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1 GENERAL RELATIVITY

1 General Relativity

1.1 Introduction

The Newtonian theory of gravity (NG), which allowed us to send probes up to, and beyond, the outskirts of the
Solar System, to land on planets and satellites, to rendez-vous with comets and asteroids, is no more adequate
when dealing with the structure and evolution of our Universe: as we shall see, Newtonian gravity leads to
contradictions. Moreover, NG is not consistent with Special Relativity (SR): when two masses are at rest,
Newton’s law of gravitation gives the force between them; but, when the masses start moving, their distance,
in Newton’s law, is the instantaneous distance, so the information on the positions is transmitted with infinite
velocity. We know that SR tells us that no information can travel faster than the speed of light ¢. So, when
studying Cosmology, we have to resort to the best theory of gravity on the market today, i.e. General Relativity
(GR). Lukily, in order to understand the basic equations governing the cosmic dynamics, we will not need all
the technical machinery usually associated to GR. In the following we will just go through the essential concepts
needed to understand the meaning of Einstein equations, by making a brief introduction to the basics of this
theory.

But, why is GR more complicated than Newtonian gravity? Newtonian gravity is based on the gravitational
potential ®(T) at the position Z, which can be derived, given a distribution of mass o(Z), by solving Poisson
equation

V20 (Z) = 41Go(T), (1)

where G is the Newtonian gravitational constant. When we know ®(Z) we can derive the acceleration felt by
a body at Z: g(T) = —V ®(Z) and then integrate to find its motion. Eq. (1) is linear in the source term o(%),
so contributions from different bodies simply add together. The gravitational field, as any other field, has some
energy associated with it, and SR tells us that energy is equivalent to mass, which in turn produces gravity. So
a gravitational field acts in turn as a source of gravitational field and the equations of GR are non linear (while
in electromagnetism charges and currents are sources, but not the field itself).

Another difference with electromagnetism is that in this case the acceleration of a body depends on its mass
and charge, while in a gravitational field all bodies feel the same acceleration. Einstein thus conceived gravity
not as a force like electromagnetism, but as a curvature, a deformation of the geometry of spacetime. So, to
understand GR, we must view first some concepts of differential geometry. We start with two-dimensional (2D)
surfaces in Euclidean 3D space.

1.2 Surface elements

To be more specific, rather than about surfaces, we will talk about surface elements, as we are interested in
their local properties.

We resort to a parametric representation: we consider a bijective function 7 : D C R? — R? (remember that
we work in a three-dimensional Euclidean space E?).
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1 GENERAL RELATIVITY 1.2 Surface elements

We define Z(u, v) = (21 (u,v), z2(u, v),23(u, v)). If the surface is expressed in the way z = f(z,y) its paramete-
rization becomes Z(u,v) = (u,v, f(u,v)).
A surface is said to be a regular (smooth) surface if, having defined the vectors

= 0z _ (O0xy Oz Ox
Tu(u,v) = Gy, _(TJ’WQ’TJ>

% _ (81’1 81‘2 8$3)
v Ov v’ v

Ty(u,v) =

everywhere (within the domain) %, x T, # 0 (cross product).
While keeping fixed v = vy and by varying v in the neighborhood of a point P’ (— P on the surface element

M) T get a curve on M , whose tangent vector is T,. In a similar way, also T, is tangent to a curve on M.
These two vectors define the tangent plane to M at the point P.

We can now define a versor N perpendicular (normal) to the surface

. Ty XT . ,
N=_"2""" and N,7,,T, form a trihedron.
[T, X Tl

Exzample: sphere (in geographic coordinates)

One can describe the surface of the sphere, using the variable u for the longitude (—7 < w < 7) and the
variable v for the latitude (—5 < v < 7), in the following way (most commonly using the colatitude, § — v):
T(u,v) = (Rcosu cosv, R sinu cosv,Rsinv).

>

/2

Xy
o

/2

Since in a neighborhood of a point P on M (and of a corresponding point P’ € D) the correspondence is
bijective, we can think that u and v form, in a neighborhood of P, a system of curvilinear coordinates (like
parallels and meridians on a sphere).

If u = u(t), v =v(t) (¢ is a parameter) is a curve in D through P’(ug,vo), then 7(t) = Z(u(t),v(t)) is a curve

on M through Z(uo, vo). The “velocity” vector ¥ = 9= will be
g_*_@dl+@@ N ;_7d7u fdl (3)
dt =T oudt ' ovdt P T ar
D\/—\
P’
VU <

X2

u, u



1.3 The first fundamental form 1 GENERAL RELATIVITY

The vector 7 is also tangent to M and is therefore contained in the tangent plane. Any vector belonging to
the tangent plane at P is a linear combination of Z, e T, (in T(ug,vo)); conversely, any linear combination
T = aZy(ug,vo) + bTy(ug,vo) ) is the "velocity" vector of a curve on M. The vectors T, e T, form a basis in
the tangent plane at the point P (they are not, in general, unit vectors).

1.3 The first fundamental form
Let 7(t) = Z(u(t),v(t)), with a < t < b, be a curve on a surface. The curvilinear abscissa s (arc-length) is
defined as

dr

t
dt — 8:/
t 0

since ds is equal to the magnitude of the infinitesimal displacement dr along the curve and s(a) = 0. Then the
total length L of this curve is obtained by integrating % = }%| on the interval [a, b]:

dr

dt = s(t)

b
dr
L= s(b) :/ | far
but, since ¥ =T, - 4+ T, - 0 (with & = % e © = %)
d 2 dr 2 .
(di) = d—z =77 = Tyl + Tpd) + (Tull + Tyd) = (T - Ty) + 200(Tyy - Ty) + 02 (Ty * To)

Now let E =%y - Ty, F =Ty - Ty, G =Ty - Ty (E = E(u(t),v(t),)...); we obtain:

d 2
<dj> — B + 2F0b + Gi?

b 2 241
du du dv dv 2
L= El— 2F — — — dt
/a [ (dt) + dtdt+G<dtH
which is shortened writing (it’s understood that what matters is the curve, not the parameters used to describe
it)

1
2
L= / ds = / {EduZ + 2Fdudv + deQ]

or, in differential form,
ds? = BEdu? + 2Fdudv + Gdv? (4)

This is the so called first fundamental form or metric form of a surface.

As we shall see, the metric form determines completely the intrinsic geometry of the surface, including its
curvature. When we speak of intrinsic geometry we refer to the geometric properties that can be assessed
through measures (e.g. distances, but not only) conducted by remaining within the surface, without "going
out" from it (that is, without looking at the two-dimensional surface from an Euclidean three-dimensional
space). The possibility to define intrinsic properties is essential because, if going from 2 to 3 dimensions, we
want to understand the geometry of space that characterizes our universe, we cannot observe it from "outside"!

Notice: Due to the bijective correspondence between the domain D € R? and the surface element M, the curves
u = const e v = const form a grid on the surface, and one can think at F, F', e G as functions defined on the
surface (and then intrinsic). We may think that the inhabitants of the two-dimensional surface make various
measurements of distances between points of the surface to discover the form of the three functions E, F e G,
expressed as a function of the curvilinear coordinate grid, perhaps by making assumptions about their possible
shape and looking for the best solution.

Example: the sphere in geographical coordinates:

Z(u,v) = (R cosu cosv, R sinu cosv, R sinv)

T, = (—R sinu cosv, R cosu cosv, 0)

Ty = (—R cosu sinv, — R sinu sinv, R cosv)



1 GENERAL RELATIVITY 1.3 The first fundamental form

E =7, - T, = R? cos®v sin?u + R? cos?v cos®u = R? cos®v
G =T, - Tp = R? sinv cos®u + R? sin’v sin?u + R? cos?v = R?
F =7, T, = R? cosv cosu sinv sinu — R? cosu cosv sinu sinv = 0

ds? = R2 cos?vdu? + R2dw?

If we remember that, for a <t <b, L = [ds = f; (42)2dt, we can write

/\/ch052 +R2 dt 2dt R/ \/cos2 7:2 ((31;}) dt

and, given the paths u = u(t) and v = v(¢) in the domain, we can compute the length L.

If v = az, + bT,, W = T, + dT,, with a,b,c,d € R, are two vectors tangent to the surface M, then 7-w =
(aTy + bTy) - (¢Ty + dTy) = acE + adF + beF + bdG which can be written in the matrix form

(a,b) < ? g )( ccl ) where ( ? g ) is the matrix of the first fundamental form

So, if we know the first fundamental form, we are able to compute scalar (dot) products on M: not only lenghts,
but also angles!

We remind that being T, X T, normal to the plane tangent to the surface, the versor N = ‘f“””’l is normal to
the surface.
. o 2 =N — 9 o E F
Lagrange identity (important): [Ty X To|? = (T Tu) (T - Tyy) — (T - Ty)* = BEG — F? = det F G
Proof: remember that
Ty X Ty| = |Tu||To| sind
Ty, * Ty = |To||To| cost
so (if we remember that sin? § = 1—cos? 0) |Zy X Tp|? = [Tu|?[Ty|? sin?0 = (ZTy-Tu) (To-To) — (Tu - Ty)? Q.E.D.

The requirement that the surface is smooth implies that EG — F2 #£ 0

At this point we make a change in the symbology used; as we shall see this will lead to a considerable
simplification of formulas.

Let’scall g1 =FE gi2 =921 = F g2 =G T1 =Ty Ty =Ty
and let’s write u!=u u? = (where the superscripts 1 and 2 are upper indices and not exponents).
Then we will have 9ij =%;-%; (i,j=1,2) and the matrix of the metric form will be:

gu g2 \_( E F
921 g22 F G
Remember that g;; = g;;(u,v) = gi;(u', u?).

By defining g = det(g;;) = EG — F?, from Lagrange identuty |Z; x Ta|? =

In the new notation, the first fundamental form can then be written:

ds? = g11(dut)? 4 2g12dut du? + goo(du?) Zgwdu du’ (5)

We used 2g12 = g12 + g21 since gia = go1; moreover, we will soon understand the reason for we write «* instead
of u;.



1.3 The first fundamental form 1 GENERAL RELATIVITY

A vector, tangent in P to M, T = aT; + bT2 can be written as 7 = V1T + 02Ty = ZZ VI (notice that i is a
“dummy” variable, and any other letter can be used instead of it.)

Ifo=3%,v'T; and w = Zj w/T; are two vectors tangent to M at the same point P, then

= Z(vifi) (wEy) = Zviwjfi T = Zgijviwj
,J (]

%]

gl

v -

The vectors ¥ and W are orthogonal if and only if 3=, ; gijviw! = 0.
We define as g*/ the elements of the inverse matrix of (g;;), such that
g1 912 gt g'? _ 1 0
921 G292 921 922 O 1
which, in a more compact way, can be written
> gig’ =4 (6)
J
where 6% (Kronecker 4 ) is defined in the following way
1 i=k
k_
o = { 0 itk @

Remembering that the elements of the inverse of a matrix are given by the algebraic complements divided by
the determinant of the original matrix, we get:

11 _ 922 12 21 _ 921 22 _ 911
g g g
We will now see that the first fundamental form not only allows you to measure distances and angles, but also
areas (and volumes).

Let be T : D — E3 a surface in E® and let be Q € D a region of the domain where Z is bijective. To find the
area of Z(£2), we subdivide € into rectangular elements by means of lines parallel to the axes u' e u?.

XJ

-

A small area belonging to €, having sides Au! and Au? corresponds approximately to a piece of surface
parallelogram-shaped, with sides parallel to the vectors Z; e T2. These sides have lengths given by Al; ~ |7;|Au!

and Aly ~ |[To|Au? (Remember that 7; = %, and then AT, = 5951 Aul)

The measure of the small area is given by:
AA = |7 |Aut - [T2|AuPsing = |T; x To|Au'Au? = /gAu' Au?
where 6 is the angle between 7; and T, and g = det(g;;) as seen above.

Adding all these area elements covering © and going to the limit Au’ — 0 we obtain the area of F(2):
A= / / Vg du'du? (8)
Q

8



1 GENERAL RELATIVITY 1.4 Tensors

We observe that, working in two dimensions, the measure of a set is precisely its area; if we work in three
dimensions, the measure will be a volume, and an n-dimensional volume in n dimensions. In all cases, even
if we don’t prove it here, the measure is obtained by integrating ,/g, where g is the determinant of the n-
dimensional metric. This applies in the so-called Riemannian spaces (manifolds), in which the ds? > 0. In the
pseudo-Riemannian spaces, where ds? can be positive, negative or equal to zero (such as Minkowski space-time
of Special Relativity), some elements of the metric tensor can be negative; since in this case it can be that (as
for space-time) g < 0, we will use in general the absolute value of g, and we will write \/@ (or, when we know

that g < 0, \/—9).

Example: area of the torus:
Z(u,v) = [ (R + rcosu) cosv, (R + r cosu) sinv, 7 sinu] Vg =1 (R+ rcosu)

0<v<2r 0<u<2r 0<r<R

2m 2 2m 2m
/ [/ r(R+rcosu)du] dv =27r {/ Rdqu/ rcosudu} =
0 0 0 0

27
= 2ur |:27TR + 1"/ cosu du] = 47’ Rr
0

wn
I

X3

-

Xl

1.4 Tensors

Why did we write things like g;; and du’ and du’? Because we are dealing with tensor quantities, quantities
whose properties are related to the way they transform when changing the reference system.

If we switch from the (generally curvilinear) coordinate system u’ (i = 1,2,...) = u'7(j = 1,2,...) we will get
(by means of ... we begin to see how things can be generalized to more than two dimensions)

ou'l

— Jut
1

du” =

du* (3,5 =1,2,..) (9)

Every quantity V7 which transforms according to the rule

1j
ou .

— Jut
1

Vi = (10)

is a contravariant tensor (or, to be more precise, its components transform as a contravariant tensor); so, also
du®, or u*, are contravariant tensors. A vector is a tensor or rank one. A scalar quantity, the value of which
does not change at a given point if we change the coordinate system, is a tensor of rank zero.

We consider now the gradient of a scalar field ®(u’) = ®(u'7). We have:

87(1) — A % — 3ui . A (11)
ouli - out Oull - ou'i  ou’




1.4 Tensors 1 GENERAL RELATIVITY

We see that the gradient of ® changes differently from du’! We say that gﬁ is a covariant vector, and often

we simply write 9;P instead of gﬁ, with a lower index. When the same index appears both as an upper and a

lower index, the sum on that index is implied (Einstein convenction), and we simply write:

= Ou? Vi and 87@ = %67@
T oud i Oul Ou

V"

The quantity ds? = gl-jduiduj (implying the summation on 4 and j) is the length, squared, of a segment, and
is therefore independent on the reference frame used (it is a scalar). In two different reference frames we will
then have

out o’
ou'k Ou't

ds? = gy du*du = g;duldu? = g;; duFdu” (12)

. out S oud
since du'= au’kdUIk and du’ = Sl du”
e have = —&Li —auj i
w Vi Ikl = U o'l Gij

i.e., the metric tensor is a covariant tensor of rank two.

On the contrary, the g% tensor is contravariant tensor (of rank two).
We have also seen that the inner product v - w can be expressed as v - w = g;;v"w’.

If we multiply two tensors we also get a tensor:A;; - C* = DF;.

If we contract a tensor we still have a tensor, but with its rank reduced by two: T,gmj = Bim- In fact, e.g.,

ok out o oout 4

" ou'* . ou! .
o oud Oult

Al = A} =

If D; and D’ are the covariant and contravariant components of the same vector (tensor) and we consider a
generic vector C7 such that

D;=g;C7/-D' = D;D'= g;;C' D',

by performing this inner product we obtain, on the left, a scalar that depends on the vectorD, while the right
side depends on both C and D; since these two quantities are equal, necessarily C = D, i.e. D; = g;;D7. We
can get this result also in another way. We have seen that a vector ¥ can be written as ¥ = v'Z;, by using its
contravariant components; we now define its covariat components vy in the following way:

V=TT = 0T - T = V' gip = girv' = grav’ (13)
In a similar way we have D/ = ¢”D;. We see that the metric tensor can be used to transform
contravariant components into covariant componenets (and vice versa).

If g;; lowers an upper index, we can use it also to lower an upper index of ¢’%. obtaining

99" =g = oF (14)

on the basis of what has been said above: the metric tensor in the mixed form (i.e. with an upper index and a
lower one) is equal to the Kronecker delta.

It is not easy to represent the covariant and contravariant components of a vector in general, but one can give a
graphic description in some particular case, for example in the case of rectilinear coordinates. Consider, in the
plane, a rectilinear non-orthogonal coordinate system Oxy. Let Z; be the basis vectors. If we write the vector A
as A = A'z;, I realize that A’ are the ususal components of a vector, such that the component vectors, having
magnitude A° and direction and versus given by #;, add according to the parallelogram rule to give the vector
A. The contravariant components correspond to the parallel projections on the axes.

10



1 GENERAL RELATIVITY 1.5 Curvature of a plane curve and of a surface

Contravariant Covariant
components components

Conversely, if I write, as done above, the covariant components as A; = A - &;, I realize that they are the
projections of di A along the &; direction; they correspond to the normal projections on the axes.

It follows that, if the reference frame is rectilinear and orthogonal, parallel and perpendicular projections are
the same thing, and covariant and contravariant components are equal. It’s no more necessary to distinguish
between upper and lower indices.

Notice that a vector (or more generally a tensor), per se, is neither covariant nor contravariant, but its compo-
nents are covariant or contravariant.

But every quantity with indices is not necessarily a tensor. For instance, as we shall see, the affine connections
I do not represent a tensor, since they do not transform like a tensor.

We can draw an important conclusion: each equation is invariant under a general coordinate tran-
sformation if it is expressed as the equality between two tensors with the same upper and lower
indexes :

8, =Bf, — A =B2 if A% and B§, are tensors.

Since also the zero is a tensor of whatever rank (just think that it transforms always into a zero), a relation like
Aj. = 0 will be satisfied in any reference frame.

On the contrary, an equality between quantities that are not tensors with the same upper and lower indices
(e.g. Ty, = 5; V' = B;) can be true in some reference frame, but not in all of them.

1.5 Curvature of a plane curve and of a surface

Let see first how we can define, in a quantitative way, the curvature of a curve in the plane. As we have seen,

a plane curve can be parametrized in the following way: Z(t) = (z1(t),2(t)) where ¢ is a parameter, not
necessarily the time; the tangent vector (velocity) is (c%' The curvilinear abscissa s (arc-length) is in this case
dz “ldz
O=(t=0) P=3t) ds=ldzl=|SCla - s:/ o lar = s(t)
0

11



1.5 Curvature of a plane curve and of a surface 1 GENERAL RELATIVITY

If we switch parameter from ¢ to s, we notice that % — Z(s) has magnitude 1: it’s the tangent versor #(s).
We also define a versor 7 (normal) obtained from a rotation of £ by 90° in a positive direction (consistent with
O, x1,22). At each point P on the curve we can find the osculating circle (the circle which best approximate
the curve in an infinitesimal neighbourhood of P) and its radius R; the curvature & of the curve in P is just
k = +1/R, positive if the center C' and the versor 7 are on the same side of the curve with respect to P, negative
in the opposite case.

Let’s see now how one can extend the notion of curvature to a surface. Let us then consider a point P on a
surface, and let 7 be the unit vector normal to the surface in P. If ¥ is a vector tangent to the surface at the
point P, v and n define a plane that cuts the surface along a curve which will have, in P, a certain radius of
curvature. The curvature in P is given by k = i%, where the sign is taken positive or negative depending on
whether the center of curvature C' is, with respect to P, on the same side of 7 or on the opposite side (you can
also take the opposite choice but, as we will see, things do not change). Let’s see, as examples of surfaces, the
plane, the sphere and the right cylinder.

12



1 GENERAL RELATIVITY 1.5 Curvature of a plane curve and of a surface

/

=

!
1 I\
/ S <1/ 1
/ /
/

R=00 k=0

k=1/R k=0

In the case of the cylinder, it can be seen that there are two directions perpendicular to each other and
corresponding to the vectors 7; and T, which, in turn, correspond to the maximum and the minimum value (k;
and ks) of k, the so-called principal curvatures. This applies in general, for all smooth surfaces.

The Gauss curvature K is defined as the product k; - k2. From this we see that K does not depend on the
convention adopted for signs of k.

For the plane K = 0, for the sphere K = 1/R?, for the cylinder K = 0, as for the plane! Although this may
appear strange at first sight, actually it reflects the fact that by cutting a right cylinder along a segment parallel
to its axis, it can lie on a plane without deforming and without changing lengths and angles of figures drawn on
it . The geometry of a cylinder cannot be locally distinguished from that of a plane when we measure angles,
lengths, areas, i.e. all those properties that can be measured by moving only along its surface. However, an
overall view allows to distinguish a plane from a cylinder: an insect that moves along a circular cross-section
(perpendicular to the axis of the cylinder) without turning neither to the right nor to the left, will eventually
retrace his steps, but this does not happen on the plane. Also a right circular cone has K = 0.

An example of a surface with K < 0 is given by a hyperbolic paraboloid (a surface shaped like a saddle)

z = 22 — y%: the two centers of curvature are located on opposite sides with respect to P and then we have

K <O.

In general a surface will have K > 0 if, with respect to the tangent plane in P, it is "all on one side" (at least
locally), while it will have K < 0 if the surface is on both sides with respect to the tangent plane in P.

For a torus we have the outer zone with K > 0, the inner one with K < 0, separated by two circumferences,
above and below, with zero curvature.

One could define the curvature of a surface in other ways, for example K’ = k; + ko. In this case, plane and
cylinder would be different locally. But the main advantage of the Gauss curvature lies in the fact that, as we
shall see, it may be determined by resorting only to measurements carried out on the surface, without the need
to "see" the surface in 3 dimensions (as would happen instead for K’ = k1 + ko).

The Gauss curvature is an intrinsic property of the surface, and can be determined by knowing the metric tensor
gij (4,7 =1,2). This is the result of the so-called Theorema Egregium, so named by the same Gauss.

Example: The mysterious planet (from Weinberg, 1972)

To have an intuitive idea of how this is possible, consider this example: suppose we have measured on the
surface of a celestial body on which we were transported blindfolded (so without seeing it from space!) the
distances between four locations Py, P, P53, P4 as shown in the figure. Given the values of the six segments,
can we tell if the planet’s surface is flat or not?

13
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y
P,
dZI’A
PZI’
@ "\ %
d23
d, O T—0Ly
P, P, x

d12 = 780km d13 = 1498km d14 = 1112km d23 = 735km d24 = 960km d34 = 813km
By Carnot theorem: d34 = d3, + d3; — 2d12da3cosas , so that

3y + d33 — dis

cosas =
2d12d23

In a similar way

d3y + d3, — di,

cosay =
2d12d24

Coordinates of the points: P; = (0,0) ; P» = (d12,0) ;
Pg = (d12 + d23COS(7T — Ozg),dggsin(ﬂ' — 043) = (d12 — dggCOSOég,ngSinag) ; P4 = (d12 — d24COSOé4, d24sina4).
d2, = [d12 — dagcosaz — dia + dagcosay)? + [dassinas — dagsinay)? = d3; + d3, — 2dazdascos(az — ay)

So, if the surface was flat, we would get dsq = 1147.6, but this is different from the measured value (813!). So
we can say thet we are not on a flat planet (if we assume that the surface is a sphere, we could even derive the
radius of the planet).

1.6 Geodesics

Let 7(s) = (u'(s)), con a < s < b, be a curve on a surface (s being the curvilinear abscissa s) between two
points P and Py (P, =7(a); P =7(b)). We say that this curve is a geodesic between Py and P, if its length
is stationary for small variations of the curve which cancel at the extremes. The curve that connects, on the
surface, P; to P, along the shortest path is a geodesic, but other solutions may be possible.

For example, on a sphere both C; and Cs (both arcs of a great circle) are geodesics between P; e Py, but the
shortest path corresponds to C;.

14



1 GENERAL RELATIVITY 1.6 Geodesics

From the relation ds?> = gjkdujduk, if we express the coordinates u’ in parametric form by means of the
parameter ¢ (not necessarily the time) we get:

4s? — ( dud duk)dt2

AT T
By defining L(u’,4',t) = (g;rt/4*)'/? (with gjr = gjx(u’) and @° = %) the length of a curve between P; and
P2 is:
Py P,
S = Ldt = ds
Py Py

To find the condition for S to be stationary we use Euler-Lagrange equations (see variational calculus):
oL d (oL

- — — - | =0 15
ou' dt (8u1> (15)

After some algebra and some “tricks” we get the following relation:

d*u’ o du? du®
Fras e Fi 1)

This expresses the condition of stationarity, i.e. it is the differential equation that defines a geodesic. The
symbol with three indices Fé-k is the so-called affine connection or Christoffel symbol of 2™¢ type, defined as:

Jk T 9

ouk  oul oul

i 1 zz<891g Ogik (9gjk) an

This quantity depends on g;; and on its first derivatives. Moreover, notice that Fé-k = chj. Often, in order to

simplify even more the notation, we use to write:

9gij _
ouk

OkGij = Gij-k

Note that T, is not a tensor, as

o't oul ouk

l
I —-— — 1"
mn # Out Ou'™ Ou'm Jk

In the geodesic equation the term on the left hand side is a tensor of rank 1 (a contravariant vector), although
F;-k is not a tensor. So, if it is zero in a reference system, it will also be zero in a generic reference system.

Example: the plane in cartesian coordinates

ds? = du? + dv?; since g;; is constant, the I" are all zero, and geodesics are solutions of

d?u d*v u=as+b
@—O a.nd @—0 — U:CS+d

(with a, b, ¢, d real numbers): those are the parametric equations of a straight line.

Example: geodesics in the plane in polar coordinates

15



1.6 Geodesics 1 GENERAL RELATIVITY

%g (%{1}% 89kr %‘gﬁ) remember the symmetry on j and k
Il = %g” (aaijkl 89;; - %ijf) since ¢g'? = 0

1 99 39;2 Igk2  Ogjk

— 27 (8uk ouwl  Ou? >
i) 2t

Fh :Fb :Fil :F§2 =0

j%;" +(—r)- (jz)g =0 (I

d?0  2/dr\ /d6
d+<d><d)_0 (a0

(if d9/ds = 0 we get the staight line passing through the origin); if we put df/ds = 6’ and divide (II) by 6" we

get:
1d9’ 2d
T + ;di; =0 - Ind’ + Inr? = In(0'r?) = const
and then
dé
7“2& = h = cost

16



1 GENERAL RELATIVITY

1.6 Geodesics

Instead of integrating (I), we use another method. From ds? = dr? + r2d6?, dividing by ds?, we get

1= (& 2+r2 do\*_ (dr 2+h—2
~ \ds ds)  \ds r?
You can verify that this relation is an integral of (I). From this we get

2 2 _ p2
de _ 0 VP a9 h
r

Fri 5 together with — ==
s r

Dividing the second equation by the first one, to eliminate s, we obtain

de h d h
=t =4 -
ar , /,12 = h2 dr [arccos (T' ):|

that is

h h
6 = Farccos(—) + 6o — - = cos(6 — o) — rcos(6 —6p) = h

r

which is precisely the equation of a line in polar coordinates (h is the minimum distance of the line from the

origin, obtained for 6 = 6y).

We have defined the geodesics on a surface (which correspond to the lines in the Cartesian plane). We know

that, on the plane, the circumference C of a circle of radius a is C = 2wa.

In a similar way, on any surface, to define a circle of radius a and center O, let’s draw from this point all the
geodesics and let’s mark on each of them the point at a distance from O equal to a curvilinear abscissa a; the
geometric locus of all these points is the requested circumference. We can now move along this circle (always
staying on the surface) and, with the same ruler we used to measure s = a, we can measure the length C.

Let’s see this for a sphere of radius R.

We will obviously have (we know this because we “see” the sphere in E3)

a 1a3 T a’
————+4+ .. | =2ma— ===+ 0
R oem =gt

C =27z =21R sin(%) ~ 27TR[

(a”)

But we also know that, for the sphere,1/R? = K and, if a — 0, neglecting higher order terms, we can write:

K= 2 lim <2m - C)

a3

(18)

This result, which is true in general, shows us how to actually derive the Gauss curvature K, with measurements

carried out on the surface.

For the plane 2wra = C and K = 0; for the sphere 2ra > C' and K > 0; around a saddle point 2wa < C' and

K <O.

17



1.7 Covariant derivative 1 GENERAL RELATIVITY

¢=2na ¢<2na ¢>2na

The Gauss curvature is therefore an intrinsic, local property of a surface. As the result does not depend on
the particular coordinate system used on the surface, K is an invariant quantity (such as ds?, for example),
although it may change from point to point on the surface (invariant doesn’t mean constant).

While in the Euclidean plane the sum of the internal angles («, 8 and 7) of a triangle is equal to 7, on a curved
surface the result is different. Another property linked to Gauss curvature is that the area A of a triangle formed
by geodesic arcs is given by the relation

a+p+y—m

A= 7

and if K > 0, like for the sphere, o + 8 + v > 7, while the opposit holds if K < 0.

How does one determine K from g¢;;7 Since the metric tensor contains the information about distances, and
measuring these we get K, there must be a link between these two quantities; K must depend on the second
derivatives (at least) of g;; at a selected point. This comes from the fact that K is invariant, i.e. does not
depend on the coordinate system used, and is a local quantity, that is it depends on the behavior of g;; in an
infinitesimal region around the selected point.

It can be proved that, in an infinitesimal neighborhood of a point, we can always choose a coordinate system
1 . . . e

0 ? ) (actually, g;; can be give the values we want), and in which the derivatives g;;,x
are zero, but the second derivatives g;;,,; cannot all be set to zero . We name it locally Euclidean system .

in which g;; is like

Since we can always put g;; in the form ¢;;, and have g;;,, = 0 at a point, the curvature must necessarily depend
on the second derivatives of g;;. And the simplest form of dependence would be linear: let’s see if we can find
some suitable expression. Before doing so, however, we must address another issue.

1.7 Covariant derivative

We have seen that the derivative (the gradient) of a scalar field ¢, d¢/0u’, is a covariant vector. We could then
think to perform the derivative of vectoer field A;(u*), obtaining in this way a rank two tensor. But this is
not correct! The differential dA; of a vector A;, basic ingredient of the difference quotient, doesn’t in general
behave like a tensor. In fact, from the transformation rule

au/k:
A= _ A’
out Tk
it comes that
au/k , , aulk 8u/k , aZu/k , ;
dAZ = 6u% dAk + Akd (‘9u% = 8ui dAk —+ WAkdu

We see that dA; is a vector only if % = 0, that is if the «/* are linear functions of u® (as it is when we go

from a rectilinear coordinate system to another).

18



1 GENERAL RELATIVITY 1.8 Parallel transport and curvature tensor

But why isn’t dA; a vector? The reason is that the difference dA; = A;(u’ + du’) — A;(u?) is the difference of
two vectors that are located in two different points (although infinitely close). The two vectors A;(u® + dut)
and A;(u') transform then in a different way as the coefficients of the transformations depend on the position.
If we want that the difference between two vectors is a tensor, it is necessary that the two vectors are compared
at the same point (in this case both, and therefore also their difference, transform in the same way). In order
to have a derivative that behaves as a tensor it is necessary to define a new type of derivative, the so-called
covariant derivative.

For a covariant vector the covariant derivative DA;/0u!, also written as Ay, is

DA, DA;
o = A =5 — T (19)

The covariant derivative for a contravariant vector is:

DB . 9B .
ur = Bu= 50 + DB (20)

The general rule for the covariant derivative of a tensor of arbitrary rank is to make the partial derivative and
then add a term of the type +I" for each contravariant index and a term of type —I" for each covariant index:

Akl“' _ aAkl Fk Aml Fl Akn r Akl. s, Akl 21
L= -4 + nj pq.u—’_.”_ e .. ( )

Pq.--3) auj mj<ipq.. qj rps..

An important result is that the covariant derivative of the metric tensor is zero: g;5,; = 0.

1.8 Parallel transport and curvature tensor

Let u’ = u'(s) be the parametric equation of a curve, with s curvilinear abscissa measured by starting at a
given point on the curve. We know that du® is a vector (from the definition of contravariant vector), ds is a
scalar, and du’/ds = v’ is then a vector. In particular, v is a unit vector, the versor! tangent to the curve.

