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TIME FUNCTIONS

The probability distribution of T can be specified in many ways:
1. survivor function: S(t) (Kaplan-Meier estimator/Life table)
2. probability density function: f(t)

3. hazard function (A(t))

4. cumulative hazard function (A(t)) (Nelson-Aalen estimator)



HAZARD FUNCTION

Hazard function: \(t) = limAt_,ow

A(t) is the istantaneous failure rate (>0)

A(t)A(t) is the probability that failure is between t and t + A(t) conditional
on having survived until time t

A(t) = &8 = — L logS(t)
S(t), A(t), f(t) are matematically equivalent

5(t), A(t) play a basic role in survival analysis



HAZARD FUNCTION
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MODELING SURVIVAL DATA

Modeling \ Assumptions underlying the model Examples

Non parametric No assumptions Kaplan-Meier, Nelson AAlen
Semi-parametric Semi-specified Cox model
Parametric Specified functional form Exponential, Weibull

Log-normal, Log-logistic




PARAMETRIC MODELS

A model assumes a well-defined functional form for A(t), by taking into
account the main aspects of survival data:

e T2>0

o positively skewed distribution of survival time (normality is not
appropriate) — normal distribution is not appropriate
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e presence of censoring — least square estimation is not useful, maximum
likelihood estimator is appropriate



LIKELIHOOD FUNCTION

Let i =1,...,n be independent units

(t;,8;) is observed: t; time of occurrence of event or censoring; §; = 1 if the
event has been observed, §; = 0 is the censoring has been observed

n

L(0) = | [ [F(t:6)° S(t::0) H)\ ti;0)% S(t:; 0)

i=1

n

log(L(0)) = Z log [\(ti;0)% S(ti;0)] = Z [0ilog (A(ti; 0)) + log(S(ti: 6))]

i=1



EXPONENTIAL MODEL

T ~ exp(X)
Hazard function At)=A A>0
Cumulative hazard function A(t) = [y Mu)du = At
Survival function S5(t) = exp(—A(t)) = exp(—At)
Density function f(t) = —L5(t) = Xexp(—At)
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EXPONENTIAL MODEL

log(L(N)) =) _ [dilog(A(ti: N)) + log(S(t:; A))] = Y [dilog(X) — Ati)] =
i=1 i=1
=logAY 6i—AY &
i=1 i=1
d _ N ?:1 di
Ty logl =062 = ST

Estimator of failure rate when it is assumed to be constant

X _ numberoffailure
" totalpersontimeofobservation

X corresponds to the estimator of the mortality rate heuristically introduced by
epidemiologists and commonly expressed in terms of death per person times at
risk



EXAMPLE

”): _ Z:::l oi
1 b

i=
Leukemia data: Survival in patients with cancer: is the treatment effective on

the survival?

strate

failure _d: died
analysistime _t: studytime

Estimated rates and lower/upper bounds of 95%

confidence intervals
(48 records included in the analysis)

+

D Y Rate Lower  Upper |

31 744.0000 0.041667 0.029303 0.059247 |

+

+
+ +




WEIBULL MODEL

T ~ Weibull(\, p)

Hazard function A(t) = Ap(At)P! A\ p>0
Survival function S(t) = exp(—(At)P)
Density function | f(t) = pAPtP~ exp(—(\t)P)

Hazard funct
3

p < 1 monotonically decreasing, p = 1 — exponential model, p > 1 monotonically

increasing



GOMPERTZ-MAKEHAM MODEL

Gompertz (1825) suggested that a “law of geometric progression pervades” in
mortality after a certain age

At) = aexp(ft), a,B>0

a=baseline mortality, =age component

S(t) = exp(— [ aexp(Bu)du) = exp(5(1 — exp(Bt)))

Makeham (1860) extended the Gompertz model by adding a constant A:

A(t) = aexp(Bt) + A, 5(t) = exp(—At + 5 (1 — exp(St)))




LOG-LOGISTIC MODEL

T ~ loglogistic(\, p)

Hazard function | A\(t) = % Ap>0
Survival function | S(t) =

1
1+(At)P
Density function | f(t) =

pAPP—1
1+(At)P)2

p < 1 monotonically declining hazard function, p > 1 the hazard function at first rises
monotonically up to a maximum and then falls monotonically



LOG-NORMAL MODEL

log T ~ N(p,0?)

