1. Consider the lottery $\boldsymbol{q}=(25, \mathrm{p} ; 16, \mathrm{q} ; 9, \mathrm{w}), \mathrm{p}+\mathrm{q}+\mathrm{w}=1$. Assuming that the utility function is $\mathrm{u}(\mathrm{x})=\sqrt{\mathrm{x}}$ and the weighting function is $\pi(p)=p^{2}$.
i. Using the Machina triangle (p on the vertical axis, w on the horizontal one) represent the following prospects: $\boldsymbol{q}=\left(25, \frac{1}{2} ; 9, \frac{1}{2}\right), \boldsymbol{r}=\left(25, \frac{8}{10} ; 16, \frac{1}{10} ; 9, \frac{1}{10}\right)$.
ii. Check the sign of the slope of the indifference curves passing for \boldsymbol{q}
iii. Check the sign of the slope of the indifference curves passing for \boldsymbol{r}
2. An individual prefers high outcomes respect to small ones.
a. Suppose that lottery r stochastically dominates lottery q. Which is the preferred lottery?
b. Check for stochastic dominance of the two following lotteries.

$$
\begin{gathered}
q=(210,0.30 ; 500,0.2 ; 760,0.5) \\
r=(200,0.30 ; 500,0.15 ; 760,0.55)
\end{gathered}
$$

3. All Prospect theory's assumptions are satisfied. Assume that $\mathrm{v}(\mathrm{x})=\left\{\begin{array}{c}\sqrt{x} \text { if } x \geq 0 \\ -\frac{4}{5} \sqrt{-\mathrm{x}} \text { if } x<0\end{array}\right.$ and $\pi(\mathrm{p})=\mathrm{p}^{2}$. Evaluate the following prospects and for each one compute the certainty equivalent (reference point 0):
a. $(625,0.60 ;-225,0.40)$
b. $(154,0.15 ; 46,0.55 ; 10,0.30)$
4. Consider the following prospects $\boldsymbol{q}=(9,0.12)$ and $\boldsymbol{r}=(27,0.04)$. Assume that $v(x)=x$ and $\pi\left(\frac{1}{3} \cdot 0.12\right)>\frac{1}{3} \cdot \pi(0.12)$. State the preferred prospect.
5. Consider the following prospects $\boldsymbol{r}=(x), \boldsymbol{q}=(y, 0.10 ; x, 0.89) \boldsymbol{r}^{\prime}=(x, 0.11)$ and $\boldsymbol{q}^{\prime}=(y, 0.10)$, $x, y>0$. Assume that \boldsymbol{q}^{\prime} is indifferent to \boldsymbol{r}^{\prime} and that $\pi(0.11)+\pi(0.89)<1$. Which is the preferred lottery between \boldsymbol{r} and \boldsymbol{q} ? Prove your answer assuming a generic subjective value function $v(x)$.
6. All Prospect theory's assumptions are satisfied. Consider the following prospects: $\boldsymbol{q}=(x, 2 p)$, $\boldsymbol{r}=(2 x, p)$ where $x<0$ and $p<0.5$. Show that $q>r$ implies subadditivity.
7. Consider the following prospects $\boldsymbol{r}=(20, p), \boldsymbol{q}=\left(24, \frac{2}{3} p\right) \boldsymbol{r}^{\prime}=(\boldsymbol{r}, 0.5)$ and $\boldsymbol{q}^{\prime}=(\boldsymbol{q}, 0.5)$. Assume subcertainty and that \boldsymbol{q}^{\prime} is indifferent to \boldsymbol{r}^{\prime}. Which is the preferred lottery between \boldsymbol{r} and \boldsymbol{q} ? Prove your answer assuming a generic subjective value function $v(x)$.
8. Assume $\pi(x)=x$ and that all other Prospect theory's assumptions are satisfied. Suppose the following two prospects: $\boldsymbol{q}=(-9,0.12)$ and $\boldsymbol{r}=(-27,0.04)$. Which is the preferred prospect when the reference point is 0 ? Which is the preferred prospect when the reference point is -27 ?
9. Check if $\pi(x)=x^{2}$ satisfies subadditivity, subproportionality and subcertainty.