If we were in an Euclidean space, to define a geodesic as a segment of a straight line, we would say that the
tangent versor does not change with s: A

dv*

ds

If we want now to generalize this relation to any space, 2 or more dimensional, we must not use the usual
derivative, but the covariant one, since it is a tensor quantity:

Dv? B
ds
Expanding _ _ _
Dvi_Ddeiul_diul ovt o) — 0
ds  dul ds  ds \Ou! ! N
that is
o' du! . dul
i 2 -
oul d v ds
d i
dv + I o ol = 0
from this, by remembering that du’/ds = v?, we have
d?ut du™ du!

—— +To———— =
ds? mds  ds
LTo check that viis a versor, let’s see what is his magnitude by means of the sclar product v;v

du® du’?
'UzU *gm'UU = Gij ds ds

.

=1 «— ds?= 9ij du’ du?
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1.9 Properties of the curvature tensor 1 GENERAL RELATIVITY

We find again the geodesic equation (and this is another proof of the fact that, when we leave the Euclidean
space, we must switch from usual derivatives to covariant derivatives).

We now introduce the concept of parallel transport of a vector along a geodesic: a wvector parallel transported
along a geodesic always form the same angle with the tangent to the curve.

Now imagine we parallel transport a vector 7y along a triangle formed by pieces of geodesic. If we are in a
Euclidean space (e.g. on a plane) the vector 7y we get after closing the path coincides with .

K=0 K<0

The same thing does not happen along a spherical triangle: the vector is rotated by an angle which has the same
direction of rotation of the direction in which we moved along the spherical triangle. The opposite happens if
K < 0. We can look at it in another way: imagine we have to go from point A to point B, either directly or
through a point C, always along geodesic arcs. In Euclidean space the result of the parallel transport along the
two paths is the same, but the same thing does not happen on curved surfaces (what said here for a triangle
formed by arcs of geodesic applies to a generic path, which can be thought as consisting of a large number of
arches of geodesic). The result is that, unless we are in a Euclidean space, there is no natural and not ambiguous
way to move a vector from one point to another; we can move it in parallel, but the result depends on the path,
and there is not a natural choice for this. So we can compare two vectors only if they are applied at the same
point. For example, two particles that pass alongside one another have a well-defined relative velocity (and
less than ¢, with ¢ the speed of light), but two particles in different points of a generic space do not have a
well-defined, relative velocity.

Let’s now quantify what we said above in a qualitative way. Moving along a closed path formed by arcs of
geodesic, a vector Ay parallel transported will undergo, returning to the starting point, a variation AAg. If we
assume that the surface element bounded by the closed curve is infinitesimal (any finite surface element can be
divided into infinitesimal elements), the integrand is constant and, by neglecting infinitesimals of higher order,
A Ay can by shown to be proportional to a tensor containing products and derivatives of the affine connections:

ort Tt ; ;
km kl i i F'le—w

AA
k oul dum km* nl nm

This tensor is named Riemann-Christoffel tensor or curvature tensor:
i i

i _ Ol Ol

kim oul oum

(Warning: you can find it defined with the signs interchanged!) If, in a volume of space, R, = 0, then
AAj = 0: The parallel transport along a closed curve keeps the vector unchanged, and that volume of space is
said to be flat. This happens in a Euclidean space, as well as in any (volume of) space in which g;; is constant,
because the affine connections are null and so also the curvature tensor; and since a tensor equal to zero in a
coordinate system is zero in any coordinate system, then R’ = 0 in any refernce frame. On the contrary,
if RY,,, # 0 the parallel transport depends on the path, and the space (or the volume of space) is said, by
contrast, curved (this is the reason for the Riemann-Christoffel tensor is also named curvature tensor).

1.9 Properties of the curvature tensor

It can be proved? that R,  is the only tensor that can be constructed from the metric tensor and its first and
second derivatives, and which is linear in the second derivatives (and also quadratic in the first derivatives).
The metric tensor allows to write it in the totally covariant form Rjiim = g5iR%;,,-

2See, e.g., Weinberg, 1972
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1 GENERAL RELATIVITY 1.9 Properties of the curvature tensor

The Riemann tensor has its own properties, let’s see them in the fully covariant form R, = gjiRiklm:

e Symmetry properties
Rigim = Rimjk
e Antisymmetry properties
Rikim = —Rijim = —Rjkmi = Rijmi

e (Clyclic properties
Rjpim + Rjmii + Rjimi = 0.

From the Riemann tensor, by contraction, we can get a rank 2 tensor, the Ricci tensor, defined as:

Ry = R%00 (23)

(indices i and [ of R, are contracted). Ricci tensor is symmetric:
Rmk = leik = germik - gZTRikrm - Rrkrm - ka

It is the only symmetric tensor of rank 2 that can be obtained from Riklm. From the Ricci tensor one can obtain
the Ricci scalar or curvature scalar:
R=g""Ry,, (24)

It is the only scalar that can be obtained from Riklm.

All these properties of the Riemann tensor reduce the number of its independent components and, in N
N2(N2-1)

dimensions, this number is A/ = 5

. In particular:
e For N =1, N =0 and Ry11; = 0 always: a curve has always (intrinsic) curvature zero, we do not have
information on how the curve is "embedded" in a space with 2 or more dimensions.

e For N =2, N = 1. There is only one independent componenet, for instance Ri212.

e For N = 3, NV = 6, as many as the components of the (symmetrical) Ricci tensor. So for N = 3 it is
sufficient to know Rj,, to describe the space cuvature.

e For N =4, N' = 20, while Ry, has only 10 components. One must use the complete R’,,  tensor (apart
from situations of particular symmetry, and we’ll see that it is so in the case of the homogeneous and
isotropic universe).

If we apply covariant derivatives to the curvature tensor we get the so called Bianchi identities, which can be
expressed in different forms. A particularly important one is the following:

1
RL, - 31 =0. (25)

The quantity le;l is the (covariant) divergence of the Ricci tensor; since R is a scalar (it does not depend on
the reference system used) its covariant derivative coincides with the simple partial derivative. Now consider

the mixed tensor )
! l

Its covariant divergence is (for the rule of the derivation of a product and being 6lj;l =03

1, 0R 10R
Rl _ Rl _ —
it~ 3% g = T 5w =

as seen just above. So the (covariant) divergence of this tensor is equal to zero. If we switch to its covariant
components we get
1 1
g R’ — 5911523 =Rij — 595 R =Gy (26)

where G;; is the so-called Einstein tensor. This tensor has very relevant properties: it is symmetric, has
vanishing divergence and, since it comes from Riemann tensor, it contains terms linear in the second derivatives
of the metric and quadratic in its first derivatives.

ast.
I sk 1 _ 1l 1
S +Thsk —Tmst, =71 —T! =0

3sl  —
6j;l_a jiom
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1.10 The Theorema Egregium 1 GENERAL RELATIVITY

1.10 The Theorema Egregium

In 2 dimensions the Theorema Egregium of Gauss states that the Gauss cirvature K can be derived from the
metric tensor; in particular K = R1212/g (remember that in two dimensions the curvature tensor has only one
independent component). It can also be shown that Ri212/9 = R/2, so even if Ry215 is a component of a tensor,
and g is not a scalar, their ratio is a scalar

We observe that the relation which expresses the Theorema Egregium, K = Ri212/g = R/2, is a relationship
between tensors of rank zero, i.e. scalars. If it is true in a particular frame of reference, it applies in any frame
of reference.

The curvature tensor is related to the Gauss curvature even in spaces with any number of dimensions. Given
a point P in one of these spaces, and two vectors a* and b* applied at the point P, we can draw a family of
geodesic curves x#(s, «, 8) through P, with « and § real numbers. All these geodesics, which have as their
initial tangent vector dz#/ds = aa* + Bb*, form a two-dimensional surface through P, with Gauss curvature
given by*

R,\W,ia)‘b“a”b”

(g)\ug;u-c - QMQW) arbHa’ br

K(a,b) =

Example: estimation of Gauss curvature

Given, for a surface element, the following metric
ds? = du? + e* dv?
estimate K (intrinsic Gauss curvature).

We know that K = Ry212/g

1 0 . (10
Gij = < 0 e2u/k’ ) - g:€2 /k — gj = < 0 e—Qu/k >

Considering the particular values of g;; and g/ we get Ria1o = g1xR55 = Rbqo

ori, oriy

oul ou?

ars, oriy

ou ov

Ry = + 5,0 —T5 Ty = + g0y, + 5,15 — My — T5,T5,

Then

1 _
Tor =59 ou? ou? oul

; 11(3921 n g2 3922) _ 1€2u/k

1 ar; 2 ou
Th=0 Th=0 T}=, o0 = 2"
2 1 1 1
1 2u/k 2u/k 2u/k —
R212:_k2e / _(k._Ee / ):—ﬁe ¥ = Risig

Ri212 L ow/k / 2u/k 1
K= =g //e / -——

The metric of this example defines a surface of revolution named pseudosphere; it is obtained by revolving a
tractriz °about its asymptote, and has the shape of a trumpet.

4See Weinberg 1972, Section 6.9

5Tractrix (from the Latin verb trahere "pull, drag"; plural: tractrices) is the curve along which an object moves, under the
influence of friction, when pulled on a horizontal plane by a line segment attached to a tractor (pulling) point that moves at a
right angle to the initial line between the object and the puller at an infinitesimal speed. It is therefore a curve of pursuit. It was
first introduced by Claude Perrault in 1670, and later studied by Sir Isaac Newton (1676) and Christiaan Huygens (1692). The
revolution of a tractrix about its asymptote produces the surface called pseudosphere. The name derives from the fact that the
curvature is constant, as for the sphere, but has the opposite sign.
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1 GENERAL RELATIVITY 1.11 Minkowski space

1.11 Minkowski space
In Special Relativity, passing from one frame of reference to another, the infinitesimal distance between two
events:

ds?® = Adt? — (da® + dy? + dz?) (27)

is preserved (= is invariant). If we define 2° = ct; x' = x; 2% = y; 2> = 2 we can write

1 0 0 0
ds? — naﬁdl’adxﬁ with Nap = 8 _01 _01 8 (28)
0o 0 0 -1

We have then the metric of Minkoswki space, which is "pseudo-Euclidean", but it is flat: in fact the 7,5 are
constant, therefore F;k and R}fj . are zero. In the following we will use, by convention, the Greek indices «, 3,
v, ... if these vary from 0 to 3, while we will use italic indices i, j, k, ... if they vary from 1 to 3. Warning:
in literature also the opposite convention is used. Even 7,4 is often defined with opposite signs, i.e. with the
signature (—1, 1, 1, 1) instead of (1, —1, —1, —1).

Moreover, we say that the interval ds? is:

e time-like if ds?> > 0 (corresponding to a physical trajectory with v < ¢)
e space-like if ds®> < 0

e light-like, null if ds?> = 0 (corresponding to the motion of particles, like photons, which move with speed
v =c)

Each observer has with him a ruler and a clock: the time marked by this clock is the proper time 7. An observer,
who sees two events (physically connected) occur at different times but at the same place (dx = dy = dz = 0)
obtains ds? = c?d72: ds and dr are proportional.

