1. An individual is characterized by $\beta \delta$-preferences where $\beta=0.7$ and $\delta=0.9$ and his instantaneous utility function is $u(x)=\ln (10+x)$ where x is the spending. At $t=1$ Paul receives an endowment $\mathrm{W}=10$ to spend in $\mathrm{t}=2, \mathrm{t}=3$ and $t=4$. (Assume $\mathrm{R}>1$)
a) Compute the optimal plan of spending from the perspective of $t=1$.
b) Compute the optimal plan of spending from the perspective of $t=2$.
c) Assume the agent forecasts correctly his future behaviour (i.e. he is sophisticated). Compute the optimal share of W invested in illiquid asset in $t=1$

Solution

By c_{i} we denote the spending in period $i=2,3,4$.
By w_{i} we denote the endowment in period $i=1,2,3,4$; then $w_{1}=10$
a) The problem is

$$
\begin{gathered}
\max _{\left\{c_{2}, c_{3}, c_{4}\right\}} \beta \delta u\left(c_{2}\right)+\beta \delta^{2} u\left(c_{3}\right)+\beta \delta^{3} u\left(c_{4}\right) \\
\text { s.t. } c_{2} \leq R w_{1}, c_{3} \leq R w_{2}, c_{4} \leq R w_{3} \text { and } c_{2}, c_{3}, c_{4} \geq 0
\end{gathered}
$$

Note that $w_{2}=R w_{1}-c_{2}, w_{3}=R w_{2}-c_{3}$ and that in the solution must be $w_{4}=0 \quad$ (no resources left)

Then we can rewrite the problem as

$$
\begin{gathered}
\max _{\left\{w_{2}, w_{3}\right\}} \beta \delta u\left(R w_{1}-w_{2}\right)+\beta \delta^{2} u\left(R w_{2}-w_{3}\right)+\beta \delta^{3} u\left(R w_{3}\right) \\
\text { s.t. } w_{2}, w_{3} \geq 0
\end{gathered}
$$

Using the assumption given in the text we have:

$$
\begin{aligned}
& \max _{\left\{w_{2}, w_{3}\right\}} 0.7 \cdot 0.9 \ln \left(10+R w_{1}-w_{2}\right)+0.7 \cdot 0.9^{2} \ln \left(10+R w_{2}-w_{3}\right)+0.7 \cdot 0.9^{3} \ln \left(10+R w_{3}\right) \\
& \text { s.t. } w_{2}, w_{3} \geq 0
\end{aligned}
$$

FOCs
are:

$$
\begin{aligned}
&- \frac{0.7 \cdot 0.9}{10+R w_{1}-w_{2}}+\frac{R \cdot 0.7 \cdot 0.9^{2}}{10+R \cdot w_{2}-w_{3}}=0 \\
&-\frac{0.7 \cdot 0.9^{2}}{10+R \cdot w_{2}-w_{3}}+\frac{R \cdot 0.7 \cdot 0.9^{3}}{10+R \cdot w_{3}}=0
\end{aligned}
$$

Replacing $c_{2}=w_{1}-w_{2}, c_{3}=w_{2}-w_{3}, c_{4}=w_{3}$ and simplifying

$$
\begin{aligned}
& \frac{1}{10+c_{2}}=\frac{R \cdot 0.9}{10+c_{3}} \\
& \frac{1}{10+c_{3}}=\frac{R \cdot 0.9}{10+c_{4}}
\end{aligned}
$$

