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Definitions

Time to event is a random variable, called failure or survival time, always
non-negative: X ≥ 0

X can either be discrete, i.e. taking a �nite set of values t1, t2, . . . , tn or
continuous, i.e. de�ned on (0,∞).

To de�ne a failure time, we need of:

• a well-de�ned time origin, i.e time when the subject gets at risk of the
event of interest (time of randomization, birth, diagnosis time, etc)

• a time scale (follow-up time, calendar time, age, etc)

• an event of interest (disease, recurrence of disease, death, etc)



Time scales



Censoring
Censoring occurrs when the value of an observation is only partially known

Right censoring: we do not know the time to event (subjects (2) and (3)), we
only know the true unobserved time is to the right of censoring time

Ti = min(Xi ,Ci ) is observed for each subject (X=time to event, C=time to
censoring). In addition to Ti , we introduce the random variable δi :
δi = 1 if the event occurred (Xi ≤ Ci )
δi = 0 otherwise (Xi > Ci )

For each subject we observe (Ti , δi ): for subject (2), (3) δ = 0 and for subject
(1) δ = 1

Ex: loss to follow-up, drop-out, study end (administrative censoring)



Left censoring

Left censoring: the event of interest has already occurred for the individual
before he/she is observed in the study, but we do not know the time

Ti = max(Xi ,Ci ) is observed for each subject (X=time to event, C=time to
censoring)

δi = 1 if Ci ≤ Xi

δi = 0 if Ci > Xi

Ex: (Miller) study of age at which African children learn a task. Some already knew

(left-censored), some learnt during study (exact), some had not yet learnt by end of

study (right-censored)



Censoring

Interval censoring: we know the event of interest has occurred in (R,L) but we
do not know the exact time in this interval.

Ti ∈ (Li ,Ri ) for subject i

Ex: In Framingham Heart Study age at �rst diagnosis of coronary heart disease is
known exactly. Age at �rst occurrence of angina pectoris can be known to be between
2 clinical examinations (2 years apart)

Ex: In studies with periodic follow-up: time to undetectable viral load in AIDS studies,

based on measurements of viral load taken at each clinic visit; time to recurrence of

colon cancer after surgery, where follow-up of patients is every 3 months after

resection of primary tumor



Censoring

Is the distribution of censoring times Ci independent of the distribution of
times to the event of interest Xi?

The censoring is independent if the censored subject at Ci is rapresentative of
all subjects surviving to Ci . If the subject drops out from the study because of
a cause associated to Xi , the censoring is dependent

The censored subject can be di�erent from other participants to the study in
his/her baseline characteristics, but his/her probability of censoring prior to or
at time Ci should be the same among all those with the same baseline
characteristics

Distribution of censoring times Ci is usually assumed to be independent of the
distribution of times to the event of interest Xi



Censoring

• Administrative censoring → independent censoring

• The subject is sicker than the remaining sample in studying the disease
progression → dependent censoring

• The subject stops the treatment depending on his health status →
dependent censoring

• Migration: depends on the aim of the study

• Death from other causes: competing events

• . . .
• . . .



Left truncation

Left truncation: delayed entry into the study

The subject is observed after the time in which he gets at risk of occurrence of
event of interest

The investigator only observe the individuals if they are event-free after a
certain follow-up time: there can be individuals that had the event but we do
not know about them

Ex: In AIDS studies, we usually observe the HIV seroconverters after seroconversion

time, and hence we do not know what happened in the elapsed time between

seroconversion and entry into the study



Data

The American bone marrow transplantation data

During the period from 1985 and 1991, 1715 patients with acute or chronic
leukemia had bone marrow transplanted from a donor who was either an
HLA-identical sibling, an HLA-matched unrelated donor, or an HLAmismatched
unrelated donor. The data came from more than 80 institutions reporting to
the International Bone Marrow Transplantation Registry in Milwaukee, USA.
Outcomes of primary interest included relapse and death in remission