The distance ds between the same two events, both for an observer who sees them occurring at the same point,
and for another observer who sees them occurring at a distance dl, is the same:

- 1dl dl v?
ds? = 2dr? = 2d? — |dI'] -  dr?=d2(1-= .S ) =d2(1- 2
soedr=e 2] ’ cdt dt ( c2)
where v is the particle speed for the observer who sees it moving, and also the relative velocity between the
two observers. Defining 8 = v/c and v = 1/4/1 — 82 we get dt = ydr. Since v > 1, then d¢ > d7: the interval
between two "ticks" of a clock is shorter for the “proper” clock; moving clocks appear slower (think about the

twin paradox).
The velocity four-vector (four-velocity) is defined as u® = 92~
scalar.

a4 it is a vector since dz® is a vector and ds is a

In a generic reference frame, not at rest with a particle which has a 3D velocity v = %—f, we have

o dz® d(et) dt
u = —_—= = —_—
ds cdr dr
B dz? 1dz* dt B K

ST caa e

i

and we can write u® = v(1, §). If the particle is at rest we have u® = (1,0,0,0).

The quantity u®u, is invariant: u®u, = asuu? = uOu® — (ulu! + u?u? + udud) = 42 — (v?02%/c?) = 1; u® is
the unit vector (versor) tangent to the trajectory of the particle (in the 4-D space-time).

The four-momentum is defined as P* = mou®where mg is the rest mass of the particle. If we remember that
P = mv = ymoT; E = mc? = mpc?y we get:

P’ =~my=E/c? P = ymy— = m—
c c
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a 22 2 2”2 22 v? 2
PPa:7m0_7m0§:7m0 L=— ) =mg

E? 1 _ E?
PaPa:m§:CT—§P~P — mgc2:0—2—|P|2

If % = 0 then P* = const = FE = const and P = const: this is the energy and momentum conservation for
a single particle.

. . 2, .« o . .
The four-acceleration is ddZQ = %. The geodesic equation has always the same form:

A2z dz? dz
re — -~ —0 29
ds? 7 ds ds (29)

If the metric tensor is simply 7,4, then the I's, vanish, so that dzyzzo‘/ds2 =0,ie z*=a"-s5+b% or

{ ct=a’ s+
T=a-s+b

and the trajectory is a straight line covered with uniform, rectilinear motion. In a curved space-time geodesics
correspond to “straight lines”.

While in 3-D Euclidean space the geodesic between two points is a straight line, so it is the shortest distance
between two points, in Minkovski geometry the quantity ff ds is a maximum on a time-like (physical) trajectory
(remember that A7 = As/c¢, and you can think at the twin paradox, where the elapsed time is maximized for
the twin who remained on the Earth), while it is a minimum on a space-like line.

1.12 The energy-momentum tensor

To deal with General Relativity and Cosmology we need an "object" that describes enegy and momentum con-
servation for a continuous medium. We know from analytical mechanics that, for a physical system, invariance
with respect to time (i.e. 9/0x° = 0) corresponds to energy conservation, while invariance with respect to space
(i.e. 0/0x" = 0) corresponds to momentum conservation. Since we are working within Special Relativity, the
invariance will be expressed as 9/0z* =0, a =0, 1, 2, 3. You probably met such a kind of object in Quantum
Field Theory: the so-called stress tensor or energy-momentum tensor. Let’s look for a similar object in the case
of a fluid.

Let’s consider first the case of incoherent matter, whose particles (for the moment) do not interact ("dust").
The matter field will be described at any point by the four-velocity u® = v(1,7/c) and by its proper density
po(x), i.e. that measured by an observer who follows the fluid. With these quantities one can form a symmetric
tensor of rank 2 in the simplest way as:

T = poctuuP (30)

Let’s see how this tensor is made in detail:

T% = poc®y* = 7 poc® = pc’ by writing  p =~%po

To interpret this result remember that the mass is m = ymg(mo= rest mass) and that a volume element in
motion appears contracted by a factor 1/v, and its density grows by another factor 4. So if the proper density
is po, an observer with respect to which the fluid has velocity ¥ measures a density v2po.

T represents the mass-energy density (in this case the only contribution to the energy comes from matter
motion).

The components of 7% can be written:

1 e vy/c v./c
272 2 2
e e I o
y yVz y yVz
v.fe vvg /it v/t vE/c?

We now derive the motion equations from the expression 85Ta5 = 0, the four-divergence of T%%(remember we
are in Minkowski space-time, and covariant derivatives are simply partial derivatives).
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1 GENERAL RELATIVITY 1.12 The energy-momentum tensor

e For a =0 we have 5T =0 <« 867:;5 = 0 which can be expanded:

L0(pe?) | Olpevs) | Olpevy) | Opevs)

=0
c Ot Ox dy 0z
and then simplified to
op =
-z - (pD) = 2
5t +V-(pv)=0 (32)

which is the continuity equation for a fluid, expressing mass-energy conservation.

e For a =1,2,3 we have

19(pcvg) | O(pvavs) | O(pvzvy) | 9(pvzvs)

- = =1
c Ot * Ox + dy + 0z 0 (o )
10(pcvy) | O(pvyva) | O(pvyvy) | O(pvyvs) _ —
c Ot * Ox * dy + 0z =0 (@=2)
la(pm&) Ipvzvg) | O(pvzvy) | O(pvovs) _
c Ot + or + oy * oz 0 (@ =3)

If we multiply the first by ¢ (unit vector of the x-axis), the second by 7 and the third by k and then add them
toghether they can be summarized in the expression

_ _ 0 _ 0] _
G 0) 4 G (o) + 5 (o) + - (0.7) =0
which, by expanding and by using continuity equation, becomes
o _|[0p = , _ ov av o
rn +U{at +V- (pv)} ervm% +pvya—y +pvz$ =0
_ o do
that is p[g: + (U'V)U:| =0 (I) < pd—;} =0 (II) (33)

This equation, typical of fluid dynamics, is the motion equation for a fluid without pressure, viscosity and
external forces. Therefore it expresses the conservation of momentum. In particular, in the form (I) one
imagines to observe the fluid at a fixed point and to see how its motion evolves (the so-called Eulerian point
of view), while in the form (II) one imagines to follow in their motion the particles of fluid (the so-called
Lagrangian point of view).

Thus we see that the tensor T expresses the energetic and dynamical properties of the fluid (dust, in this
case). T? is the stress-energy tensor or the energy-momentum tensor.

In an inertial frame locally at rest (IFLR) with respect to the fluid, in which «® = (1,0,0,0), 7% has the
particularly simple form

poc2 0 0 0
qes | 0000
IFLR 0 0 0 0
0 0 0 O

We now come to consider the case in which the particles interact in the simplest way, that is through collisionss
due to their thermal motion: in this case the fluid has a pressure. We assume that there is no transport of
energy by conduction or radiation and there is no viscosity. The fluid so defined is said to be perfect.

If we are now in the IFLR, T*? will be no more that one written just above, with only 7°° # 0. The particles
now have random motions around the zero of their positions and velocities. We must then refer back to the
previous form (Eq. (31)) of 7°7, in which however the terms that appear will be mediated on the distribution
of particle velocity.

But this gives us immediately an important information: all the off-diagonal terms contain elements as v, vy
or v, or their products; when we average (v,) = 0 and also (vyvy) = (vz)(vy) = 0 (assuming that v, and v, are
not correlated). Then 7 is diagonal in the IFLR.
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1.12 The energy-momentum tensor 1 GENERAL RELATIVITY

TP%, » (expressing the mass-energy density) will be no longer poc?, but rather pc?, with p > po to take account
of the fact that the particles have velocities different from zero even in IFLR and their mass-energy density is
greater than in the case of pure dust. For the other diagonal terms we have (pv2), (pv), (pv?).

We make a small digression on the kinetic theory of gases to see what these terms represent .

=

1V et

Let ¥ and P be the velocity and the momentum of a particle, and f, the average force exerted by this particle
perpendicularly to the surface A (see figure)

T = (Vg, Uy, V) P=(P,P,P.)
AP 2P, 1

= = = = *Pz z

F =5 °oLjv. L *

for one particle.

For N particles the force is (p is the pressure, force per unit area)

N N
F, = fszz = FPZUZL2 =p-A

so that, by making actually the average on the velocity distribution, we get (A = L?)
N
p :ﬁ<szz> = n<szz>
P-7= P, + Pyv, + P,v, = 3P.v, (for symmetry,on the average)

and then p=—(P-0)

w3

which holds also for a degenerate and a relativistic gas. We can rewrite this relation in the form p = 2(P-v) =
(nPov,) = (n-mv2) = {p-v2).

So, for a perfect fluid:

pc2 0 0 0
o6 _| 0 p 00
Trirr = 0 0 p 0 (34)
0 0 0 p
where p takes into account also the mass-energy due to thermal motions.
It’s easy to check that, in the ILFR, all this can be summarized in the relation
Tifrr = (p+ pc)uu’ — pn*° (35)

For instance, for 7%, by considering that «® = 1 and 7°° =1, we get T = p + pc® — p = pc?
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1 GENERAL RELATIVITY 1.12 The energy-momentum tensor

But this expression is a tensor, and then will hold in any other inertial reference frame (remember we are stiil
within Special Relativity, and we apply Lorenz transformations to change reference frame), with u® # (1,0, 0,0),
while the metric tensor is always 7*%.

In this case the relation

9T = [(p+ pc*)uu? — pn*?],5=0

leads, for @« =0, to
dp

=2 (36)

% [(p+ p)V] + V- [(p+ pc®)y*7]

If the overall motion of particles is not relativistic, we have v ~ 1 and if p < pc?(as for non relativistic matter)
this relation reduces again to continuity equation

ap o
E‘FV'[/)U] =0.

For a = 1,2,3, in a way similar to that followed in the “dust” case, we get

D 5 dT = _0(p/c?)
£ = —_ S A 37
(02 +p>7 %5 [Verv 5 (37)
which is a generalization of the fluid-dynamics relation p% = —Vp (the so-called Euler equation). As one can

see, (p + p/c?) plays the role of "inertial mass density".

If we are not in a Minkowski space the metric tensor is no more 7*? but a generic ¢®?. The expression 35 is a
tensor, and then will hold in any reference frame provided we use now the correct metric tensor:

T = (p+ pe®)uu” — pg*” (38)

We also wrote 0,77 = 0 in Minkowski space; but, if the I's, do not all vanish, and this is the general case,
instead of the simple partial derivative we must use the covariant derivative:

af
;=0
that expresses the conservation laws in a generic frame of reference.

Within the perfect fluid there is no exchange of energy by conduction (or radiation), nor is there dissipation.
From the first law of thermodynamics, in the frame that follows the fluid and for a volume V', dQ = dU + pdV
and U = pc? - V. Then

dQ = pc2dV + Vd(pc?) + pdV = (p + pc?)dV + Vd(pc*) = TdS (39)
Since dQ =0 — dS =0, the entropy of the volume V is conserved.
In cosmology it is used to write the equation of state as p = wpc?, so
(1 +w)pc*dV = -V d(pc?) (40)
and, if w = const, we have dp/p = —(1 +w) dV/V, that is pV!1T% = constant.

