1) Solve the following indefinite integral:

$$
\int 2 x \sqrt{1+x^{2}} d x
$$

(hint: by substitution and $u=1+x^{2}$

$$
\begin{gathered}
u=1+x^{2} \\
\frac{d u}{d x}=2 x \\
d x=\frac{d u}{2 x}
\end{gathered}
$$

Replacing u and $d x$ we get

$$
\int 2 x \sqrt{u} \frac{d u}{2 x}=\int \sqrt{u} d u=\frac{2}{3} u^{\frac{3}{2}}=\frac{2}{3}\left(1+x^{2}\right)^{\frac{3}{2}}
$$

2) Find the definite solution of the following differential equation:

$$
\frac{d y}{d t}+\frac{2}{t} y-1=0 \wedge y(1)=\frac{5}{3} \wedge t>0
$$

We apply the solution for the general case:

$$
\begin{equation*}
y=e^{-\int_{\bar{t}}^{2} d t}\left(A+\int e^{\int \frac{\bar{t}}{t} d t} d t\right) \tag{1}
\end{equation*}
$$

Note that

$$
\int \frac{2}{t} d t=2 \ln t
$$

and that:

$$
\begin{aligned}
& e^{-2 \ln t}=\frac{1}{t^{2}} \\
& e^{2 \ln t}=t^{2}
\end{aligned}
$$

Replacing in (1) we get
$y=\frac{1}{t^{2}}\left(A+\int t^{2} d t\right)=\frac{1}{t^{2}}\left(A+\frac{t^{3}}{3}\right) \quad$ General solution
Replacing the initial conditions in the general solution we get:
$\frac{5}{3}=\left(A+\frac{1}{3}\right)$
$A=\frac{4}{3}$
$y=\frac{4+t^{3}}{3 t^{2}}$ Definite solution
3) Write the first order conditions of the following problem and check if they are sufficient conditions.

$$
\begin{gathered}
\max _{\{x, y\}} 10 x-x^{2}+\alpha y \text { s.t. } 10 x+y=B \\
L=10 x-x^{2}+\alpha y-\lambda(10 x+y-B) \\
\left\{\begin{array}{c}
10-2 x-10 \lambda=0 \\
\alpha-\lambda=0 \\
10 x+y=B
\end{array}\right.
\end{gathered}
$$

given that constrain is linear, to check sufficiency it is enough to check the concavity of the function $10 x-x^{2}+\alpha y$.
Its Hessian is: $H=\begin{array}{cc}-2 & 0 \\ 0 & 0\end{array}$
The two first order principal minors are negative (≤ 0), the second order principal minor is positive (≥ 0). Then the Hessian is semidefinite negative, do the function is concave.
This is enough to state that conditions are sufficient.
4) Consider the following problem:

$$
\max _{\{x, y\}} y-x^{2} \text { s.t. } x^{2}+y^{2} \leq 4
$$

Write the first order conditions and find the solution

$$
\begin{gathered}
L=y-x^{2}-\lambda\left(x^{2}+y^{2}-4\right) \\
-2 x-2 \lambda x=0 \\
\left\{\begin{array}{c}
1-2 \lambda y=0 \\
x^{2}+y^{2} \leq 4, \quad \lambda \geq 0, \quad \lambda\left(x^{2}+y^{2}-4\right)=0
\end{array}\right.
\end{gathered}
$$

Case $\lambda=0$
The second equation becomes $1=0$ that is no true. Then in this case we have no solution.
Case $\lambda>0$
In this case the conditions are

$$
\left\{\begin{array}{c}
-2 x-2 \lambda x=0 \\
1-2 \lambda y=0 \\
x^{2}+y^{2}=4
\end{array}\right.
$$

To satisfy the first equation we need either $\lambda=-1$ or $x=0$
$\lambda=-1$ does not satisfy the initial assumption of this case $\lambda>0$
Then we consider $x=0$
By the third equation we find that either $y=2$ or $y=-2$.
Replacing $y=-2$ in the second equation and solving by λ we get $\lambda=-\frac{1}{4}$ that does not satisfy the initial assumption of this case $\lambda>0$

Replacing $y=2$ in the second equation and solving by λ we get $\lambda=\frac{1}{4}$
Therefore the solution is $x=0, y=2$, get $\lambda=\frac{1}{4}$
5) Assume continuous time. At time 1 , an agent is endowed with a quantity 10 of resource k. She can consume her endowment between time 1 and time $T=4$. At time T, resource k has to be non negative. Her utility function is $-\frac{1}{t \cdot c_{t}^{\prime}}$, where c_{t} is the quantity of resource k used at time t. Compute the optimal time path for c_{t} and k_{t}. (hint: $\frac{d k}{d t}=-c_{t}$)

$$
\begin{gathered}
\max \int_{1}^{4}-\frac{1}{t \cdot c_{t}} d t \\
\text { s.t. } \frac{d k}{d t}=-c_{t}, \quad k_{4} \geq 0, \quad k_{1}=10 \\
H=-\frac{1}{t \cdot c_{t}}+\lambda_{t}\left(-c_{t}\right) \\
\left\{\begin{array}{c}
\frac{1}{t \cdot c_{t}^{2}}-\lambda_{t}=0 \\
\frac{d k}{d t}=-c_{t} \\
\frac{d \lambda}{d t}=0 \\
\lambda_{4} \geq 0, \quad k_{4} \geq 0, k_{4} \lambda_{4}=0
\end{array}\right.
\end{gathered}
$$

From the third condition we know that $\lambda_{t}=\lambda$ for every t (it is constant over time)
From the first one we can say that $\lambda_{t}>0$, otherwise (when $\lambda_{t}=0$) c_{t} is not defined.
From the last conditions this implies that $k_{4}=0$
From the first equation we have:

$$
c_{t}=\sqrt{\frac{1}{t \lambda}}
$$

Replacing in the second equation we get:

$$
\frac{d k}{d t}=-\sqrt{\frac{1}{t \lambda}}
$$

The general solution is

$$
k_{t}=-\frac{2 t}{\sqrt{\lambda t}}+A
$$

Using the initial condition $k_{1}=10$ we get the definite solution:

$$
k_{t}=2\left(5+\frac{1-\sqrt{t}}{\sqrt{\lambda}}\right)
$$

replacing the terminal condition $k_{4}=0$ and solving by λ we get $\lambda_{t}=0.04 \forall t$ Replacing in the definite solution we find the optimal path for k_{t}, i.e. $k_{t}=20-10 \sqrt{t}$.
Replacing $\lambda_{t}=0.04 \forall t$ in $c_{t}=\sqrt{\frac{1}{t \lambda}}$ we get the optimal path for c_{t}, i.e. $c_{t}=\frac{5}{\sqrt{t}}$.

