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Time functions

The probability distribution of T can be speci�ed in many ways:

1. survivor function: S(t) (Kaplan-Meier estimator/Life table)

2. probability density function: f (t)

3. hazard function (λ(t))

4. cumulative hazard function (Λ(t)) (Nelson-Aalen estimator)



Hazard function

Hazard function: λ(t) = lim∆t→0

Pr(t≤T<t+∆t|T>t)
∆t

λ(t) is the istantaneous failure rate (>0)

λ(t)∆(t) is the probability that failure is between t and t + ∆(t) conditional
on having survived until time t

λ(t) = f (t)
S(t)

= − d
dt
logS(t)

S(t), λ(t), f (t) are matematically equivalent

S(t), λ(t) play a basic role in survival analysis



Hazard function



Modeling survival data

Modeling Assumptions underlying the model Examples

Non parametric No assumptions Kaplan-Meier, Nelson AAlen
Semi-parametric Semi-speci�ed Cox model
Parametric Speci�ed functional form Exponential, Weibull

Log-normal, Log-logistic



Parametric models

A model assumes a well-de�ned functional form for λ(t), by taking into
account the main aspects of survival data:

• T ≥ 0

• positively skewed distribution of survival time (normality is not
appropriate) → normal distribution is not appropriate

• presence of censoring → least square estimation is not useful, maximum
likelihood estimator is appropriate



Likelihood function

Let i = 1, . . . , n be independent units

(ti , δi ) is observed: ti time of occurrence of event or censoring; δi = 1 if the
event has been observed, δi = 0 is the censoring has been observed

L(θ) =
n∏
i=1

[
f (ti ; θ)δi S(ti ; θ)1−δi

]
=

n∏
i=1

λ(ti ; θ)δi S(ti ; θ)

log(L(θ)) =
n∑
i=1

log
[
λ(ti ; θ)δi S(ti ; θ)

]
=

n∑
i=1

[
δi log(λ(ti ; θ)) + log(S(ti ; θ))

]



Exponential model

T ∼ exp(λ)

Hazard function λ(t) = λ λ > 0

Cumulative hazard function Λ(t) =
∫ t
0
λ(u)du = λt

Survival function S(t) = exp(−Λ(t)) = exp(−λt)
Density function f (t) = − d

dt
S(t) = λexp(−λt)



Exponential model

log(L(λ)) =
n∑
i=1

[
δi log(λ(ti ;λ)) + log(S(ti ;λ))

]
=

n∑
i=1

[
δi log(λ)− λti )

]
=

= logλ

n∑
i=1

δi − λ
n∑
i=1

ti

d

dλ
logL = 0↔ λ̂ =

∑n
i=1

δi∑n
i=1

ti

Estimator of failure rate when it is assumed to be constant

λ̂ = numbero�ailure
totalpersontimeofobservation

λ̂ corresponds to the estimator of the mortality rate heuristically introduced by

epidemiologists and commonly expressed in terms of death per person times at

risk



Example

λ̂ =

∑n
i=1

δi∑n
i=1

ti

Leukemia data: Survival in patients with cancer: is the treatment e�ective on
the survival?



Weibull model

T ∼Weibull(λ, p)

Hazard function λ(t) = λp(λt)p−1 λ, p > 0
Survival function S(t) = exp(−(λt)p)
Density function f (t) = pλptp−1exp(−(λt)p)

p < 1 monotonically decreasing, p = 1→ exponential model, p > 1 monotonically

increasing



Gompertz-Makeham model

Gompertz (1825) suggested that a �law of geometric progression pervades� in
mortality after a certain age

λ(t) = αexp(βt), α, β ≥ 0

α=baseline mortality, β=age component

S(t) = exp(−
∫ t
0
αexp(βu)du) = exp(α

β
(1− exp(βt)))

Makeham (1860) extended the Gompertz model by adding a constant λ:

λ(t) = αexp(βt) + λ, S(t) = exp(−λt + α
β

(1− exp(βt)))



Log-logistic model

T ∼ loglogistic(λ, p)

Hazard function λ(t) = λp(λt)p−1

(1+(λt)p)
λ, p > 0

Survival function S(t) = 1

1+(λt)p

Density function f (t) = pλptp−1

(1+(λt)p)2

p ≤ 1 monotonically declining hazard function, p > 1 the hazard function at �rst rises
monotonically up to a maximum and then falls monotonically

