- 1. An individual is characterized by $\beta\delta$ -preferences where $\beta = 0.7$ and $\delta = 0.9$ and his instantaneous utility function is $u(x) = \ln(10 + x)$ where x is the spending. At t = 1 Paul receives an endowment W = 10 to spend in t = 2, t = 3 and t = 4. (Assume R>1)
 - a) Compute the optimal plan of spending from the perspective of t = 1.
 - b) Compute the optimal plan of spending from the perspective of t = 2.
 - c) Assume the agent forecasts correctly his future behaviour (i.e. he is sophisticated). Compute the optimal share of W invested in illiquid asset in t = 1

Solution

By c_i we denote the spending in period i = 2, 3, 4. By w_i we denote the endowment in period i = 1, 2, 3, 4; then $w_1 = 10$

a) The problem is

$$\max_{\{c_2, c_3, c_4\}} \beta \delta u(c_2) + \beta \delta^2 u(c_3) + \beta \delta^3 u(c_4)$$

s.t. $c_2 \le Rw_1, c_3 \le Rw_2, c_4 \le Rw_3 \text{ and } c_2, c_3, c_4 \ge 0$

Note that $w_2 = Rw_1 - c_2$, $w_3 = Rw_2 - c_3$ and that in the solution must be $w_4 = 0$ (no resources left)

Then we can rewrite the problem as

$$\max_{\{w_2,w_3\}} \beta \delta u(Rw_1 - w_2) + \beta \delta^2 u(Rw_2 - w_3) + \beta \delta^3 u(Rw_3)$$

s.t. w₂, w₃ ≥ 0

Using the assumption given in the text we have:

 $\max_{\{w_2, w_3\}} 0.7 \cdot 0.9 \ln(10 + Rw_1 - w_2) + 0.7 \cdot 0.9^2 \ln(10 + Rw_2 - w_3) + 0.7 \cdot 0.9^3 \ln(10 + Rw_3)$ s.t.w₂, w₃ ≥ 0

FOCs

$$-\frac{0.7 \cdot 0.9}{10 + Rw_1 - w_2} + \frac{R \cdot 0.7 \cdot 0.9^2}{10 + R \cdot w_2 - w_3} = 0$$
$$-\frac{0.7 \cdot 0.9^2}{10 + R \cdot w_2 - w_3} + \frac{R \cdot 0.7 \cdot 0.9^3}{10 + R \cdot w_3} = 0$$

Replacing $c_2 = w_1 - w_2$, $c_3 = w_2 - w_3$, $c_4 = w_3$ and simplifying 1 $R \cdot 0.9$

$$\frac{1}{10 + c_2} = \frac{R \cdot 0.9}{10 + c_3}$$
$$\frac{1}{10 + c_3} = \frac{R \cdot 0.9}{10 + c_4}$$

are: