Lecture 6

Dynamic games with imperfect information

Backward Induction in dynamic games of imperfect information

- We start at the end of the trees
- first find the Nash equilibrium (NE) of the last subgame
- then taking this NE as given, find the NE in the second last subgame
- continue working backwards

If in each subgame there is only one NE, this procedure leads to a Unique Subgame Perfect Nash equilibrium

Example: two stage game of imperfect information

- Stage 1: Players 1 and 2 move simultaneously taking, respectively, actions $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$
- Stage 2: Players 3 and 4 observe $\left(a_{1}, a_{2}\right)$, then move simultaneously taking, respectively, actions $a_{3} \in A_{3}$ and $a_{4} \in A_{4}$
- Payoffs: $u_{i}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ for $i=1,2,3,4$
- Solution:
- We solve the simultaneous - move game between players 3 and 4 in the second stage:
- Players 1 and 2 anticipate the behaviour of players 3 and 4

Backward induction outcome:

(B, L, T, L)
Subgame perfect Nash equilibrium (B, L, (T, T, T, B), (R, R, L, L))

Example 2

Challenger's strategies: \{(Out Ready), (Out Unready) (In ready), (In Unready)\}
Incumbent' strategies: Acquiesce, Fight

Acquiesce
Fight
$2, \underline{4}, \underline{4}$
2, 4
2, 4
1, 1
In Unready
3, $\underline{3}$
0, 2

Three Nash equilibria:

1. (Out Ready, Fight);
2. (Out Unready, Fight)
3. (In unready, Acquiesce)

Consider the subgame starting in the decision node after Challenger's choice In

Incumbent

Challenger		Acquiesce	Fight
	Ready	$3, \underline{3}$	$\underline{1}, 1$
	Unready	$\underline{4}, \underline{3}$	0,2

An unique Nash equilibrium: Unready, Acquiesce Then, only (In unready, Acquiesce) is subgame perfect NE

Example 3

		Incumbent	
		Acquiesce	Fight
Challenger	Ready	$3, \underline{3}$	$1, \underline{1}$
	Unready	$\underline{4}, \underline{3}$	0,2
	Out	$2, \underline{4}$	$\underline{2}, \underline{4}$

Two Nash equilibria:
(Out, Fight) (Unready, Acquiesce) Both are SPNE

Applications with imperfect information

Bank Runs

- Two investors, one bank
- Each investor has deposited D with a bank
- The bank has invested 2D in a long term project
- If the bank liquidates the investment before the end, it will get back $2 r$, where $D / 2<r<D$
- Otherwise the bank will get $2 R$, where $R>D$
- Investors can make withdrawals from the bank at:
- Date 1, before the end of the investment
- Date 2, after the end of the investment
- It is enough that one investor makes withdrawal at date 1 to force the bank to liquidate the investment

Payoffs:

- Both investors make withdrawals at date 1:
- each one receives r.
- Only one investor makes withdrawal at date 1:
- he receives D, the other receives $2 r-D$.
- Neither investor makes withdrawal at date 1:
- Both investors will take a withdrawal decision at date 2
- Both investors make withdrawals at date 2:
- each receive R
- Only one investor makes withdrawal at date 2:
- he receives $2 R-D$, the other receives D.
- Neither investor makes withdrawal at date 2:
- The Bank returns R to each investor

Date 1

Investor 2

Withdraw No withdraw

Withdraw
No withdraw $2 r-D, D$
Next stage

Date 2

Investor 2

Withdraw No withdraw
Withdraw
Investor 1
No withdraw
R, R
2R-D, D
D, 2R - D
R, R

We solve the game in date 2

Date 2

Investor 2

Withdraw No withdraw
Withdraw
Investor 1

	Investor 2	
	Withdraw	No withdraw
Withdraw	$\underline{R} \underline{R}$	$\underline{2 R-D}, D$
No withdraw	$D, \underline{R-D-D}$	R, R

In date 2's game there is only one Nash equilibrium:
\{(Withdraw), (Withdraw)\}
where each Investor gets R

In date 1 the two investors anticipate that in the case neither investor makes withdrawal at date 1 , the game goes in the second stage (date 2) and that in date two the outcome will be (the NE):
\{(Withdraw), (Withdraw)\}
where each Investor gets R.
Then the game in date 1 can be written as:
Date 1

