1. Consider the lottery $\boldsymbol{q}=\left(25, p_{3} ; 16, p_{2} ; 9, p_{1}\right), p_{3}+p_{2}+p_{1}=1$. Assuming that the utility function is $\mathrm{u}(\mathrm{x})=\sqrt{\mathrm{x}}$ and the weighting function is $\pi(p)=p^{2}$.
i. Using the Machina triangle (p on the vertical axis, w on the horizontal one) represent the following prospects: $\boldsymbol{q}=\left(25, \frac{1}{2} ; 9, \frac{1}{2}\right), \boldsymbol{r}=\left(25, \frac{8}{10} ; 16, \frac{1}{10} ; 9, \frac{1}{10}\right)$.
ii. Check the sign of the slope of the indifference curves passing for \boldsymbol{q}
iii. Check the sign of the slope of the indifference curves passing for \boldsymbol{r}
i.

ii. $\quad \boldsymbol{q}=\left(25, \frac{1}{2} ; 9, \frac{1}{2}\right)$
$U(\boldsymbol{q})=\sqrt{9}\left(\frac{1}{2}\right)^{2}+\sqrt{25}\left(\frac{1}{2}\right)^{2}=2$
$F=\sqrt{9} p_{1}{ }^{2}+\sqrt{16}\left(1-p_{3}-p_{1}\right)^{2}+\sqrt{25} p_{3}{ }^{2}-2=0$
Using the theorem of the implicit function we get

$$
\frac{d p_{3}}{d p_{1}}=-\frac{\frac{d F}{\frac{d p_{1}}{d F}}}{\frac{d F}{d p_{3}}}=-\frac{6 p_{1}-8\left(1-p_{3}-p_{1}\right)}{10 p_{3}-8\left(1-p_{3}-p_{1}\right)}
$$

Evaluated in \boldsymbol{q} we obtain that $\frac{d p_{3}}{d p_{1}}=-\frac{6}{10}$
iii. $\quad r=\left(25, \frac{8}{10} ; 16, \frac{1}{10} ; 9, \frac{1}{10}\right)$
$U(\boldsymbol{r})=\sqrt{9}\left(\frac{1}{10}\right)^{2}+\sqrt{16}\left(\frac{1}{10}\right)^{2}+\sqrt{25}\left(\frac{8}{10}\right)^{2}=3.27$
$F=\sqrt{9} p_{1}{ }^{2}+\sqrt{16}\left(1-p_{3}-p_{1}\right)^{2}+\sqrt{25} p_{3}{ }^{2}-3.27=0$
Using the theorem of the implicit function we get

$$
\frac{d p_{3}}{d p_{1}}=-\frac{\frac{d F}{d p_{1}}}{\frac{d F}{d p_{3}}}=-\frac{6 p_{1}-8\left(1-p_{3}-p_{1}\right)}{10 p_{3}-8\left(1-p_{3}-p_{1}\right)}
$$

Evaluated in \boldsymbol{r} we obtain that

$$
\frac{d p_{3}}{d p_{1}}=\frac{1}{36}
$$

2. An individual prefers high outcomes respect to small ones.
a. Suppose that lottery r stochastically dominates lottery q. Which is the preferred lottery?
b. Check for stochastic dominance of the two following lotteries.

$$
\begin{gathered}
q=(210,0.30 ; 500,0.2 ; 760,0.5) \\
r=(200,0.30 ; 500,0.15 ; 760,0.55)
\end{gathered}
$$

a. Lottery r is the preferred one.
b. Let be $F_{q}(x)$ and $F_{r}(x)$ the cumulative functions respectively of lotteries q and r .

$$
\begin{aligned}
& F_{q}(200)=0, F_{q}(210)=0.3, F_{q}(500)=0.5, F_{q}(760)=1 \\
& F_{r}(200)=0.3, F_{q}(210)=0.3, F_{q}(500)=0.45, F_{q}(760)=1
\end{aligned}
$$