Some variables:
disease 10=ALL, 20=AML, 30=CML
timedxtx time from diagnosis to transplant (months)
sex 0=males 1=females
karnofsky =1 if the Karnofsky index is > 90, =0 otherwise
stage 1=early, 2=intermediate, 3=advanced
time time from transplant to event/cens. (months)
donor 1=HLA-identical sibling, 2=HLA-matched unrelated,
3=HLA-mismatched unrelated
event 0=censored, 1=relapse, 2=death in remission

In Stata: stset time, fail(event!=0)



Data

MAC Prevention Clinical Trial

ACTG 196 was a randomized clinical trial to study the e�ects of combination
regimens on prevention of MAC (mycobacterium avium complex), one of the
most common opportunistic infections in AIDS patients. The treatment
regimens were: clarithromycin (new), rifabutin (standard) and clarithromycin
plus rifabutin. Patients enrolled between April 1993 and February 1994 and the
follow-up ended August 1995. The main intent-to-treat analysis compared the
3 treatment arms.

Some variables:
ID Subject ID
ENTDATE Entry date
ENDDATE Date follow-up ended due to MAC or censoring
CENSOR Death Indicator (1=death, 0=censor)
AGE Age of subject in years
TREATMENT Therapy

In Stata: stset ENDDATE, fail(CENSOR) enter(ENTDATE)id(ID)



Data

CASCADE: Concerted Action on SeroConversion to AIDS and Death in Europe

CASCADE was established in 1997 as a collaboration between the investigators
of European cohorts of people with well-estimated dates of HIV seroconversion
known as seroconverters. CASCADE's main aim is to monitor newly-infected
individuals and those already enrolled in studies, covering the entire duration of
HIV infection. Seroconverters are recruited into the individual cohorts locally
and nationally and are typically followed up for life. CASCADE' s aims focus on
identi�cation of early HIV infection and research questions requiring knowledge
of the time of seroconversion.

Some variables:
ID Subject ID
SERODATE Seroconversion date
ENTDATE Entry date
ENDDATE Date follow-up ended due to death or censoring
CENSOR Death Indicator (1=death, 0=censor)
AGE Age of subject in years
SEX Gender
DRUG History of IV Drug Use (0=no,1=yes)

In Stata:stset ENDDATE, fail(CENSOR) origin(SERODATE) enter(ENTDATE) id(ID)



Definitions

The probability distribution of T can be speci�ed in many ways:

1. probability density function (f (t))

2. survivor function (S(t))

3. hazard function (λ(t))

4. cumulative hazard function (Λ(t))

Interrelations between these functions are de�ned for both discrete and

continuous distributions



Density function

T continuous:

f (t) = lim∆t→0

Pr(t ≤ T < t + ∆t)

∆t
=

d

dt
F (t)

f (t)∆t=probability that failure is between t and t + ∆t

T discrete and taking values t1 < t2 < . . . , j = 1, . . .:

f (tj ) = P(T = tj ) j = 1, 2, . . .



Survivor function

T continuous:

S(t) = P(T > t) =

∫ ∞
t

f (u)du

T discrete and taking values t1 < t2 < . . .

S(t) =
∑
j :tj>t

f (tj )

• S(t) monotone nonincreasing continuous function

• S(0) = 1 and limt→∞S(t) = 0

• S(t) = 1− F (T ) with F (t) = P(T ≤ t)=cumulative distribution function



Hazard function

T continuous:

λ(t) = lim∆t→0

Pr(t ≤ T < t + ∆t|T > t)

∆t

λ(t)∆t:probability that failure is between t and t + ∆t conditioned on having
survived until t

• λ(t) = f (t)
S(t)

= − d
dt
log(S(t))

• S(t) = exp(−
∫ t
0
λ(u)du)

• f (t) = λ(t)exp(−
∫ t
0
λ(u)du)



Hazard function

T discrete and taking values t1 < t2 < . . .

λj = P(T = tj |T > tj ) =
f (tj )

S(tj )
i = 1, 2, . . .

• S(t) = P(T > t1,T > t2,T > tj+1) =

P(T > t1)P(T > t2|T > t1) . . .P(T > tj+1|T > tj ) =∏
j :tj<t

(1− λj ), tj < t ≤ tj+1

• f (tj ) = λj
∏j−1

1
(1− λj )



Cumulative hazard function

T continuous:

Λ(t) =

∫ t

0

λ(u)du

• Λ(t) =
∫ t
0
− d

du
log(S(u))du = −logS(t) + logS(0) = −logS(t)

• S(t) = exp(−Λ(t))

T discrete and taking values t1 < t2 < . . .

Λj =
∑
j :tj<t

λj



Estimation of the survivor function

Survival function: S(t) = P(T > t)

Non-parametric methods do not make any assumptions about the distribution
of the process (suited for �rst exploratory data analyses)

1. Kaplan-Meier method

2. Life table



In absence of censoring:

The following are times to death (days) for 13 women a�ected by breast cancer:
23 47 69 70 71 100 101 148 181 198 208 212 224

If an uncensored sample of n distinct failure times is observed:

Sn(t) =
no.ofsamplevalues > t

n

Sn(t) is a step function decreasing by n−1 immediately following each observed

failure time



In presence of censoring:

The following are times to death (days) for 13 women a�ected by breast cancer:
23 47 69 70+ 71+ 100+ 101+ 148 181 198+ 208+ 212+ 224+

(+ indicating right censoring)

S(50)=13-2/13=0.85
S(80)=? (we do not know what happens to individuals censored at 70 and 71
days: observed censoring time tells us that the unobserved failure time is
greater than 70 and 71 respectively)

Intuitively suppose to split the observed timespan of the study into intervals
de�ned by the failures/censoring times:

P(T > 80) = P(T > 23)P(T > 47|T > 23)P(T > 69|T > 47)P(T > 70|T >

69)P(T > 70|T > 69)P(T > 71|T > 70) = 13−1
13

12−1
12

11−1
11

10−0
10

9−0
9

8−0
8

=

0.77



Kaplan-Meier estimator

Product of conditional probabilities:

Let be tj < t < tj+1. Then

P(T > t) = P(T > tj ) = P(T > t1,T > t2, . . . ,T > tj ) =

= P(T > t1)
m∏
j=2

P(T > tj |T > tj−1) =
m∏
j=1

(1− P(T = tj |T > tj−1)) =

=
m∏
j=1

(1− λj ) =
m∏
j=1

(1− dj
nj

)

dj=number of failures at time tj
nj=number of subjects at risk just prior of time tj



Kaplan-Meier estimator

Likelihood estimator:

Suppose that dj items fail at tj (j = 1, . . . ,m) and let nj be the number of
items at risk at a time just prior to tj .

Being λj the probability of failure in the jth interval conditional on survival at
the start of the interval, the likelihood is given by the product of independent
binomials:

L(λ) =
m∏
j=1

[(λj )
dj (1− λj )nj−dj ]

λ̂j =
dj
nj

Ŝ(t) =
∏
j :tj<t

(1− λ̂j ) =
∏
j :tj<t

(1− dj
nj

)



Kaplan-Meier estimator

Let t1 < t2 < . . . < tm represent the observed failure times in a sample of size
n from an homogeneous population with survivor function S(t)

Ŝ(t) =
∏
j :tj<t

(
nj − dj
nj

) =
∏
j :tj<t

(1− dj
nj

)

• dj=number of failures at time tj

• nj=number of items at risk just prior of time tj , including failures and
censored items at or after tj

• cj=number of censored items between tj and tj+1

• nj = nj−1 − dj−1 − cj−1

• nj =
∑

l≥j (cl + dl )



Example

Survival of 13 women a�ected by breast cancer

tj nj dj cj dj/nj 1− dj/nj S(tj )

23 13 1 0 1/13 12/13 12/13
47 12 1 0 1/12 11/12 12/13*11/12
69 11 1 0 1/11 10/11 11/13*10/11
70 10 0 1 0 10/10 10/13*1
71 9 0 1
100 8 0 1
101 7 0 1
148 6 1 0 1/6 5/6 10/13*5/6
181 5 1 0 1/5 4/5 10/13*5/6*4/5
198 4 0 1
208 3 0 1
212 2 0 1
224 1 0 1