Density function | f(t) = 5 ¢(‘&52) o2 >0
Survival function | S(t) =1 — ¢(’°€:7{“) o(t) = ﬁexp(%tz)

, G ) ¢
Hazard function | \(t) = = &(t) = [y ¢(u)du

T2t . logt— iy
o4t l_d)(log;z !L)

- — u(log)=0,sd(log)=1
— 1(log)=0.5 scl(l0g)=1
— u(log)=1.sd(log)=1
24 " wllog)=2sd(log)=1

Hazard function

The hazard function at first rises monotonically up to a maximum and then falls

manantaniecallvy



METHODS TO CHECK PARAMETRIC ASSUMPTIONS

It is important to empirically check the adeguacy of models upon which
inferences are based, for example by:

e Graphical methods: they compare transformations of nonparametric
estimates of survivor functions with the predictions from parametric
models. Most of these approaches begin with a nonparametric estimation
of a survivor function using the Kaplan-Meier estimator, and a
nonparametric estimation of the cumulative hazard function using the
Nelson-Aalen estimator

o Residuals and pseudo-residuals: they are calculated and used in evaluating
distributional assumptions. Residuals are deviations of the observed values
of the dependent variable from the values estimated under the
assumptions of a specific model. When the dependent variable is not
observable, as the hazard function in transition rate models,
pseudo-residuals are used



GRAPHICAL METHODS

e Exponential model: S(t) = exp(—At) — log(S(t)) = —At
1. Consider the non parametric estimation of S(t) by Kaplan-Meier estimator:
SKM(t) N
2. If failure time follows an exponential distribution the plot of log(Skm(t))
should provide a linear graph passing through the origin vs t with slope A
figure




GRAPHICAL METHODS

e Exponential model: A(t) = A

Consider the non parametric estimation of A(t) by life table estimator
after grouping data by time intervals j:

5 -

q;
(nj—1/2(dj+¢;))(tj11—tj)

The denominator is the product of the length of time interval by the average
number of survivors at the middle point of the interval, by assuming an uniform
distribution of deaths and censoring over the interval

nsubs nlost nrisk nevent hazard se.hazard
0-1| 250 13 2435 158 0.9604863 0.06702384
1-2 79 6 76.0 45 0.8411215 0.11375915

2-3| 28 3 26.5 16 0.8648649 0.19495488
3-4 9 0 9.0 5 0.7692308 0.31754812
4-5 4 0 4.0 2 0.6666667 0.44444444
5-6 2 0 2.0 1 0.6666667 0.62853936
6-7 1 0 1.0 1 NA NA




GRAPHICAL METHODS

If failure time follows an exponential distribution the plot of X(t)) should
provide a linear graph parallel to x-axis

070 075 080 085 080 085

Hazard function estimated by Iife table

The hazard function estimate may fluctuate a lot when there are a few subjects
at risk

The central death rate is plotted against time at the mid-point of the interval:
smoothers are often applied, to study the shape of the hazard



GRAPHICAL METHODS

e Exponential model: A(t) = At Consider the non parametric estimation of
A(t) by Nelson-Aalen estimator: Aya(t)

If failure time follows an exponential distribution the plot of KNA(t) should
provide a linear graph passing through the origin vs ¢ with slope A\

Cumulative hazard




GRAPHICAL METHODS

e Exponential model: A(t) = At
Consider the non parametric estimation of A(t) by Kaplan-Meier
estimator: Axm(t) = —log(Skm(t))

Cumulative hazard by KM




GRAPHICAL METHODS

e Weibull model:
S(t) = exp(—(At)?)
log(S(t)) = —(At)?
log(—log(S(t))) = plog()) + plog(t)

Plot of log(log(—log(5(t)))) should be approximately linear vs log(t)

A=1,p=1




GRAPHICAL METHODS

e Log-logistic model:
5(t) = mroor
s
L (S(0) = e

log(15552) = plog()) + plog(t)

Plot of log(1 s(t ) should be approximately linear vs log(t)

A=1,p=0.2

log(1-S(t/S(t)




GRAPHICAL METHODS

° Log-normal model:

S(t) =1 - o(85+)
h (l—S(t)) e

Plot of ®=1(1 — 5(t)) should be approximately linear vs log(t)

p=1,sd=1




REGRESSION MODELS

For each item, we observe (T;,di, Z;), where
e T;is a censored failure time random variable
® §; is the censoring indicator
e Z; is a set of covariates
e observations are i.i.d., independent censoring
Z; could be
e scalar (gender, age or treatment, etc) or a vector (several covariates)

e discrete, continuous or time-varying

Regression models aim to model the relationship between survival and all of the
variables of interest (explanatory variables)



REGRESSION MODELS

Use of regression models to:

adjust for imbalances in estimating and testing treatment effect
test for and describe interactions between variables of interest
understand prognostic factors

model relative benefit, i.e. describe the course of a treatment effect, in
terms of hazard ratio for example

develop a model for survival probability

identify subgroups at different prognosis, i.e. prognostic indexes based on
estimated regression coefficient or parametric and semi-parametric
recursive partition methods



EXAMPLE

Leukemia data:

Kaplan-Meier survival estimates

Survivor function
0.50 0.75

0.25

20 30 40
Months

treat=10

treat=1




REGRESSION MODELS

Failure time regression models:
1. Proportional hazard models

e Cox model
e Exponential model
e Weibull model

2. Accelerated failure time models

e Exponential model
e Weibull model

o Log-logistic model
e Log-normal model



PROPORTIONAL HAZARD MODEL

We suppose Z to be the treatment, Z = 1 if treated, 0 otherwise

At: Z) = o(t)exp(B Zi)

® )\o(t) is the same baseline hazard for every individual and it does depend
only on time t

° exp(ﬁlZ,-) depends on covariates and causes different hazards for different
individuals

A1(t)=hazard rate for the treated group where A\1(t) = Xo(t)exp(B)
Ao(t)=hazard rate for the untreated group where A\q(t)
The hazard ratio, defined as the ratio between the hazard rates of treated

group vs untreated group is given by:

Au(t) _ Ao(t)exp(B)

AR =30 = 2ot

= exp(B)



EXPONENTIAL REGRESSION MODEL

. One binary covariate z:

A(t: 27) = Moexp(8 z;) = exp(Bo + f12i)

. Several covariates z = (z1, 22, . . ., zx):

At 2i) = Xoexp(8 zi) = exp(Bo + Brz1i + Bazai + - - - + Bzii)

Note that the exponential function has been chosen because it assures the

positivity of hazard



LEUKEMIA DATA

A(t; zi) = exp(Bo + B1zi)

xizstreg i.treat,dist(e)nohr

Exponential regression -- log relative-hazard form

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time atrisk = 744
IR chi2(1) = 19.19
Log likelihood = -51.746927 Prob > chi2 = 0.0000

_t| Coef. Std.Er.  z P>|z| [95% Conf. Interval]
+
_ltreat_ 1 | -1.60163 .3687342 -4.34 0.000 -2.324335 -878924
_cons | -2.248518 .2294157 -9.80 0.000 -2.698164 -1.798371

ML estimates for (o, B1:

—2.25,95%C : (—2.70, —1.80)
~1.60,95%C/ : (—2.32, —0.88)

B
b1



LEUKEMIA DATA

Hazard estimates:

A(t; z =0) = exp(—2.25) = 0.10
At;z=1) = exp(—2.25 — 1.60) = 0.02
. strate treat

Estimated rates and lower/upper bounds of 95% confidence intervals
(48 records included in the analysis)