We will meet three interesting cases (notice that pressure is always present in connection with energy density):

1. For anon-relativistic gas p < poc? (p =~ po) so that w ~ 0 (it would be in general a function of temperature,
but pressure is negligible compared to energy density and we assume it is zero). So poV =~ const. If L is
the edge of a cubic volume V = L2, we obtain p o 1/L?

2. For a gas of photons (and in general for a relativistic gas) prqq o< aT? and p = pc; w = &
1
T*V*? = const TVY3 = const VxIL? — T I
1
pde4/3 = const VoL? = VY~Lr o Prad = Ii
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1.13 Mach principle 1 GENERAL RELATIVITY

3. If p = —pc? (w=-1) — pV° = const that is p does not depend on V' and L and remains
constant if V' changes.

We can express the first principle in another useful way by writing V o L?

(p+§>dV+Vdp0 — <p+£)'3L2dL+L3dPO

p\dL
—_ _— d =
3<p+02) i +dp=0

and, taking into account a possible dependence of L on time,

which gives

p\L .
3<p+62)L+p—0 (41)

1.13 Mach principle

According to Newton’s dynamics the inertial properties of a body depend on its motion with respect to absolute
space. Ernst Mach® suggested instead that the inertia is related to the motion with respect to the total
distribution of matter in the universe. The motion is only relative to other bodies: operationally we can only
measure the motion of matter in relation to other matter, not with respect to the absolute space of Newton. If
there were only one body in the universe, its motion would not be defined: without other matter we can not
say if this body is at rest or is accelerating. And since the reaction of matter to the acceleration is the only way
to determine the inertia, this body does not possess a well defined inertia. The idea that masses and positions
of celestial bodies define the inertia and inertial systems is called Mach principle. Several objections can be
moved to this idea: for instance, no observer can be in an empty universe and verify the ideas of Mach, and
inertia may exist even in an empty universe.

Anyway, the ideas of Mach influenced, by his own admission, Einstein himself. According to Newtonian physics,
in a volume without interactions, the bodies should remain at rest or move with uniform motion. But since
the universe is permeated by gravitational fields that can not be shielded, all bodies move along curved paths
due to these fields. Then a question arises: if we say that a path is curved, we assume that we know how to
define a straight line. But how can we do this if no body, not even photons, as we shall see, follows a straight
line? So we try to do without the concept of straight line, and assume that there are no physical entities such
as "gravitational forces" curving the trajectories of heavenly bodies, but that the geometry of space is modified
by gravitation in such a way that the trajectories observed correspond to free, inertial motions of bodies. In a
more dramatic way we could say that space-time is the gravitational field”. But how do we express this
link between inertial motion and gravitation?

Special Relativity can be described by a geometry of Minkowski ds? = naﬁdz“dxﬁand, from the properties
of invariance of ds?> between inertial systems, we derive all the results of this theory (time dilation, length
contraction, ...). How do we move to a metric ds? = gagdxadxﬁ in the presence of a gravitational field? What
are the links between g, g and the gravitational field, and between g,g and the gravitation according to Newton?
If seen in this way, General Relativity turns out to be a geometrical theory of gravitation.

1.14 Locally inertial frames

If our aim is to give a geometric description of space-time, we can now use what we learned about surface
elements and generalize it to 4 dimensions. In particular, we have seen that, in a neighborhood of a generic
point, one can transform g,g in such a way that it can assume the required form and its first derivatives are
zero. So, in the neighborhood of an event E, we can always write gos = a5 + O(|z|?), where z represents the
displacement in space-time from E: to the first order the geometry is the same as that of Special Relativity. In
the (infinitesimal) neighborhood of each event the laws of physics are those that hold in an inertial frame of
reference. In a neighborhood of each event we can define a locally inertial reference frame.

In the presence of gravitational fields, as mentioned above, local deviations from Special Relativity occur only
at the level of the second derivatives of go3 which, remember, are related to the curvature tensor R%. 5 In this
sense gravity curves space-time. But what are these locally inertial reference frames?

6 Ernst Mach (1838-1916) was professor of physics and then philosophy at the University of Vienna. His ideas have had a
precursor in the English bishop and philosopher George Berkeley, in 1710, when Newton was still alive.
"This is the point of view of Loop Quantum Gravity, one of the major candidates for a quantum theory of gravitation.
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1 GENERAL RELATIVITY 1.15 The Principle of Equivalence

1.15 The Principle of Equivalence

The evidence that all bodies fall (in the absence of air resistance) in the same way under the effect of gravity, led
to conclude, with great precision, that inertial mass m;, and gravitational mass mg.q, are mutually proportional
(and are, in practice, the same, by including the constant of proportionality within the gravitational constant
G ). Einstein assumed that, by definition, m;, = Mgrq,. This leads to the famous thought experiment of
Einstein elevator: an observer, equipped with scientific instruments and locked up into an elevator without
the possibility to see what is happening around him, will not be able to distinguish, by his experiments in
mechanics, between the two situations:

e he is at rest in a gravitational field with gravitational acceleration g

e he is in empty space, and the elevator is accelerated upward with constant acceleration g

Similarly, since all bodies fall in the same way in a gravitational field, the observer will not be able to distinguish
between the situations of:

e uniform rectilinear motion in the vacuum

e free fall in a gravitational field

E

u"\;’x
4]

— | < B
m=m,, M=Mg, = i
= ==
= s
= B
= I
= — =

This allows us to say what are the locally inertial frames: those in free fall. Then, in a free falling frame, the
laws of Special Relativity hold locally (and to the first order in gog).

The Principle of Equivalence requires that all the laws of physics (not just those of mechanics) are the same
both in a locally inertial frame and in Special Relativity.

Since the effects of gravitation disappear in a system in free fall, the phenomena occurring there are totally
independent from the presence of nearby masses. However, according to the point of view of Mach, a large,
nearby mass should introduce an anisotropy of the inertial mass. Effects due to the Sun or our Galaxy have
been searched, but not found within Am/m ~ 1072°, for which the Principle of Equivalence seems favored
over the assumptions of Mach (so they are not completely consistent with General Relativity, apart from the
inspiration provided to Einstein®).

1.16 The Principle of General Covariance

This principle tells us how to write the equations of physics in the presence of a gravitational field, when we
know how they are made in the absence of gravity.

In order for an equation, expressing a physical law, applies in a gravitational field it is necessary that:

1. It is "covariant", i.e. does not change shape changing reference frame, and this happens when it is
expressed as a relationship between tensors.

2. The equation applies in the absence of gravity, i.e. when g,g = 1,3 and s, =0.

8Einstein conceived his theory of General Relativity trying to incorporate the idea of Mach according to which the inertia is
due to gravitational interactions with all matter in the universe. But, as admitted by himself, he was only partially successful,
since he obtained a solution of his field equations in which a single particle, immersed in a completely empty universe, had inertial
properties.
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1.17 The Einstein equations 1 GENERAL RELATIVITY

There can be many covariant equations which reduce, in absence of gravity, to the same equation of Special
Relativity. However, as the Principle of General Covariance and the Priciple of Equivalence operate on small
scales, we expect that only g.g and its low order derivatives come into play. This also obeys a principle of
simplicity (Occam’s razor).

In this wayTaﬁ’ 5= TO‘B; s (covariant derivative) or, for instance, for the free fall equation,

d2$a _ 0 _) dea + @ @dﬂ
ds2 ds? B ds ds

We have seen that at each point (event) we can define a locally inertial system, and in it the second derivatives
of gop are in general # 0: it is therefore at the level of the second derivatives of the metric tensor that the
gravitational field comes into play.

Similarly, in Newtonian physics, in a system in free fall, what can be measured is the difference in gravitational
acceleration between two bodies Ag/Ax. This is the kind of phenomenon we call tide. But g = —W)gm and
then dg/0x o< 9*® 4.4, /02%. What can be measured are therefore the second derivatives of ®,,.4,, as in General
Relativity are the second derivatives of go3. Then we see that there is an analogy between g.3 and ®g.q,: the
Jap take the place of the Newtonian gravitational potential.

1.17 The Einstein equations

In Newton’s theory of gravitation the potential ® satisfies Poisson equation: V2® = 47Gpy and § = —V®.
Special Relativity teaches us that all forms of energy are equivalent to mass, and then a relativistic theory
of gravity will have as sources of the gravitational field all forms of energy, and not just py. In particular,
the energy density of the gravitational field itself is proportional to (V®)? in the Newtonian case °(think, by
analogy, that the energy density of the electromagnetic field is proportional to E?).

If, therefore, we move to the left hand side, in Poisson equation, the term o (V®)? which would result from
the gravitational energy density, we obtain a non-linear differential equation (which is linear in the second
derivatives and quadratic in the first ones) for the gravitational field.

Formally we will have an equation such as:

F(gag) ~ kT

where g, is the metric tensor (corresponding to ®), F' is a differential operator (likely something linear in the
second derivatives and quadratic in the first derivatives) which reduces to V2 when the field is weak!?,  is a
proportionality constant that contains the Newtonian gravitational constant G, T is a quantity that describes
all forms of non-gravitational energy, and that, in the non-relativistic case, should essentially be reduced to pg.

A natural candidate for 7" is the component T°° of the stress-energy tensor. But keeping as a source of the field
only one component of a tensor would not produce an invariant theory: we should adopt a particular reference
frame to calculate T°. So Einstein conceived the idea that the source is the entire 7%7: pressure, stresses (if
T8 is not diagonal), etc. ... , all acts as a source. But if 7" is a tensor, then the left-hand side of the equation
must also be a tensor function of gug.

We know that 7" is symmetrical, and has vanishing covariant divergence: T“ﬂ 5 = 0. Then the left-hand side
must share these properties. Moreover, we expect it to be linear in the second derivatives of g.s and quadratic
in the first derivatives.

We have already met a tensor with these properties, and we have seen that it is unique: the Einstein tensor
1
Gaﬂ == Ra,B - §gaﬁR
So Einstein proposed, as a possible equation of the gravitational field,

1
Rag — §Rga5 = HTa,g (42)

9We can see that the energy density of the gravitational field is proportional to (V®)?, that is to the square of the intensity of the
gravitational field g2, in the following way. The gravitational potential energy of a mass M of radius R is given by E = ~GM?2/R.
If you think that this energy is distributed in the field (g o< M/r2) created by M, between R and oo, we see that, by calling 6g the
density of gravitational energy, for it to be — [5° 8 (r) “Anr2dr & —M?/R, 6q(r) ~ (M/r2)? ~ g2 is required.

10We will see soon what does this mean; at the moment you can think that it is when Newton’s law holds
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1 GENERAL RELATIVITY 1.18 The Newtonian limit (weak field)

If we think to include also the derivatives of order zero in the differential operator, being g.s symmetric and
with vanishing covariant divergence, we can add a term proportional to g.sand we get:

1
Rag — iRgag — Agag = IiTaﬁ, (43)

where A and « are constant; A is the so-called cosmological constant.