The hazard function has a maximum in t = (p − 1)1/p/λ



Log-normal model

logT ∼ N(µ, σ2)

Density function f (t) = 1

σ2t
φ( logt−µ

σ2
) σ2 > 0

Survival function S(t) = 1− Φ( logt−µ
σ2

) φ(t) = 1√
2π
exp(−t

2

2
)

Hazard function λ(t) = 1

σ2t

φ( logt−µ

σ2
)

1−Φ( logt−µ

σ2
)

Φ(t) =
∫ t
0
φ(u)du

The hazard function at �rst rises monotonically up to a maximum and then falls
monotonically

The log-logistic model along with the log-normal are the most commonly

recommended models if the hazard function is somehow bell-shaped



Methods to check parametric assumptions

It is important to empirically check the adeguacy of models upon which
inferences are based, for example by:

• Graphical methods: they compare transformations of nonparametric
estimates of survivor functions with the predictions from parametric
models. Most of these approaches begin with a nonparametric estimation
of a survivor function using the Kaplan-Meier estimator, and a
nonparametric estimation of the cumulative hazard function using the
Nelson-Aalen estimator

• Residuals and pseudo-residuals: they are calculated and used in evaluating
distributional assumptions. Residuals are deviations of the observed values
of the dependent variable from the values estimated under the
assumptions of a speci�c model. When the dependent variable is not
observable, as the hazard function in transition rate models,
pseudo-residuals are used



Graphical methods

• Exponential model: S(t) = exp(−λt)→ log(S(t)) = −λt
1. Consider the non parametric estimation of S(t) by Kaplan-Meier estimator:

ŜKM(t)

2. If failure time follows an exponential distribution the plot of log(ŜKM(t))
should provide a linear graph passing through the origin vs t with slope λ
�gure



Graphical methods

• Exponential model: λ(t) = λ

Consider the non parametric estimation of λ(t) by life table estimator
after grouping data by time intervals j :

λ̂j =
dj

(nj−1/2(dj +cj ))(tj+1−tj )

The denominator is the product of the length of time interval by the average
number of survivors at the middle point of the interval, by assuming an uniform
distribution of deaths and censoring over the interval

nsubs nlost nrisk nevent hazard se.hazard
0-1 250 13 243.5 158 0.9604863 0.06702384
1-2 79 6 76.0 45 0.8411215 0.11375915
2-3 28 3 26.5 16 0.8648649 0.19495488
3-4 9 0 9.0 5 0.7692308 0.31754812
4-5 4 0 4.0 2 0.6666667 0.44444444
5-6 2 0 2.0 1 0.6666667 0.62853936
6-7 1 0 1.0 1 NA NA



Graphical methods

If failure time follows an exponential distribution the plot of λ̂(t)) should
provide a linear graph parallel to x-axis

The hazard function estimate may �uctuate a lot when there are a few subjects
at risk

The central death rate is plotted against time at the mid-point of the interval:

smoothers are often applied, to study the shape of the hazard



Graphical methods

• Exponential model: Λ(t) = λt Consider the non parametric estimation of

Λ(t) by Nelson-Aalen estimator: Λ̂NA(t)

If failure time follows an exponential distribution the plot of Λ̂NA(t) should
provide a linear graph passing through the origin vs t with slope λ



Graphical methods

• Exponential model: Λ(t) = λt
Consider the non parametric estimation of Λ(t) by Kaplan-Meier

estimator: Λ̂KM(t) = −log(ŜKM(t))



Graphical methods

• Weibull model:
S(t) = exp(−(λt)p)
log(S(t)) = −(λt)p

log(−log(S(t))) = plog(λ) + plog(t)

Plot of log(log(−log(Ŝ(t)))) should be approximately linear vs log(t)



Graphical methods

• Log-logistic model:
S(t) = 1

1+(λt)p

1− (S(t)) = (λt)p

1+(λt)p

log( 1−S(t)
S(t)

) = plog(λ) + plog(t)

Plot of log( 1−Ŝ(t)

Ŝ(t)
) should be approximately linear vs log(t)



Graphical methods

• Log-normal model:
S(t) = 1− Φ( logt−µ

σ2
)

Φ−1(1− S(t)) = log(t)−µ
σ2

Plot of Φ−1(1− Ŝ(t)) should be approximately linear vs log(t)



