Problem set 2

- 1) Compute the following expected values:
 - a. Toss a coin 3 times, for each tail you receive 100 while for each head you receive 50
 - b. you can receive £ x where x is a continuous random variable in the space [0, 100] with density function $f(x) = \frac{1}{50} \frac{1}{5000}x$
- Describe as a prospect the following opportunity: Toss a coin 2 times, for each tail you receive 100 while for each head you receive 0. Compute the expected payoff.
- 3) Consider the compound lottery where by equal chance you play the lottery in exercise 2 or (150, 0.2; 100, 0,4). Write the resulting prospect.
- 4) Show that independence implies betweenness.
- 5) An individual faces the following three lotteries:
 - Toss a coin 3 times, for each tail you receive 100 while for each head you receive -100
 - Toss a coin 2 times, for each tail you receive 100 while for each head you receive -100
 - c. (-300, 0.25; 300, 0.25)

He prefers high outcomes respect to small ones. Checking for stochastic dominance, what you can say about the preferred lottery.

- 6) Asset integration. Consider an individual that face the lottery: $(-10, \frac{1}{3}; 10, \frac{2}{3})$. Check if it is acceptable for the following asset positions: w=10, w=100, w=1000.
- 7) Compute the certain equivalent (CE) and the risk premium of the lottery in exercise 2 when the utility function is $u(x) = -e^{-0.01x}$
- 8) Check the risk aversion and compute the measures of absolute and relative risk aversion of the following utility functions:

a.
$$u(x) = -e^{-0.1x}$$

b. $u(x) = e^{0.1x}$

9) Consider the lottery (100, p; 50, q). Using the Machina triangle (p on the vertical axis, 1-p-q on the horizontal one) represent the indifference curve passing for the point $p = \frac{1}{3}$, $q = \frac{1}{3}$ in the following three cases: $u(x) = x; u(x) = x^2; u(x) = \sqrt{x}$.