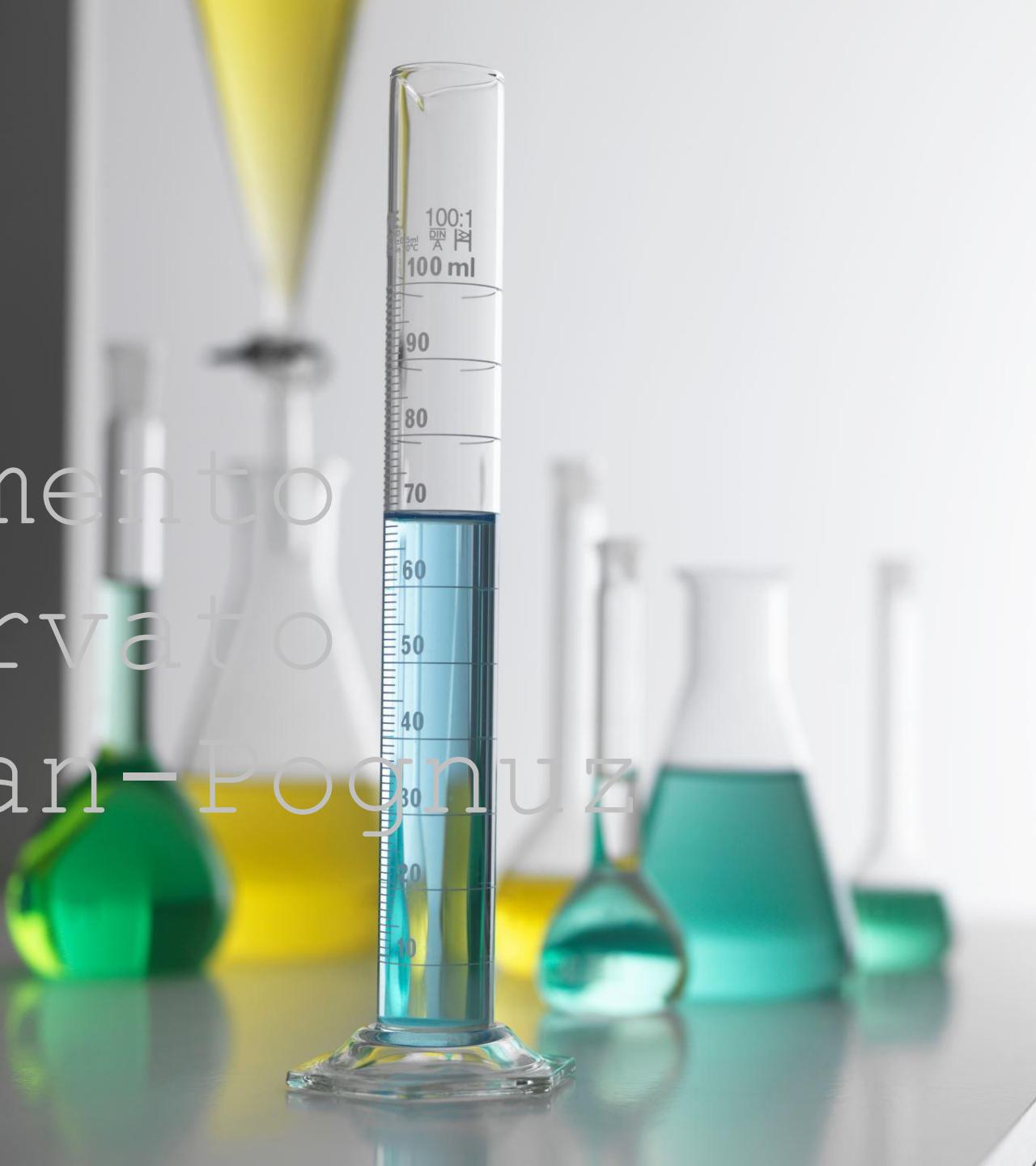
Beyond the OR: Perioperative “Command Center,” Wearables

Continuous periop loop:

- Preop risk stratification → intraop precision → **remote PACU/ward monitoring** (wireless pulse ox, intermittent capnography, mobility trackers).
- Early warning scores integrated with EHR to catch **sepsis, bleeding, OIRD** sooner.

Wearables/At-home monitoring:

- Post-discharge **SpO₂/HR/steps**, pain e-diaries, photo wound checks; automated flags to acute pain service.


& Green Anesthesia

Green anesthesia (sustainability as a clinical quality metric):

- **Retire desflurane/minimize N_2O ; low-flow volatile techniques with scavenging; expand TIVA where appropriate.**
- Device re-use pathways (where safe), anesthetic gas capture, and OR energy optimization.

Education & equity:

- Simulation for crisis/airway/regional; **tele-mentoring** for low-resource settings; bias checks in algorithms to avoid exacerbating disparities.

How Students Can Plug Into Innovation (Actionable “Next Prof Steps”)

- **Read & follow:** anesthesia journals’ **technology/QA** sections; join **quality improvement** and **ERAS** committees as a student observer.
- **Skills to learn early:**
 - Point-of-care ultrasound basics (lung, IVC, gastric, vascular).
 - Basic EEG patterns and MAC/age-adjustment; **quantitative TOF** use and documentation.
 - **Data literacy:** interpreting ROC curves, calibration, and bias/variance in clinical AI papers.

Projects you can start:

Prof Roman-Pogoniz

document to

riservato

- Build a **PONV/analgesia order set** that defaults to multimodal and tracks outcomes.
- Audit **hypotension minutes < MAP 65** vs complications; propose a **vasopressor bundle**.
- Pilot a **VR/music** protocol in PACU with pair/PONV outcomes.
- **Mindset:** stay curious; ask “**Will this change management?**” for every monitor, algorithm, or drug. If yes, design **fail-safes** and **measure outcomes**, not just adoption.
- **Bottom line:** the future is **patient-specific dosing, ultrasound-first procedures, AI-supported & closed-loop physiology control, and opioid-sparing, multimodal care**—all delivered sustainably and safely with clinicians firmly **in the loop**.