Regression models

For each item, we observe (Ti , δi ,Zi ), where

• Ti is a censored failure time random variable

• δi is the censoring indicator

• Zi is a set of covariates

• observations are i.i.d., independent censoring

Zi could be

• scalar (gender, age or treatment, etc) or a vector (several covariates)

• discrete, continuous or time-varying

Regression models aim to model the relationship between survival and all of the

variables of interest (explanatory variables)



Regression models

Use of regression models to:

• adjust for imbalances in estimating and testing treatment e�ect

• test for and describe interactions between variables of interest

• understand prognostic factors

• model relative bene�t, i.e. describe the course of a treatment e�ect, in
terms of hazard ratio for example

• develop a model for survival probability

• identify subgroups at di�erent prognosis, i.e. prognostic indexes based on
estimated regression coe�cient or parametric and semi-parametric
recursive partition methods



Example

Leukemia data:



Regression models

Failure time regression models:

1. Proportional hazard models

• Cox model
• Exponential model
• Weibull model

2. Accelerated failure time models

• Exponential model
• Weibull model
• Log-logistic model
• Log-normal model



Proportional hazard model

We suppose Z to be the treatment, Z = 1 if treated, 0 otherwise

λ(t;Zi ) = λ0(t)exp(β
′
Zi )

• λ0(t) is the same baseline hazard for every individual and it does depend
only on time t

• exp(β
′
Zi ) depends on covariates and causes di�erent hazards for di�erent

individuals

λ1(t)=hazard rate for the treated group where λ1(t) = λ0(t)exp(β)

λ0(t)=hazard rate for the untreated group where λ0(t)

The hazard ratio, de�ned as the ratio between the hazard rates of treated
group vs untreated group is given by:

HR =
λ1(t)

λ0(t)
=
λ0(t)exp(β)

λ0(t)
= exp(β)



Exponential regression model

1. One binary covariate z :

λ(t; zi ) = λ0exp(β
′
zi ) = exp(β0 + β1zi )

2. Several covariates z = (z1, z2, . . . , zk):

λ(t; z i ) = λ0exp(β
′
z i ) = exp(β0 + β1z1i + β2z2i + . . .+ βkzki )

Note that the exponential function has been chosen because it assures the

positivity of hazard



Leukemia data

λ(t; z i ) = exp(β0 + β1zi )

ML estimates for β0, β1:

β̂0 = −2.25, 95%CI : (−2.70,−1.80)

β̂1 = −1.60, 95%CI : (−2.32,−0.88)



Leukemia data
Hazard estimates:

λ(t; z = 0) = exp(−2.25) = 0.10
λ(t; z = 1) = exp(−2.25− 1.60) = 0.02

Hazard ratio estimate:

HR = λ(t;z=1)
λ(t;z=0)

= exp(−2.25−1.60)
exp(−2.25)

= exp(−1.60) = 0.20

Parametric test on treatment e�ect (based on likelihood):

H0 : β1 = 0 H1 : β1 6= 0 LRT : QLR = 19.19, p < 0.001



Leukemia data

λ(t; z i ) = exp(β0 + β1I (zi = 1) + β2I (zi = 2))



Leukemia data

ML estimates for β0, β1, β2:

β̂0 = −2.25, 95%CI : (−2.22,−0.38)

β̂1 = −1.30, 95%CI : (−2.32,−1.80)

β̂2 = −1.83, 95%CI : (−2.75,−0.91)

Hazard estimates:

λ(t; z = 0) = exp(−2.25) = 0.10
λ(t; z = 1) = exp(−2.25− 1.30) = 0.03
λ(t; z = 2) = exp(−2.25− 1.83) = 0.02

Hazard ratio estimate:

HR1 = λ(t;z=1)
λ(t;z=0)

= exp(−2.25−1.30)
exp(−2.25)

= exp(−1.30) = 0.27

HR2 = λ(t;z=2)
λ(t;z=0)

= exp(−2.25−1.83)
exp(−2.25)

= exp(−1.83) = 0.16



Graphical check

Exponential model:

• Without covariates: S(t) = exp(−λt)→ log(S(t)) = −λt

• With covariates: S(t; z) = exp[−exp(β
′
z)t]→ log(S(t; z)) = −exp(β

′
z)t

logS(t; z) is linear vs t

1. Calculate and plot logŜKM(t; z) vs t

2. Exponential model is suitable if non-parametric estimates of logŜ(t; z) in
di�erent groups are parallel lines



Graphical check

Leukemia data



Weibull regression model

• Without covariates: λ(t) = λp(λt)p−1

• With covariates:

λ(t; zi ) = λp(λt)p−1exp(β
′
zi ) = λ0(t)exp(β

′
zi )

Λ(t) = (λt)p → Λ(t; zi ) = (λt)pexp(β
′
zi ) = Λ0(t)exp(β

′
zi )

S(t; zi ) = exp(−Λ(t; zi )→ S(t; zi ) = exp(−Λ0(t)exp(β
′
zi )) =

exp(−Λ0(t))exp(β
′
zi )



Leukemia data

λ(t; zi ) = λp(λt)p−1exp(β
′
zi ) = λ0(t)exp(β

′
zi )

λ̂ = exp(−3.610587)

β̂1 = −1.950108
p > 1→ increasing hazard



Leukemia data



Graphical check

• Without covariates:

S(t) = exp(−(λt)p)→ log(−log(S(t))) = plog(λ) + plog(t)

• With covariates:

S(t; z) = exp[(−λt)p]exp(β
′
z) → log(−log(S(t; z)) = β

′
z + plogλ+ plogt

log(−log(S(t; z)) is linear vs log(t) with slope p

1. Calculate and plot log(−log(ŜKM(t; z)) vs logt

2. Weibull model is suitable if non-parametric estimates of log(−log(Ŝ(t; z))
in di�erent groups are parallel lines



Graphical check



Leukemia data

Observed vs predicted survival function



Proportional hazard model

Proportional hazard model is the most common model used for survival data,
because

1. �exible choice of covariates

2. fairly easy to �t

3. standard software exists

but

�the success of Cox regression has perhaps had the unintended side-e�ect that

practitioners too seldomly invest e�orts in studying the baseline hazard . . . A

parametric version (of the Cox model),. . . if found to be adequate, would lead

to more precise estimation of survival probabilities and . . . concurrently

contribute to a better understanding of the phenomenon under study�



Proportional odds model

Odds of failure in time: F (t;z)
1−F (t;z)

= w0(t)exp(β
′
z)

Odds ratio of failure in time: OR = F (t;z2)/S(t;z2)
F (t;z1)/S(t;z1)

= exp(β
′
(z2 − z1))

• OR does not depend on w0(t)

• OR is constant over time

• The e�ect of each covariate on OR is multiplicative (for a unit of change in
the value of zk , OR is multiplied by exp(β))



Proportional odds model
Log-logistic model is a proportional odds model:

λ(t; z) = λp(λt)p−1exp(β
′
z)

(1+(λt)p)exp(β
′
z)

S(t; z) = 1

1+(λt)pexp(β
′
z)

Odds of failure in time: 1−S(t;z)
S(t;z)

= (λt)pexp(β
′
z) = w0(t)exp(β

′
z)

The shape of the odds function is monotone increasing for any pattern of
covariates and depend on p only



Graphical check

odds = F (t;z)
1−F (t;z)

= (λt)pexp(β
′
z)

log(odds) = β
′
z + plog(λ) + plogt

log(odds) is linear vs logt

• Calculate non parametrically and plot log ôdds vs logt

• Log-logistic model is suitable if non-parametric estimates of log ôdds in
di�erent groups are parallel lines



Graphical check



Log normal regression model

• Without covariates: S(t) = 1− Φ( logt−µ
σ2

)→ Φ−1(1− S(t)) = log(t)−µ
σ2

• With covariates: S(t) = 1− Φ( logt−β
′
z

σ2
)→ Φ−1(1− S(t; z)) = log(t)−β

′
z

σ2

Plot of Φ−1(1− Ŝ(t; z)) should be approximately linear vs log(t)

1. Calculate non parametrically and plot logŜ(t; z) vs logt

2. Log-normal model is suitable if non-parametric estimates of logŜ(t; z) in
di�erent groups are parallel lines



Graphical methods

• Exponential model: log(Ŝ(t; z)) should provide a linear graph passing
through the origin vs t

• Weibull model: log(−log(Ŝ(t; z)) should provide a linear graph vs log(t)
with slope p

• Logistic model: log( 1−Ŝ(t;z)

Ŝ(t;z)
should provide a linear graph vs log(t)

• Lognormal model: Φ−1(1− Ŝ(t)) should provide a linear graph vs log(t)