Kaplan-Meier estimate

• Ŝ(t) is a step function with steps corresponding to failure times

• Ŝ(t) is right continuous: Ŝ(t) = Ŝ(t+)

• censoring in�uences only the height of the steps, depending on the risk set
(denominator)

• Ŝ(t) goes to 0 only if the last observed event is a failure



Life table

Life tables: traditional procedure applied to grouped survival data, i.e. the time
interval when an event occurrs is known but the exact time is unknown

• Time axis is partitioned into �xed intervals [tj−1, tj ), j = 1, . . . , l

• dj=number of failures during j-th interval [tj−1, tj )

• nj=number of items at risk entering into the j-th interval

• cj=number of censored items during j-th interval

• n
′
j=number of items at risk during j-th interval

n1 = n, nj = nj−1 − dj−1 − cj−1

n
′
j = nj − wcj , 0 ≤ w ≤ 1, (w = 1/2 censorings assumed to occur uniformly
throughout the interval)



Life table

qj =
dj

n
′
j

=conditional probability for having an event in [tj−1, tj )

pj = 1− qj=conditional probability for surviving in [tj−1, tj )

Ŝj = S(tj−1)pj−1 =
∏j−1

l :1 pl =
∏j−1

l :1 (1− dl

n
′
l

) =
∏j−1

l :1 (1− dl
nl−wcl

)

f̂j =
S(tj )−S(tj+1)

tj+1−tj
, calculated at middle point of interval

λ̂j =
f (tj )

S(tj )+S(tj+1)

2

= 1

tj+1−tj
dj

n
′
j
−dj/2

, calculated at middle point of interval

λ̂j=number of failures in Ij/total count of person time of observation in Ij :

• it allows for the rate to change from an interval to another one

• it assumes a constant rate in each interval



Example

The American bone marrow transplantation data

tj Ij nj dj cj n
′
j qj pj S(tj )

0 [0,1) 1715 705 123 1653.5 0.43 0.57 0.57
1 [1,2) 887 87 86 844 0.10 0.90 0.51
2 [2,3) 714 40 128 650 0.06 0.94 0.48
3 [3,4) 546 16 175 458.5 0.03 0.97 0.47
4 [4,5) 355 16 117 296.5 0.05 0.95 0.44
5 [5,6) 222 4 93 175.5 0.02 0.98 0.43
6 [6,7) 125 0 58 96 0.00 1.00 0.43
7 [7,8) 67 0 49 42.5 0.00 1.00 0.43
8 [8,9) 18 0 14 11 0.00 1.00 0.43
9 [9,10) 4 0 4 2 0.00 1.00 0.43



Example

• Usually the �rst interval starts with t0 = 0

• Stata estimates the survival function at the right-hand endpoint of each interval



Life table

Life tables are used with grouped data or in the case of large dataset because it
needs less computing time and space, but

1. it is necessary to group the durations into �xed intervals → the results
depend more or less on these arbitrarily de�ned time-intervals

2. it is needed to observe a relatively large number of events, so that
estimates conditional for each interval are reliable

Kaplan-Meier method is preferred to life table with continuous data because it

does not require to de�ne intervals, but it is based on the calculation of a risk

set at every point in time where at least an event occurred



Example

ltable timevar statusvar [freq=freqvar], by(varlist) intervals(width/numlist))
stset time,failure(status)
sts list, by(treat)
sts graph, by(treat) lost



Properties of K-M estimator

In absence of censoring: Ŝn(t) = no.ofsamplevalues>t
n

Since it is an estimated probability from a binomial distribution, for large values
of n:

Ŝn(t) ∼ N(S(t), S(t)(1− S(t))/n

In presence of censoring:

• ŜKM(t) is approximately normal

• The mean of ŜKM(t) converges to the true S(t)

• The variance can be estimated by Greenwood formula

• (1− α)% con�dence interval can be estimated by:

(ŜKM(t)− z1−α/2se(ŜKM(t), ŜKM(t) + z1−α/2se(ŜKM(t)))



Greenwood formula

Ŝ(t) =
∏
j :tj<t

(1− λ̂j) =
∏
j :tj<t

(1− dj
nj

)