No one stochastically dominates the other.
3. All Prospect theory's assumptions are satisfied. Assume that $\mathrm{v}(\mathrm{x})=\left\{\begin{array}{c}\sqrt{x} \text { if } x \geq 0 \\ -\frac{4}{5} \sqrt{-\mathrm{x}} \text { if } x<0\end{array}\right.$ and $\pi(\mathrm{p})=\mathrm{p}^{2}$. Evaluate the following prospects and for each one compute the certainty equivalent (reference point 0):
a. $\quad \mathrm{q}=(625,0.60 ;-225,0.40)$
b. $\quad \mathrm{q}=(154,0.15 ; 46,0.55 ; 10,0.30)$
a. $U(q)=\sqrt{625} 0.6^{2}-\frac{4}{5} \sqrt{225} 0.4^{2}=250.36-120.16=7.08$

$$
C E=7.08^{2}=50.13
$$

b. $(q)=\sqrt{10}+(\sqrt{46}-\sqrt{10}) 0.55^{2}+(\sqrt{154}-\sqrt{10}) 0.15^{2}=4.47$

$$
C E=4.47^{2}=19.98
$$

4. Consider the following prospects $\boldsymbol{q}=(9,0.12)$ and $\boldsymbol{r}=(27,0.04)$. Assume that $v(x)=x$ and $\pi\left(\frac{1}{3} \cdot 0.12\right)>\frac{1}{3} \cdot \pi(0.12)$. State the preferred prospect.

By contradiction. Assume \boldsymbol{q} is preferred to \boldsymbol{r}. In this case $U(r)<U(q)$ i.e. $27 \pi(0.04)<9 \pi(0.12)$ simplifying $\pi(0.04)<\frac{1}{3} \pi(0.12)$. A contradiction with the initial assumption.
5. Consider the following prospects $\boldsymbol{r}=(x), \boldsymbol{q}=(y, 0.10 ; x, 0.89) \boldsymbol{r}^{\prime}=(x, 0.11)$ and $\boldsymbol{q}^{\prime}=(y, 0.10)$, $x, y>0$. Assume that \boldsymbol{q}^{\prime} is indifferent to \boldsymbol{r}^{\prime} and that $\pi(0.11)+\pi(0.89)<1$. Which is the preferred lottery between \boldsymbol{r} and \boldsymbol{q} ? Prove your answer assuming a generic subjective value function $v(x)$.
\boldsymbol{q}^{\prime} is indifferent to \boldsymbol{r}^{\prime} means that $\pi(0.10) v(y)=\pi(0.11) v(x)$
Compute the expected utilities of \boldsymbol{r} and \boldsymbol{q}.
$U(\boldsymbol{r})=v(x) \quad U(\boldsymbol{q})=v(y) \pi(0.10)+v(x) \pi(0.89)$
$U(\boldsymbol{q})$ can be rewritten as $U(\boldsymbol{q})=v(x) \pi(0.11)+v(x) \pi(0.89)=v(x)(\pi(0.11)+\pi(0.89))$
Then $U(\boldsymbol{r})=v(x)>U(\boldsymbol{q})=v(x)(\pi(0.11)+\pi(0.89)) g$ iven the assumption $\pi(0.11)+\pi(0.89)<$ 1.

Therefore \boldsymbol{r} is preferred to \boldsymbol{q}.
6. All Prospect theory's assumptions are satisfied. Consider the following prospects: $\boldsymbol{q}=(x, 2 p)$, $\boldsymbol{r}=(2 x, p)$ where $x<0$ and $p<0.5$. Show that $q>r$ implies subadditivity.
$q>r$ implies $v(x) \pi(2 p)>v(2 x) \pi(p)$
By convexity $2 v(x)<v(2 x)$ then $v(x) \pi(2 p)>v(2 x) \pi(p)>2 v(x) \pi(p)$
Then

$$
\begin{gathered}
v(x) \pi(2 p)>2 v(x) \pi(p) \\
\frac{1}{2} \pi(2 p)<\pi(p)
\end{gathered}
$$

7. Consider the following prospects $\boldsymbol{r}=(20, p), \boldsymbol{q}=\left(24, \frac{2}{3} p\right) \boldsymbol{r}^{\prime}=(\boldsymbol{r}, 0.5)$ and $\boldsymbol{q}^{\prime}=(\boldsymbol{q}, 0.5)$. Assume subcertainty and that \boldsymbol{q}^{\prime} is indifferent to \boldsymbol{r}^{\prime}. Which is the preferred lottery between \boldsymbol{r} and \boldsymbol{q} ? Prove your answer assuming a generic subjective value function $v(x)$.