1.18 The Newtonian limit (weak field)

We have just derived Einstein’s equations. But we must now check that, within the limits of validity of classical
physics, they reduce to Newton’s law; we must also find the value of the constant x that appears in the equations.

Let us suppose that the field is stationary (i.e. its time derivative is zero), the velocities of the particles are small
(v < ¢) and that, at large distances from the masses that generate the field, the metric tensor is asymptotically
flat: gog — 1Map. We also assume that the field is weak: the deviations from metric 1, are small:

g = Tap + hap  with || < 1 (44)

By means of the geodesic equation it can be shown that

29 29

hoo ~ — Joo = 1+ 072 (45)

2
where @ is the Newtonian gravitational potential, The weak field hypothesis, |h| < 1, implies then that

|2®/c?| < 1. Just to have an idea, at the surface of the Earth hog ~ 1079, while at the surface of the
Sun hgg ~ 1079,

In the case of a mass M with density distributed with spherical symmetry, the external potential, at a distance
r from the centre, is given by ® = —GM/r, according to Newton. The assumption that the field is weak,
|2®/c?| < 1, implies that

2GM 2GM
<1 = r»—

rc

For a black hole or a generic spherical body, Rg = 2GM/c? is the so-called Schwarzschild radius, corresponding,
for a non-rotating and electrically neutral black hole, to the event horizon, the zone from which nothing can
escape (apart from quantum effects of evaporation). In this case we see that the condition of weak field is

R
<1 = r>»Rs

For our Sun, Rg ~ 3 km.

Let’s see now, with the same assumptions made above, that the Einstein equations reduce to Poisson equation
V2® = 47Gpy. Then we will determine the value of the constant x. Let us take Einstein equation with the
term containing A brought to the right:

1
Rag - ig"‘ﬁR = /iTag + Agag
If we multiply it by g®7 we get:
1
Y S ol v
R — §R65 =rT 5+ Aoy

Let us put v = 3 (that is, we add on 3 =~ =0,1,2,3, (5§ =060 +0t+063+03=1+1+1+1=4) and contract
tensors; since R = R, we get:

1
R—R-4=rT}+40 =  R=—sT]—4A
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1.18 The Newtonian limit (weak field) 1 GENERAL RELATIVITY

Substituting this result into the starting equation, it becomes:

1 1
Rop = £Tag + Agap + 5905 (= K17 = 4A) = £(Tap = 59asT7) = Agap (46)

The Ricci tensor, if we neglect higher order terms, can be written (by using a suitable reference frame and some
“tricks”):

1 0?hgs
Rps ~ ——n*" —F— 47
g0 2" 909z (47
We evaluate now the component 00 of Rgs:
1 . 0*hoo
Rop ~ — =17 ————
0= 72T uadar

but if o« = 0 and/or o = 0 the derivative is zero (for stationarity 9/0z° = 0); then only the terms with indices
1,2, 3 (and 't = 7?2 =33 = —1) are left:

82h00 i H? hoo H? hoo
Oztoxl = 022022  Ox30x3

1 1
ROO ~ 2|: :| >~ §V2h00

On the other hand

1
Roo = K {Too - 2900T:§] — Agoo

The fully covariant energy-momentum tensor is
Ty = Guagvs (p + 0 )uu’ = guagupp g*° (48)
We have assumed that motions are not relativistic, so u* <« u% ~ 1, and
Ty = 9u0900(p + 0¢%) = P Guv = 000 (p + 06%) = P 1w (49)

where we have neglected terms which are of first and second order in h,, with respect to 7,,. So we see that
Too =2 oc?. The tensor in the mixed form is

T = 9" T = 0" Ty = 0" 0uotivo(p + 0¢%) = p0™ 11 = 83 100(p + o) — p 3. (50)
If we now want the trace T7) we get finally
T) = 6nm0(p+ 0c®) —pd) = p+oc® —4-p=oc® —3-p. (51)
We then have
%V%oo ~ k[pc? — % (oc*=3-p)] — A — V2hoo =~ K(pc® + 3p) — 2A.

But hgp = 2®/c? and then:
2 ret p 2
V@z—Q (p+3—02)fAc (52)

Poisson equation tells that V2® = 47G pg; if pressure and cosmological constant are negligible, and velocities
are non relativistic, so that p & pg, the two relations coincide if

8rG
ot (53)
Finally we arrive to the complete Einstein equation
1 81G
Rap = 59apR = Agap = — - Tap (54)
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1 GENERAL RELATIVITY 1.19 Gravitational waves

The above conditions require that o > 3p/c? and, for A,

47TGp0

|A|<< 2 =Ag

In 1916, when Einstein derived the equations of General Relativity, he was not aware of cosmic expansion (still
to be discovered), and sought a static solution for his model of universe. We see that if A = Ag and po is
the density of the (homogeneous and static) universe, and p is negligible, from Eq. (52) we have V20 = 0,
® = const,g=—-V& =0.

A similar result, as we shall see, comes from the equations of General Relativity. This static model, however, is
unstable: just a small density fluctuation and locally we have expansion or contraction.

According to dimensional analysis [c?A] = [47Gpo] = [V2®] that is [A] = [V?(®/c?)] = L~%(remember that
®/c? is adimensional).

From the relation V2® = 47G|po + 3p/c? — ¢?A/47G] we can think that A corresponds to the mass-energy of
vacuum, i.e. when mass-energy and pressure are removed.

After Hubble’s discovery, in 1929, of the expansion of the universe, Einstein considered the cosmological constant
as “the biggest blunder” of his life but, as we shall see, it has come back strongly in vogue in recent years..
For long time it was only possible to set upper limits to the value of A, just by assuming that there was no
evidence of its effects. But recent observations (1997) based on Type Ia supernovae in distant galaxies, and the
study of the cosmic microwave background, have allowed to obtain no longer an upper limit, but an estimate
of A ~107%6em=2.

1.19 Gravitational waves

We have seen, treating the weak field, that Ricci tensor can be written as in Eq. (47):

1 .. 32h35 1 |: 1 8}%5 _ (62h55 n 82hg5 n 82h55)]

— 1 2
Rgs = =31 T 522 oy a2 )| T T we

2 0x*dz® 2
where (12 is the d’Alembert operator or d’Alembertian.

We have seen that the Einstein equations can be written also as in Eq. (46). If we are in vacuum, and we
neglect A, they become:

Rﬁg =0 = |:|2h[35 =0
which is the equation of a wave propagating at the speed of light. This shows the existence of gravita-
tional waves (GW). They are transverse waves with two components (polarizations). On September 14, 2015
the LIGO Observatory (USA) has detected the first gravitational signal, attributed to the inspiral and merger
of a pair of black holes with masses around 30 solar masses, with A ~ 1072! . Before that event, there was only
indirect evidence of GW from the orbital period decay of the binary pulsar PSR J0737-3039 (1993 Nobel Prize
in Physics to Joseph Hooton Taylor, Jr. and Russell Hulse).

1.20 Weak field metric and gravitational lenses
Let’s use again Eq. (47) which, for a stationary field, simply becomes

1
Rg(; ~ §V2h,35. (55)

If pressure and cosmological constant are negligible, and velocities are non relativistic, so that p = pg, as before,
Tap has only one element different from zero: Toy = poc?, and Ty = poc®. We use now Eq. (46); for 3 # § both
T35 and ggs are equal to zero, and by using Eq. (55), Einstein equations reduces to

V2hgs =0 (56)

which is Laplace equation. If the solution is equal to zero at the infinity (as we have assumed), it is zero also
everywhere: hgxs = 0. For § = 4§ =1 we have

8rG 1 e Ve 1
Ry = e Ty — - poc®| = o =

2
2 c? 2 §V fa
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1.20 Weak field metric and gravitational lenses 1 GENERAL RELATIVITY

which gives hi; = 2®/c?; the same holds for hoy = hzz = 2®/c2.

The complete metric, for a stationary weak gravitational field, is then
2P 29
ds? = (1 + 2>c2dt2 - (1 - 2) (dz® + dy® + dz?) (57)
c c

This relation allows us to obtain another very interesting result. For a light ray ds? = 0 and, assuming

dz? 4 dy? 4 dz? = di?, we have
2 2
(1 + 2)02dt2 = (1 - 2)dl2
c c

20
(dl)2 2(”c) , &

e =C —FV—— = = —
dt ( 2@) T n2
ez

where vy is the effective speed of propagation of the luminous wave and n, can be thought as an index of
refraction of gravity. it is

from which

If ® = 0 to the infinity and is negative near a mass, ny > 1 and vef¢ < c. This relation show us that space, as
a consequence of gravitation, behaves as a refractive medium: this is the basis of those phenomena known as
gravitational lenses.

34



2 THE ROBERTSON-WALKER METRIC

2 The Robertson-Walker metric

2.1 The cosmological principle

If we want to apply General Relativity (intended as the best available theory to describe the motion of bodies
due to the distribution of matter) to the study of the cosmos, we would expect that, in general, the geometry of
space-time is not static, but depends on time. This is also suggested by the observational evidence of a general
motion of galaxies away from us (Hubble’s law).

But if the world lines (trajectories in space-time) of galaxies, considered as "building blocks" of the universe
and "tracers" of its evolution, were as they appear in the figure, things would be very complicated: there would
be no order in the evolution, and there would be collisions where the lines cross.

ct

Fortunately, astronomical observations are comforting. The expansion of the universe appears to be quite
regular. Due to the presence of inhomogeneities (as groups, clusters of galaxies) there are perturbations in the
motions of galaxies, gravitationally induced by these inhomogeneities. But these perturbations , corresponding
to a speed on the order of 100 < 1000 km/s, are "small" if compared to the recession velocity!! of galaxies,
which can be a significant fractions of the speed of light. These motions also appear generally not systematic.

It is also more and more evident that, on scales of the order of 100 h~!Mpc, the universe is on average similar
to itself. The high degree of isotropy of the microwave background radiation, which is of the order of 107°, and
the not relevant position occupied by our Galaxy in the large-scale structure, make it reasonable to assume that
this isotropy is not characteristic of our position, but is typical of every point in space: a further application of
the so-called "Copernican" point of view, according to which the Earth no longer occupies the geometric center
of the Universe. But isotropy around each point of space implies homogeneity'? (in an inhomogeneous
space it would be impossible to get isotropy everywhere). We observe that, on the contrary, the reverse is
not necessarily true: one can have a space which is homogeneous but not isotropic (as an example imagine a
homogeneous universe, but in rotation around a certain spatial axis).

On the basis of what we said above, we can state the Cosmological Principle: "At any given epoch the
n13

universe looks the same at every point, apart from local irregularities".
This principle makes it possible to greatly simplify the study of cosmology. We can imagine to smooth any
irregularity and local motion, on scales of the order of 100 h~'Mpc, obtaining a substrate that evolves in a
uniform way everywhere, at a given time. We say "at a given time", suggesting the existence of a time definable
unequivocally: since the universe is homogeneous at any point the physical parameters evolve in the same way
(one can imagine to link the passing of time, at each point, to the local density of matter, equal densities
correspond to equal times).