¥
treat D Y Rate Lower Upper |

|

0 19 180.0000 0.105556 0.067329 0.165486 |
1 12 564.0000 0.021277 0.012083 0.037465 |
+

+———— 4

Hazard ratio estimate:

HR = 3=y} = opl225-09%0) — exp(—1.60) = 0.20

Parametric test on treatment effect (based on likelihood):
Ho:51=0 Hy:B1#0 LRT : Qr = 19.19, p < 0.001



LEUKEMIA DATA

Kaplan-Meier survival estimates

Sunvivor function
050 075 100

025

0.00

0 10 20 0 40
Months

drug = active 1

drug = placebo
drug = active 2

At; zi) = exp(Bo + Bil(zi = 1) + B21(z = 2))

xi:streg i.drug,dist(e)nohr

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time atrisk = 744

LR chi2(2) = 2002

Prob >chi2 = 0.0000

Log likelihood = -51.330755

_t] Coef Std.Er. z P>|z| [95% Conf. Interval]

—
_ldrug_2 | -1.302057 .4682929 -2.78 0.005 -2.219894 -3842197
_ldrug_3 | -1.83184 .4682929 -3.91 0.000 -2.749678 -.9140032

_cons | -2.248518 .2294157 -9.80 0.000 -2.698164 -1.798871




LEUKEMIA DATA

ML estimates for o, 81, B2:

Bo = —2.25,95%Cl : (—2.22,—0.38)
Br = —1.30,95%CI : (—2.32, —1.80)
Ba = —1.83,95%C : (—2.75,—0.91)

Hazard estimates:

A(t;z =0) = exp(—2.25) = 0.10
Atz = 1) = exp(—2.25 — 1.30) = 0.03
A(t; z =2) = exp(—2.25 — 1.83) = 0.02

Hazard ratio estimate:

HR, = el — =m0 o 130) 027

_ Mt;z=2) __ exp(—2.25—1.83) __ _
HR, = 2=} = P2 b83) — exp(—1.83) = 0.16




GRAPHICAL CHECK

Exponential model:
o Without covariates: S(t) = exp(—At) — log(S(t)) = =\t
e With covariates: S(t;z) = exp[—exp(8 z)t] — log(S(t; z)) = —exp(f 2)t

logS(t; z) is linear vs t

1. Calculate and plot logSkm(t; z) vs t

2. Exponential model is suitable if non-parametric estimates of logS(t; z) in
different groups are parallel lines



log(S(i)

GRAPHICAL CHECK

Leukemia data

MNon parametric estimates

10 2{0 30

Untreated

Treated

40




WEIBULL REGRESSION MODEL

e Without covariates: A(t) = Ap(At)? ™!
e With covariates:
A(t; z1) = Ap(At)" exp(B'zi) = Ao(t)exp(8 z)
A(t) = (At)? = A(t; z1) = (At)Pexp(B zi) = No(t)exp(B zi)

S(t;zi) = exp(—//\(t; z) — S(t; z) = exp(—/\o(t)exp(ﬂlz;)) =
exp(—No( 1))



y >)

LEUKEMIA DATA

A(t: 21) = Ap(At) exp(B z;) = Mo(t)exp(5 z)

. streg treat, dist(w) nohr

Weibull regression - log relative-hazard form

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time atrisk = 744
LRchi2(1) = 2497
Log likelihood = -48.138622 Prob > chi2 0.0000

_t] Coef. Std.Er. z P>|z| [95% Conf. Interval]
_—

treat | -1.950108 .3936052 -4.95 0.000 -2.72156 -1.178656

cons | -3.610587 .628404 -5.75 0.000 -4.842236 -2.378937

/In_p | .4304104 .1456647 2.95 0.003 .1449128 .715908
-+

p| 1537889 .2240161 1.155939 2.046044
1/p | .6502422 .0947173 .4887481 .8650977

= exp(—3.610587)
1 = —1.950108
> 1 — increasing hazard

T @



LEUKEMIA DATA

. streg treat, dist(w) hr

Weibull regression - log relative-hazard form

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time atrisk = 744
R chi2(1) = 24.97
Log likelihood = -48.138622 Prob > chi2 = 0.0000