Since the λ̂j are binomial proportions, λ̂j is approximately normal, with mean
the true λj , and var(λ̂j) = λ̂j(1− λ̂j)/nj and λ̂j are independent for large
samples

By applying the Delta method (if Y is normal with mean µ and variance σ2,
then g(Y ) is approximately normally distributed with mean g(µ) and variance

(g
′
(µ))2σ2)):

Var(log(Ŝ(t))) =
∑
j :tj<t

Var(log(1− λ̂j)) =
∑
j :tj<t

1

1− λ̂j

2

var(λ̂j) =

∑
j :tj<t

1

1− λ̂j

2

λ̂j
1− λ̂j
nj

=
∑
j :tj<t

λ̂j

(1− λ̂j)nj
=
∑
j :tj<t

dj
(nj − dj )nj



Greenwood formula

By Delta method: var(Ŝ(t)) = var(exp(log(Ŝ(t)))) = Ŝ2(t)var(log(Ŝ(t)))

Greenwood formula: var(Ŝ(t)) = Ŝ2(t)
∑

j :tj<t

dj
(nj−dj )nj

The precision of the survival estimate tends to decrease as the number of
subjects at risk decreases (and the variance increase): tails of survival curve are
unstable

(1− α)% con�dence interval estimated by using standard error obtained by
Greenwood formula can include values out of range [0, 1]. Hence (1− α)% con�dence
interval is usually calculated for log(−log(S(t)) and then it is transformed back:
S(t) = exp(−exp(log(−logS(t))))

var(log(−log(Ŝ(t)))) =
1

(log(Ŝ(t)))

2 ∑
j :tj<t

dj

(nj − dj )nj



Greenwood formula

The American bone marrow transplantation data

sts graph,ci



Nelson-AAlen estimator

Λ(t) =

∫ t

0

λ(u)du

The observed timespan of the study can be splitted into a series of intervals (of
width ∆) so that there is only one event per interval:

Λ̂(t) =
∑
j :tj<t

λj∆

Since λj∆ is approximately the probability of dying in the j-th interval:

Nelson-AAlen estimator: Λ̂NA(t) =
∑

j :tj<t

dj
nj

Fleming-Harrington estimator: ŜFH(t) = exp(−Λ̂NA(t))

ŜFH(t) is close to ŜKM(t) as well as Λ̂NA(t) is close to Λ̂KM(t) = −log(ŜKM(t))



Nelson-AAlen estimator

Cumulative hazard estimate is not equivalent to cumulative probability of death
F (t) = 1− S(t)

Λ(t) = −log(S(t) = −log(1− F (t)) 6= F (t)

Λ(t) and F (t) have similar values when F (t) is very small:

−Λ(t) = log(1− F (t)) ≈ −F (t)



Nelson-AAlen estimator

The American bone marrow transplantation data

sts graph,na



Summary

In reporting a survival curve:

• de�nition of entry point and end-point

• dates of start and end recruitment

• when follow-up was up-dated

• the percentage of censoring, specifying the percentage of lost-to-follow-up

⇓

These informations allow the reader to understand the maturity of data

(recruitment and minimum potential follow-up) and the quality of data



Summary

In reading a survival curve:

• Observe the shape of the curve more than details

• Useful refer to estimated survival value (and standard error) at important
points in time

• Not consider the curve when there are less then 10-20 subjects at risk left

• Keep in mind that we assumed that censored subject would not have a
survival experience di�erent from the others



Comparison between survival curves

• How can we compare individuals diagnosed at di�erent stages in terms of
survival (to death or remission after transplant?)

• How can we compare individuals with di�erent treatment or with di�erent
clinical/biological characteristics?

• Are the single time-point or the overlap between con�dence bands an
appropriate measures?



Comparison between survival curves

• Comparison of a single time point is not e�cient and mainly it is based on
an arbitrary choice (how much unstable are the tails of distribution?)