Investor 2

Withdraw No withdraw
Withdraw
No withdraw
Investor 1

$$
\begin{array}{cc}
r, r & D, 2 r-D \\
2 r-D, D & R, R \\
\hline
\end{array}
$$

We solve the game in date 1 :

Date 1

Investor 2
Withdraw No withdraw
Withdraw
Investor 1
No withdraw $2 r-D, D$
There are two Nash equilibria in date 1 game: \{(Withdraw), (Withdraw)\}
$\{($ No withdraw), (No Withdraw) $\}$

Game in Date 2, one NE: \{(Withdraw), (Withdraw) \}
Game in Date 1 (reduced), two NE:

1. $\{($ Withdraw), (Withdraw) $\}$
2. $\{($ No withdraw), (No Withdraw) $\}$

Whole game:
Two Backward Induction Outcomes (BIO):

1) $\{($ Withdraw), (Withdraw) $\}$ in date 1
2) $\{($ No withdraw), (No Withdraw) $\}$ in date 1 , \{(Withdraw), (Withdraw)\} in date 2

Two subgame perfect NE (SPNE):

1) $\{($ Withdraw, Withdraw), (Withdraw, Withdraw) $\}$
2) \{(No withdraw, Withdraw), (No Withdraw, Withdraw)\}

Note SPNE 1) supports BIO 1), SPNE 2) supports BIO 2)

Investor 1: 2 information sets Investor 2: 2 information sets Investor 1's strategies: \{(W, W), (W, NW), (NW, W), (NW, NW) \} Investor 2’s strategies: \{(W, W), (W, NW), (NW, W), (NW, NW) \}

Backward Induction

Investor 1: 2 information sets Investor 2: 2 information sets Investor 1's strategies: \{(W, W), (W, NW), (NW, W), (NW, NW) \} Investor 2's strategies: \{(W, W), (W, NW), (NW, W), (NW, NW) \}

Reduced game

Tariffs and Imperfect international competition

- Two identical countries denoted by $i=1,2$.
- One homogeneous good is produced in each country by a firm, firm i in country i
- A share h_{i} of this product is sold in the home market and a share e_{i} is exported in the other country
- Governments choose tariffs, i.e. a tax on the import. Government of country i chooses tariff t_{i}.

In country i the market clearing price is:

$$
P_{i}\left(Q_{i}\right)=a-Q_{i}
$$

where $Q_{i}=h i+e j$
Firms have constant marginal cost, c, and no fixed cost

Firm's payoff (profits):
$\pi_{i}=\left[a-h i-e_{j}\right] h i+\left[a-h_{j}-e_{i}\right] e_{i}-c\left[h i+e_{i}\right]-t_{j} e_{i}$
Government's payoff
(consumer welfare + home firm's profit + tariff revenue)

$$
W_{i}=0.5 Q i^{2}+\pi_{i}+t_{i} e_{j}
$$

- Timing

1. Governments simultaneously choose tariffs $\left(t_{1}, t_{2}\right)$
2. Firms observe $\left(t_{1}, t_{2}\right)$ and simultaneously choose quantities $\left(h_{1}, e_{1}\right),\left(h_{2}, e_{2}\right)$.

- Backward induction solution

1. We suppose that governments have chosen tariffs (t_{1}, t_{2}) and we find the optimal behaviour of firms as function of $\left(t_{1}, t_{2}\right)$.
2. We assume that governments correctly predict the optimal behaviour of firms for each possible combination of $\left(t_{1}, t_{2}\right)$ and we find the optimal tariff rates.

We suppose that governments have chosen tariffs $\left(t_{1}, t_{2}\right)$ and we find the optimal behaviour of firms as function of $\left(t_{1}, t_{2}\right)$.

$$
\begin{gathered}
\max _{\left(h_{1}, e_{1}\right)} \pi_{1} \\
\text { where } \\
\pi_{1}= \\
{\left[a-h_{1}-e_{2}\right] h_{1}+\left[a-h_{2}-e_{1}\right] e_{1}-c\left[h_{1}+e_{1}\right]-t_{2} e_{1}}
\end{gathered}
$$

Firm 1's FOCs:

$$
\begin{gathered}
{\left[a-2 h_{1}-e_{2}\right]-c=0} \\
{\left[a-h_{2}-2 e_{1}\right]-c-t_{2}=0} \\
\rightarrow \\
h_{1}=\left(a-e_{2}-c\right) / 2 \\
e_{1}=\left(a-h_{2}-c-t_{2}\right) / 2
\end{gathered}
$$

For Firm 2:

$\max _{\left(h_{2}, e_{2}\right)} \pi_{2}$
where

$$
\pi_{2}=
$$

$$
\left[a-h_{2}-e_{1}\right] h_{2}+\left[a-h_{1}-e_{2}\right] e_{2}-c\left[h_{2}+e_{2}\right]-t_{1} e_{2}
$$

Firm 2's FOCs:

$$
\begin{gathered}
{\left[a-2 h_{2}-e_{1}\right]-c=0} \\
{\left[a-h_{1}-2 e_{2}\right]-c-t_{1}=0} \\
\rightarrow \\
h_{2}=\left(a-e_{1}-c\right) / 2 \\
e_{2}=\left(a-h_{1}-c-t_{1}\right) / 2
\end{gathered}
$$

We have to solve a system of 4 equations in 4 unknowns:

1. $h_{1}=\left(a-e_{2}-c\right) / 2$
2. $e_{1}=\left(a-h_{2}-c-t_{2}\right) / 2$
3. $h_{2}=\left(a-e_{1}-c\right) / 2$
4. $e_{2}=\left(a-h_{1}-c-t_{1}\right) / 2$

Solutions:

1. $h_{1}{ }^{*}=\left(a-c+t_{1}\right) / 3$
2. $e_{1}{ }^{*}=\left(a-c-2 t_{2}\right) / 3$
3. $h_{2}^{*}=\left(a-c+t_{2}\right) / 3$
4. $e_{2}{ }^{*}=\left(a-c-2 t_{1}\right) / 3$

We assume that governments correctly predict the optimal behaviour of firms for each possible combination of $\left(t_{1}, t_{2}\right)$ and we find the optimal tariff rates.
The problem of country 1's government is:

$$
\max _{\left\{t_{1}\right\}} W_{1}=0.5\left(Q_{1}^{*}\right)^{2}+\pi_{1}^{*}+t_{1} e_{1}^{*}
$$

where

$$
\begin{gathered}
Q_{1}^{*}=h_{1}^{*}+e_{2}^{*}=\frac{\left(a-c+t_{1}\right)}{3}+\frac{\left(a-c-2 t_{1}\right)}{3} \\
=\frac{\left(2 a-2 c-t_{1}\right)}{3} \\
\pi_{1}^{*}=\left[a-h_{1}^{*}-e_{2}^{*}\right] h_{1}^{*}+\left[a-h_{2}^{*}-e_{1}^{*}\right] e_{1}^{*}-c\left[h_{1}^{*}+e_{1}^{*}\right]-t_{2} e_{1}^{*}
\end{gathered}
$$

Using algebra

$$
W_{1}=\frac{\left(2(a-c)-t_{1}\right)^{2}}{18}+\frac{\left(a-c+t_{1}\right)^{2}}{9}+\frac{\left(a-c-2 t_{2}\right)^{2}}{9}+\frac{t_{1}\left(a-c-2 t_{1}\right)}{3}
$$

Similarly we can write the problem of country 2's government
We compute the governments' FOCs and we find:
$\mathrm{t}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3 \quad \mathrm{t}_{2}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3$
Then
Firm 1 will produce:
$\mathrm{h}_{1}{ }^{*}=4(\mathrm{a}-\mathrm{c}) / 9 \quad \mathrm{e}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 9$
Firm 2 will produce:
$h_{2}{ }^{*}=4(a-c) / 9 \quad e_{2}{ }^{*}=(a-c) / 9$

Backward Induction outcome

$$
\mathrm{t}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3 \quad \mathrm{t}_{2}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3
$$

$$
h_{1}{ }^{*}=4(a-c) / 9 \quad e_{1}^{*}=(a-c) / 9
$$

$$
h_{2}{ }^{*}=4(a-c) / 9 \quad e_{2}^{*}=(a-c) / 9
$$

Subgame Perfect Nash Equilibrium (SPNE):

Note:
One info set for governments
infinite number of info set for firms, i.e. each
possible combination of $t_{1} t_{2}$
$\mathrm{t}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3 \quad \mathrm{t}_{2}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3$
$h_{1}{ }^{*}=\left(a-c+t_{1}\right) / 3$
$e_{1}{ }^{*}=\left(a-c-2 t_{2}\right) / 3$
$h_{2}{ }^{*}=\left(a-c+t_{2}\right) / 3$
$e_{2}{ }^{*}=\left(a-c-2 t_{1}\right) / 3$