_t | Haz. Ratio Std.Er. z P>|z|] [95% Conf. Interval]
lreat*\- 1422587 0559938 -495 0.000 .0657721 .307692
/Inip+| 4304104 1456647 2.95 0.003 .1449128 715908

9] |+1.537889 .2240161 1.155939 2.046044

1/p | .6502422 0947173 .A887481 .8650977




GRAPHICAL CHECK

e Without covariates:
5(t) = exp(—(At)") — log(—log(5(t))) = plog(X) + plog(t)
e With covariates:
S(t;z) = exp[(—)\t)p]ex"(ﬂ/z) — log(—log(S(t; z)) = 8z + plogX + plogt

log(—log(S(t; z)) is linear vs log(t) with slope p

1. Calculate and plot /og(—log(gKM(t; z)) vs logt

2. Weibull model is suitable if non-parametric estimates of log(—log(g(t; z))
in different groups are parallel lines



GRAPHICAL CHECK

MNon parametric estimates

log-log(S()

2 3
log(t)

Untreated

Treated




LEUKEMIA DATA

Observed vs predicted survival function

10 2tﬂ 30

Untreated, Weibull
Untreated, Exp
Untreated, KM

Treated, Weibull
Treated, Exp
Treated, KM

40




PROPORTIONAL HAZARD MODEL

Proportional hazard model is the most common model used for survival data,
because

1. flexible choice of covariates
2. fairly easy to fit
3. standard software exists

but

“the success of Cox regression has perhaps had the unintended side-effect that
practitioners too seldomly invest efforts in studying the baseline hazard ...A
parametric version (of the Cox model),. .. if found to be adequate, would lead
to more precise estimation of survival probabilities and . .. concurrently
contribute to a better understanding of the phenomenon under study”



PROPORTIONAL ODDS MODEL

Odds of failure in time: FE2L5 = wo(t)exp( 2)

Odds ratio of failure in time: OR = 2l 22 — exp(§' (2, — 21))
e OR does not depend on wy(t)

e OR is constant over time

e The effect of each covariate on OR is multiplicative (for a unit of change in
the value of z;, OR is multiplied by exp(3))



PROPORTIONAL ODDS MODEL

Log-logistic model is a proportional odds model:

L) — AP texp(8 2)
Mt 2) = L omem(s o)

S(t;z) = L

1+(At)Pexp(B’ 2)

Odds of failure in time: 122 = (At)Pexp('z) = wo(t)exp(8 2)

The shape of the odds function is monotone increasing for any pattern of
covariates and depend on p only




GRAPHICAL CHECK

odds = TEEEL = (At)Pexp(B'z)

log(odds) = Bz+ plog(\) + plogt
log (odds) is linear vs logt

o Calculate non parametrically and plot log@ vs logt

o |og-logistic model is suitable if non-parametric estimates of logodds in
different groups are parallel lines



logiodds)

GRAPHICAL CHECK

MNon parametric estimates

2 3
logt

Untreated

Treated




LOG NORMAL REGRESSION MODEL

o Without covariates: S(t) =1 — &(&572) - &~(1 — S(t)) = 8l=x

o With covariates: S(t) =1 — &(&572) - o~1(1 - S(t;2)) = &P =

o2
Plot of ®~1(1 — ?(t;z)) should be approximately linear vs log(t)
1. Calculate non parametrically and plot logg(t;z) vs logt

2. Log-normal model is suitable if non-parametric estimates of logS(t; z) in
different groups are parallel lines



GRAPHICAL METHODS

Exponential model: log(g(t;z)) should provide a linear graph passing
through the origin vs t

Weibull model: log(—/og(g(t;z)) should provide a linear graph vs log(t)
with slope p

1— S(tz

Logistic model: log( should provide a linear graph vs log(t)