• Overlap of con�dence intervals is not appropriate for an overall comparison
because they correspond to con�dence intervals for Ŝ(t) at a single time
point t (we cannot say that the true survival function S(t) is contained
between the pointwise con�dence intervals with 95% con�dence):

H0 : S1(t) = S2(t), H1 : S1(t) 6= S2(t)

Z =
Ŝ1(t)− Ŝ2(t)

se(Ŝ1(t)) + se(Ŝ2(t))

Under H0, Z ∼ N(0, 1). This test has to be repeated for each t →
multiple tests



Comparison between survival curves

Non-parametric tests to compare survival times

1. test based on the distribution of the maximum observed di�erence (ex.
Kolmogorov-Smirnov type)

2. test based on permutations (depends on the censoring distribution in a
complex way)

3. test based on the median survival (often precision of the estimates is low)

4. rank test

Tests based on parametric assumptions to compare survival times



Log-rank test

• Consider two treatment groups A and B

H0 : SA(t) = SB(t), H1 : SA(t) = (SB(t))θ

If 0 < θ < 1, SA(t) > SB(t), if θ > 1, SA(t) < SB(t), if θ = 1, SA(t) = SB(t)

• Order the distinct failure times observed in the two groups in ascending order

• At each t(j) consider a 2x2 contingency table



Log-rank test

• Consider the distribution of the observed cell frequencies conditional on
the observed marginal totals under the null hypothesis H0 : λA(t) = λB(t)
for each t: if the margins of the table are considered �xed, then dj follows
a hypergeometric distribution

• Generate a 2x2 contingency table of expected under H0:



Log-rank test

Observed deaths in A: O(djA) = OjA = djA

Expected deaths in A: E(djA) = EjA =
dj njA
nj

Observed deaths in B: O(djB) = OjB = djB

Expected deaths in B: E(djB) = EjB =
dj njB
nj

The statistic test is built on:
OjA − EjA

Var(djA) =
[
njA

dj
nj

(
1− dj

nj

)][nj − njA
nj − 1

]



Log-rank test

Considering all J times with at least one event, the statistic is:

QMH =

[∑
j (djA − E(djA))

]
2∑

j Var(djA)

equivalently

QMH =

[
OA − EA

]
2

Var(OA)

OA =
∑

j OjA,EA =
∑

j EjA

• under H0, QMH is asymptotically distributed as a χ21

• The higher is QMH the smaller is the probability that the sample is
consistent with H0



Example

Leukemia example (Cox & Oakes)



Example

QMH =
(9− 19.25)2

6.26
= 16.79



A class of rank test

Q =

[∑
j wj (djA − E(djA))

]
2∑

j w
2

j Var(djA)

Test Weight

Logrank (Mantel-Haenzel 1959) wj = 1
Gehan's Wilcoxon (Gehan 1965) wj = nj
Peto/Prentice (Prentice 1978) wj = nŜ(tj )
Tarone-Ware (1977) wj =

√
nj

Fleming-Harrington (1982) wj = Ŝ(tj )
α

A more general class is in Harrington-Fleming (1982) with weights:

wjpq = Ŝ(tj−1)p(1− Ŝ(tj−1))q, p, q ≥ 0

p = q = 0→ log-rank test
p > 0, q = 0→ weight to early di�erences
p = 0, q > 0→ weight to late di�erences



Test's choice

H0 : SA(t) = SB(t) H1 : SA(t) = S
θ(t)
B (t)

or equivalently

H0 : λA(t) = λB(t) H1 : λA(t) = θ(t)λB(t)

θ(t) 6= 1, θ(t) > 0

The choice of which test has to be done �a priori�, depending on the alternative

hypothesis in order to increase the power of the test



Test's choice

H0 : SA(t) = SB(t) H1 : SA(t) = S
θ(t)
B (t)

θ(t) = θ

• The log-rank test gives equal weight to all time points

• The log-rank test is most powerful under the assumption of proportional
hazards (the ratio of hazard functions is the same at all time points)



Test's choice

H0 : SA(t) = SB(t) H1 : SA(t) = S
θ(t)
B (t)

θ(t(1)) > θ(t(2)) > θ(t(3)) > . . .

• The Gehan-Breslow-Wilcoxon test gives more weight to deaths at early
time points (it is sensitive to early di�erences between survival)

• The Gehan-Breslow-Wilcoxon test has high power when the failure times
are lognormally distributed, with equal variance in both groups but a
di�erent mean (accelerated failure time model): it has most power when
θ(t) is bigger for smaller t's.