TEXT WAS WRONG, THE ASSUMPTION IS SUBPROPORTIONALITY and NOT SUBCERTAINTY
\boldsymbol{q}^{\prime} is indifferent to \boldsymbol{r}^{\prime} implies $v(20) \pi\left(\frac{p}{2}\right)=v(24) \pi\left(\frac{p}{3}\right) \rightarrow \frac{v(20)}{v(24)}=\frac{\pi\left(\frac{p}{3}\right)}{\pi\left(\frac{p}{2}\right)}$ by subproportionality we have that: $\frac{v(20)}{v(24)}=\frac{\pi\left(\frac{p}{3}\right)}{\pi\left(\frac{p}{2}\right)}>\frac{\pi\left(\frac{2 p}{3}\right)}{\pi(p)} \rightarrow \frac{v(20)}{v(24)}>\frac{\pi\left(\frac{2 p}{3}\right)}{\pi(p)} \rightarrow v(20) \pi(p)>v(24) \pi\left(\frac{2}{3} p\right)$ where the LHS is the expected utility of r and the RHS is the expected utility of q. Then r is the preferred one.
8. Assume $\pi(x)=x$ and that all other Prospect theory's assumptions are satisfied. Suppose the following two prospects: $\boldsymbol{q}=(-9,0.12)$ and $\boldsymbol{r}=(-27,0.04)$. Which is the preferred prospect when the reference point is 0 ? Which is the preferred prospect when the reference point is -27 ?

Reference point 0 :
the preferred prospect is \boldsymbol{r}. Indeed by convexity of v we have that $v(-27) 0.04>v(-9) 0.12$. \rightarrow $\frac{v(-27)}{v(-9)}<3$.

Reference point -27.
$\boldsymbol{q}=(27,0.88 ; 18,0.12)$ and $\boldsymbol{r}=(27,0.96)$
$U(q)=v(18)+0.88(v(27)-v(18)) U(r)=v(27) 0.96$

Assume \mathbf{q} is preferred
$I U(q)>U(r) \rightarrow v(18)+0.88(v(27)-v(18))>v(27) 0.96 \rightarrow$
$0.12 v(18)+0.88 v(27)>v(27) 0.96$
$0.12 v(18)>v(27) 0.08$
$1.5>\frac{v(27)}{v(18)}$

That is true given the concavity of $v()$ for positive values.
9. Check if $\pi(x)=x^{2}$ satisfies subadditivity, subproportionality and subcertainty.

Subadditivity is $\pi(r \cdot p)>r \cdot \pi(p) \forall p, r \in(0,1)$.
Assuming $\pi(p)=p^{2}$ we have $(r p)^{2}>r p^{2} \forall p, r \in(0,1)$. Simplifying we get $r p^{2}>p^{2}$ a contradiction because $r \in(0,1)$.
Then subadditivity is not satisfied.
Subproportionality principle is: $\frac{\pi(p \cdot q \cdot r)}{\pi(p \cdot r)} \geq \frac{\pi(p \cdot q)}{\pi(p)} 0 \leq p, q, r \leq 1$.
Assuming $\pi(p)=p^{2}$ we have $: \frac{(p q r)^{2}}{(p r)^{2}} \geq \frac{(p q)^{2}}{(p)^{2}} 0 \leq p, q, r \leq 1$.
Simplifying we get that is verified by equality.
Subcertainty principle is:
$\pi(p)+\pi(1-p)<1 \forall p \in(0,1)$
Assuming $\pi(p)=p^{2}$ we have $(p)^{2}+(1-p)^{2}<1$, simplifying we have $2 p^{2}+1-2 p<1 \rightarrow$
$2 p^{2}-2 p<0$ that is true for $0 \leq p \leq 1$
Then it is verified.