Lognormal model: ®~*(1 — 5(t)) should provide a linear graph vs log(t)



ACCELERATED FAILURE TIMES MODELS

The effect of covariates is expressed directly on survival time:

T
exp(0' Z)

Tz =
where To = T|Z =0 (Z = 0 baseline covariates vector)

If exp(6’ Z) > 1 reduced failure times, if exp(8' Z) < 1 accelerated failure times
S(t;z) = P(T > t|z) = ( (9 2 > t|z) = P(To > texp(9 z)|z) = So(texp(ﬁ/z))

Pt <T<t+At
f(t;Z) = limAt—)OM =

At
- /;mAﬁoip(texp(e’z) <To< (t+At)exp(9’z))ZZ EZZ = exp(0' 2)fo(texp(6 2))
At]z) = f(t; 2) _ exp(0 z)fo(texp(0 z)) _ exp(9'z))\0(texp(6,z))

S(ti2) So(texp(6'2))
A(t; z) o Mo(texp(8' z))



WEIBULL MODEL

S(t; 2) = So(texp(6' )

S(t: Z) = exp[(—At)P] @ 2)

by some algebra and by a different parameterization:
P

S(t;2) = exp{ - [)\texp(%,BZ)] }

%ﬁ = 0: parameter of an accelerated failure time

exp(;BZ): time acceleration



STANDARDIZED RESIDUALS

In accelerated failure times models: log(T;z) = B'Z+ log(To)
(ti, 6, z), log(tiz:) = B'zi + i, €i = log(to)

o To ~ Weibull(X\, p) — linear model for log(T; Z) with extreme value
distribution of errors

e To ~ loglogistic(\, p) — linear model for log(T; Z) with logistic
distribution of errors

e To ~ log(N(u,c)) — linear model for log(T; Z) with normal distribution
of errors



STANDARDIZED RESIDUALS

r= ’og(t")% is the standardized residual (o the scale parameter)

The survivor function is estimated, non parametrically, on residuals
(exp(ri), 0i), and it is plotted versus log(t):
1. If log(—log(5(t))) is linear vs log(t) — Weibull model

2. If Iog(lg(t()t)) is linear vs log(t) — Log-logistic model

3. If ®7(1 — S(t)) is linear vs log(t) — Log-normal model

Weibul Loglogistica Lognormal
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COX-SNELL RESIDUALS

T ~ 5(t)
S(T) ~ Unif(0,1)
—log[S(T)] ~ exp(1)
If the model is correct, the estimated cumulative hazard for each individual at

the time of their death or censoring should be like a censored sample from a
unit exponential

Pseudoresiduals: & = [; Nu; z;)du i=1,...,N
If the model is appropriate (€;, ;) ~ exp(1)

I

a plot of —log(5:(&)) versus &, calculated non-parametrically, should be
approximately linear (passing through origin and with slope equal to 1)



MARTINGALE AND DEVIANCE RESIDUALS

(t,0i, zi), At; zi), i=1,..., N the estimated cumulative hazard
function

Martingale residuals: Tm;, = i — A(ti: z;)
o If the model is appropriate, a plot of 7, versus exp(ﬂ,z,-) should be
approximately linear

e Plot of 7, versus variables not included in the model, could suggest
potential relations between hazard function and those variables, by using
smoothing or lowess

Deviance residuals: transformation of martingale residuals: E(7y,) =0

e If the model is appropriate, 7y, ~ WN(0,1) i.i.d.

o Plot of deviance residuals against covariates to look for unusual pattern



IN STATA

Distribution | Metric Survival function Parameterization

Exponential | PH exp(—At) A = exp(z3)
Exponential | AFT exp(—At) A = exp(—zp)
Weibull PH exp(—AtP) A = exp(zB)
Weibull AFT exp(—AtP) A = exp(—pzB)

Loglogistic | AFT (14 (A)Y/7)"1 X = exp(zB)
Lognormal | AFT 1 — o(lsl=r) w=z8