• The Tarone-Ware e Prentice have the same property of the
Gehan-Breslow-Wilcoxon test but they give a smaller weight to the
beginning of follow-up time.



Test's choice

H0 : SA(t) = SB(t) H1 : SA(t) = S
θ(t)
B (t)

θ(t) > 1 t < τ, θ(t) < 1 t > τ

• If the two survival curves cross, then one group has a higher risk at early
time points and the other group has a higher risk at late time points.
Neither the log-rank nor the Wilcoxon-Gehan tests are helpful when the
survival curves cross near the middle of the time course (however this could
just be a coincidence of random sampling, and the assumption of proportional
hazards could still be valid)

• There is not any global test in the class with su�cient power against an
alternative hypothesis of crossing hazards



Sample size for log-rank test

H0 : SA(t) = SB(t) H1 : SA(t) 6= SB(t)

The di�erence between the two groups is expressed by the hazard ratio:
φ = λA(t)

λB (t)
or φ = lnSA(t)

lnSB (t)

To detect a di�erence φ with power 1− β, by a test at a signi�cance level α,
we need a total number of events equal to

Freedman (1982): d = (zα/2 + zβ)2
(

1+φ
1−φ

)
2

Schoenfeld (1981): if φ is about 1 d = 4
(

(zα/2+zβ )

−logφ

)
2



Example

Trial on ovarian cancer at stage I of chemotherapy after surgery versus surgery
alone (control)

The expected survival probabilities at 5 years are:

SC (5) = 60%, ST (5) = 75%

φ = log(0.75)/log(0.60) = 0.56

If α = 0.05 and 1− β = 0.80:

d = (1.96 + 0.84)2
(1 + 0.56

1− 0.56

)
2

≈ 100

Total sample size:

n =
d

1− 1/2(SC (t) + ST (t))
=

100

1− 1/2(0.60 + 0.75)
≈ 308



Extension of log-rank test

1. Comparison between two groups, by stratifying on prognostic factors or
confounding factors

2. Comparison between two groups in presence of subjects changing group in
time



Stratified log-rank test

The aim of the strati�ed analysis is to adjust for imbalances on important
prognostic variables

Male patients usually have a worse prognosis then females for a given disease. If we
want to compare the e�ect of treatments A and B we should consider the gender
composition of the 2 groups treated with A and B. If it is di�erent the simple test is
not correct, because the result will be in�uenced not only by the treatment e�ect but
also by the gender e�ect

The test statistic is the same as the log-rank but is within strata of the prognostic

variable, so that the comparison is within homogenous groups, then an average

measure, suitably weighted between strata, of the relative e�ect of the 2 treatments is

obtained.



Stratified log-rank test

Consider a factor with S levels, on which to stratify the log-rank test

Within group s, build Js 2x2 tables corresponding to distinct failure times in
strata s as the strata are independent

Strati�ed log-rank test:

Q∗MH =

{∑S
s=1

[∑Js
j=1

(djAs − E(djAs))
]}

2

∑S
s=1

(∑Js
j=1

Var(djAs)
)



Time-dependent covariates

Comparison of 2 groups A and B when a subject can change group at the
occurrence in time of a de�ned event

All subjects entered into the study as non responders: non responder to
treatment(A) → responder to treatment (B)

A subject is transplanted after waiting time in which a suitable donor is made
available: non transplanted status vs transplanted status

A seroconverter starts a speci�c treatment after reaching a well-de�ned viral
load: untreated vs treated

The classi�cation in group A and B is time-dependent → the log-rank test

applied according to the classi�cation of subjects in group A and B at entry

into the study is not correct



Example

Anderson et al. 1983: Results of a II phase clinical trial on patients with a
multiple myeloma (n=35), with response to treatment evaluated in time

Comparison between survival in responders and not responders

At the end of observation there were 10 non responders and 25 responders and
the response had been achieved in a 3 month range



Example

Mantel Byar test:QM−B = (9− 8.56)2/4.028 = 0.05
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