Problem set 2

1) Compute the following expected values:
a. Toss a coin 3 times, for each tail you receive 100 while for each head you receive 50
b. you can receive $£ \mathrm{x}$ where x is a continuous random variable in the space $[0,100]$ with density function $f(x)=\frac{1}{50}-\frac{1}{5000} x$
2) Describe as a prospect the following opportunity: Toss a coin 2 times, for each tail you receive 100 while for each head you receive 0 . Compute the expected payoff.
3) Consider the compound lottery where by equal chance you play the lottery in exercise 2 or ($150,0.2 ; 100,0,4$). Write the resulting prospect.
4) Show that independence implies betweenness.
5) An individual faces the following three lotteries:
a. Toss a coin 3 times, for each tail you receive 100 while for each head you receive - 100
b. Toss a coin 2 times, for each tail you receive 100 while for each head you receive -100
c. $(-300,0.25 ; 300,0.25)$

He prefers high outcomes respect to small ones. Checking for stochastic dominance, what you can say about the preferred lottery.
6) Asset integration. Consider an individual that face the lottery: $\left(-10, \frac{1}{3} ; 10, \frac{2}{3}\right)$. Check if it is acceptable for the following asset positions: $\mathrm{w}=10, \mathrm{w}=100, \mathrm{w}=1000$.
7) Compute the certain equivalent (CE) and the risk premium of the lottery in exercise 2 when the utility function is $u(x)=-e^{-0.01 x}$
8) Check the risk aversion and compute the measures of absolute and relative risk aversion of the following utility functions:
a. $u(x)=-e^{-0.1 x}$
b. $u(x)=e^{0.1 x}$
9) Consider the lottery ($100, p ; 50, q$). Using the Machina triangle (p on the vertical axis, $1-p-q$ on the horizontal one) represent the indifference curve passing for the point $p=\frac{1}{3}, q=\frac{1}{3}$ in the following three cases: $u(x)=x ; u(x)=$ $x^{2} ; u(x)=\sqrt{x}$.