Accelerated failure times models

The e�ect of covariates is expressed directly on survival time:

TZ =
T0

exp(θ′Z)

where T0 = T |Z = 0 (Z = 0 baseline covariates vector)

If exp(θ
′
Z) > 1 reduced failure times, if exp(θ

′
Z) < 1 accelerated failure times

S(t; z) = P(T > t|z) = P
( T0

exp(θ′z)
> t|z

)
= P(T0 > texp(θ

′
z)|z) = S0(texp(θ

′
z))

f (t; z) = lim∆t→0

P(t ≤ T < t + ∆t)

∆t
=

= lim∆t→0

1

∆t
P(texp(θ

′
z) ≤ T0 < (t+∆t)exp(θ

′
z))

exp(θ
′
z)

exp(θ′z)
= exp(θ

′
z)f0(texp(θ

′
z))

λ(t|z) =
f (t; z)

S(t; z)
=

exp(θ
′
z)f0(texp(θ

′
z))

S0(texp(θ′z))
= exp(θ

′
z)λ0(texp(θ

′
z))

λ(t; z) ∝ λ0(texp(θ
′
z))



Weibull model

S(t; z) = S0(texp(θ
′
z))

S(t;Z) = exp[(−λt)p]exp(β
′
Z)

by some algebra and by a di�erent parameterization:

S(t;Z) = exp
{
−
[
λtexp( 1

p
βZ)

]p}
1

p
β = θ: parameter of an accelerated failure time

exp( 1

p
βZ): time acceleration



Standardized residuals

In accelerated failure times models: log(T ; z) = β
′
Z + log(T0)

(ti , δi , zi ), log(ti |zi ) = β
′
zi + εi , εi = log(t0)

• T0 ∼Weibull(λ, p)→ linear model for log(T ;Z) with extreme value
distribution of errors

• T0 ∼ loglogistic(λ, p)→ linear model for log(T ;Z) with logistic
distribution of errors

• T0 ∼ log(N(µ, σ))→ linear model for log(T ;Z) with normal distribution
of errors



Standardized residuals

ri = log(ti )−β̂
′
zi

σ̂
is the standardized residual (σ the scale parameter)

The survivor function is estimated, non parametrically, on residuals
(exp(ri ), δi ), and it is plotted versus log(t):

1. If log(−log(Ŝ(t))) is linear vs log(t)→ Weibull model

2. If log( 1−Ŝ(t)

Ŝ(t)
) is linear vs log(t)→ Log-logistic model

3. If Φ−1(1− Ŝ(t)) is linear vs log(t)→ Log-normal model



Cox-Snell residuals

T ∼ S(t)

S(T ) ∼ Unif (0, 1)

−log [S(T )] ∼ exp(1)

If the model is correct, the estimated cumulative hazard for each individual at
the time of their death or censoring should be like a censored sample from a
unit exponential

Pseudoresiduals: êi =
∫ t
0
λ̂(u; zi )du i = 1, . . . ,N

If the model is appropriate (êi , δi ) ∼ exp(1)

⇓

a plot of −log(Ŝê(êi )) versus êi , calculated non-parametrically, should be
approximately linear (passing through origin and with slope equal to 1)



Martingale and deviance residuals

(ti , δi , zi ), λ̂(ti ; zi ), i = 1, . . . ,N the estimated cumulative hazard
function

Martingale residuals: r̂mi = δi − Λ̂(ti ; zi )

• If the model is appropriate, a plot of r̂mi versus exp(β
′
zi ) should be

approximately linear

• Plot of r̂mi versus variables not included in the model, could suggest
potential relations between hazard function and those variables, by using
smoothing or lowess

Deviance residuals: transformation of martingale residuals: E(r̂di ) = 0

• If the model is appropriate, r̂di ∼WN(0, 1) i.i.d.

• Plot of deviance residuals against covariates to look for unusual pattern



In Stata

Distribution Metric Survival function Parameterization
Exponential PH exp(−λt) λ = exp(zβ)
Exponential AFT exp(−λt) λ = exp(−zβ)
Weibull PH exp(−λtp) λ = exp(zβ)
Weibull AFT exp(−λtp) λ = exp(−pzβ)

Loglogistic AFT (1 + (λt)1/γ)−1 λ = exp(zβ)

Lognormal AFT 1− Φ( log(t)−µ
σ

) µ = zβ