HRather than a real speed, it is the rate of variation of the proper distance, as we shall see; but, albeit improperly (and
dangerously), this term is used habitually, as we do in this page.

12This is true if the matter distribution is not fractal.

13There is also a Perfect Cosmological Principle, according to which the universe appears the same at every point and at all
times, in which the density and the various cosmological parameters do not change with time. This principle has been implemented,
in the so-called Steady State model of the universe, by Hoyle, Bondi and Gold.
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Imagine that we fill this smoothed and homogeneous space with observers, all at rest with respect to the mean
motion of the surrounding matter, each one with his own clock and ruler. The world lines (geodesics) of these
observers do not intersect, except possibly at a singular point in the past and, perhaps, in the future. There
is only one geodesic passing through a point in space-time, and then the material possesses, at each point,
a well-defined speed. This smoothed substrate behaves as a perfect fluid. The regularity of the motion of
observers (Weyl’s postulate) allows us to define, for each value of the cosmic time, a spatial section t = cost
of space-time. These spatial sections are perpendicular to the geodesic followed by observers (see below).

X' = cost
geodetica di O

In fact, if we consider one of these observers O at rest with respect to the mean motion of local matter, its
geodesic is defined for him by the conditions x? = cost (i = 1,2,3); if we consider a close observer, which is on
the same surface t = ¢ty = cost, i.e. ° = cost, of O, the vector AZ connecting the event O to the event O is
normal to the vetctor At parallel to the geodesic for O and to the four-velocity with components (1,0,0,0). If
At - AT # 0 the events O and O’ would no longer be simultaneous, since AT would have a non-zero component
along the time axis of O.

This allows us to simplify the choice of the metric for the observer O, that will be in general

ds® = galgdxo‘dxﬁ

But, since vectors of the type (1,0,0,0) (like At) and vectors of the type (0, 1,0,0) like AT are perpendicular,
their dot procut is: ) )
AT-AT =0 = go; At°Az’ VAL, VAZ' = go; =0

and the metric will be o
ds? = goo(dz®)? + g;jda’da? (i, =1,2,3)

We recall that, for the chosen type of observers, at rest with respect to the mean motion of the local universe,
the spatial components dz? are zero, i.e. &' = const: the values of spatial coordinates assigned to the observer
remain constant over time. These coordinates are called co-moving. The fact that the coordinates of the
observers are constant does not imply that mutual distances are constant, since g.s depend, in general, also on
time.

Let us consider a co-moving observer O. His spatial coordinates are z* = cost, and so dz’ = 0; the interval ds?
between two two successive events along the world line of O is then ds? = ggo(d®)?2, but this is also equal, by
definition, to ¢2dr?, where 7 is the proper time associated to O:

Adr? = goo(dz®)? (59)
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Space is homogeneous, and this relationship must hold for any observer, no matter what its coordinates x* are,
s0 goo must depend only on 2°. W can then define a new scale of cosmic time such that

cdt = \/goodz®

that coincides with the proper time of co-moving observers and we write, using ¢ to denote the proper time,

ds® = 2dt* + g;;da’da? (60)

A reference frame in which gog = 1 and go; = 0 is named synchronous. In this case the world lines x* = const.
are geodesic lines. In fact, the four-vector tangent to the world line u®* = dx®/ds has the components equal to
(1, 0, 0, 0) and automatically satisfies the geodesics equation because

du® o o
TS + ].—‘B,yuﬁu’y ~ FOO

but, since ggp = 1 = const. and go; = 0,

« 1 ao ago’O angO 8gOO
I'oo = 59 ( + =0

ox0 0z0 0x°

\ 1]

Let us consider now a triangle formed by three particles both at time ¢t = ¢y and at a later time ¢ = ¢;. The two
triangles will not generally be the same, but will necessarily be similar, because if it were not so there would
exist inhomogeneity and/or anisotropy in the universe, in contrast to the Cosmological Principle. From this it
follows that the dependence of the g;; from time must be similar for all of them, and does not depend on the

spatial coordinates. So it will be: o
ds® = 2dt* + a(t)?g;jdz'da? (61)

where the dependence on time is all in the function a(t) named scale factor, and the g;; do not depend on
time. The ratio a(t1)/a(to) gives the enlargement at time ¢1, with respect to time ¢g, of a length (as the side of
a triangle) measured along the two surfaces ¢t = ¢; and ¢ = t.

Notice that, for events which lie on a surface t = cost (dt = 0), and are therefore simultaneous, ds? will be
space-like and then < 0, i.e. a®(t)g;;dz’dz? < 05 if we write g;; = —g;; then a?(t)g;;dz'dz? > 0 and

ds® = c?dt? — a?(t)gi;da’da? (62)

similar to ds? = ¢?dt? — (dl)? (as we used to write in Special Relativity), where di? is the interval in a 3-D space
with ¢t = const =ty o
di? = a®(to)giyda’da?!  i=1,2,3 (63)

We must now define §;; for an isotropic and homogeneous 3D space.

2.2 The Robertson-Walker metric

We use first of all the fact that we have a spherical symmetry due to isotropy, and we choose a spherical
coordinate system, which reflects this symmetry. We remain, for now, in the Euclidean space and define:

x = Rsinfcos¢
y = Rsinfsing
z = Rcosf
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2.2 The Robertson-Walker metric 2 THE ROBERTSON-WALKER METRIC

The metric tensor can be easily derived (we extend to three dimensions what we learned about surface elements):

Tr = (sinfcose, sinfsing, cosd)
Ty = (Rcosfcosg, Reosfsing, — Rsind)
(— Rsinfdsing, Rsinfcosg, 0)

8|

¢

1 0 0

0 0 RZ%in’f

dI? = dR? + R%*(d#? + sin®Ad¢?) = dR* + R%d0?

R? 0

For R = const we have dI?> = R?dQ? with 2g;; = ( 0 R2%sin%0

) . Remember that the area of a surface can
be obtained by using Eq. (8):
dA = +/2¢ dfd¢ = R?sinfdfde

so the area of the sphere is

27 T
A= / / R%*sinfdfd¢ = 47 R?
0 0

This relation can be generalized to three dimensions obtaining in this case a volume:
dV = /3¢9 dRdAd¢ = R?sinfdRdAd¢

and then

4
V= gﬂ'RB

All this is true in Euclidean space, in which the area of the sphere is 47 x (the coefficient of dQ2?). In a generic,
non-Euclidean space, but spherically symmetric, the deviation from Euclidean space will be felt (because of
isotropy) only in the radial direction. Each point will be on a two-dimensional spherical surface, whose line
element is

di? = g(r')(d6? + sin?0dp?) = g(r')dQ>

where g(r') is a function of the third, radial coordinate, which we named r’. On the sphere g(r’') = const. and
the area of the sphere is 47 x g(r').

Since we can freely define the coordinate system, we redefine the radial coordinate r so that r> = g(r’), with
a transformation r’ — r. So again, a surface r = cost has area 472, but now r no longer corresponds to the
proper, radial distance (we imagine to freeze expansion and to measure it with a ruler, at ¢t = const.) from the
center of the spherical surface, although of course there will be a link between the two variables.

We can see it in an intuitive way by reducing the dimensions of space from 3 to 2, and by speaking of a
circumference instead of an area. In the Euclidean plane we have C = 27a, but on a sphere C' = 27 f(a) = 27z
with = f(a) = Rsinf = Rsin(a/R). Now z is not the proper distance of the circle from the center, which is
equal to a, but it is a coordinate like the others, and we can use it if useful.

38



2 THE ROBERTSON-WALKER METRIC 2.2 The Robertson-Walker metric

I ﬂ

14
C
C=2ma C=2mx

Let’s go back to the sphere in 3D space, with r as radial coordinate (linked to proper distance, but not coincident
with it). The line element, in space, is then

di? = g, dr? +7r2dQ%  (dQ? = d6? + sin0dp?)

Terms like g, or g4 are equal to zero since the radial coordinate r is, due to the imposed spherical symmetry,
perpendicular to the surfaces r = const.

Going now back to space-time we have (g, = f(r) ), a(t) = const. for a given cosmic time:
ds® = 2dt* — a(t)*[f(r)dr® + r*dQ?]

with the unknown function f(r) to be determined. We fix the time coordinate: ¢ = ty, so that a(t) = a(ty) =
ag = const; the metric tensor of the spatial part is (in spherical coordinates r, 0, ¢):

a2f(r) 0 0 (@ O 0
9ij = 0 a’r? 0 g7 = 0 = 0 g = a8 f(r)r'sin®0
0 0  a?rZsin?0 0 0 =ty

We want to impose the condition that space is homogeneous, which means that the curvature of space is constant
everywhere. We have just one function to find out, f(r), so we need only one condition: the Ricci scalar of the
space section at constant cosmic time, 3R, is constant in space.

Remember that 3R = g*f 3Ru.p and 2R,p =2 R’L’Yﬁ (we use the upper index 2 in front of R to mean that we

refer to the spatial part, not to the complete space-time).

The calculation is long, boring but trivial. Here are just a few steps. It starts as usual from the affine connections;
18 of them are independent, but only 7 are different from zero:

Fh:%%% F%2:_%
F;,:smifnz@ F%ZZF%:%
3, =73 = % I'2, = —sinfcosf
- - 20

Since 3R = g? Rgs = g*' *Ry1 + 9?2 2Ras + g3 3 Ry3 it turns out that:

1 1d 1 1rd
*Riy = - / SRyy=1— — + = /

R - 3 — qin2p .3
r f dr f 2f2 dr R33 sin“0 R22

and from this, by imposing that 3R = constant = K

2 1 rdf] 2 d(r\]_ 2 df[( 1
W[l_f+1”2<ir] = @ {1_017"(f>} S &tar [(1 fﬂ

1 Ka?r?
d{r<1f>}— > dr
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2.3 Topology of the Universe 2 THE ROBERTSON-WALKER METRIC

that is

1 Ka*r? 1
T(l—f)z 6 +A = f(?”):m

6 T
But, if » — 0, the metric tends to be euclidean, so that f(r) = 1; this gives A = 0 and

dr?

d52 = C2dt2 — a2 (t) 1[(7@2“)7'2 + T2dQ (64)
-

.We said before that the dependence on time of the space part of the metric is all contained in the function a?(t)
in front of the square braket, and everything inside the square brakets is independent on time. This means that
Ka?(t) does not depend on time, and this can be seen also from the relation defining K, which tells us that
Ka? is a function of r. This implies that K = K (t).

We define a further change of scale for r such that K“TZTZ = k7%, where k = 0if K = 0, otherwise k has the same
sign of K, but magnitude 1. This gives

6k 6k k
2 _ =2 - _ .
r =t — r=M e dr Ka? dr
and then . 4 By N 42
6 r 6 6 r
dl2 — 2 t . ~2d 2 _ v ~2d92
O\ Koam 1o T Ko K@ | 1=m2 7
If we prefer writing di? = a2(¢)[...], we define % = a2(t) and we obtain:
d7?
2 _ =2 =2 192
d?=a (t)L_W2 47240 ]

where K (t) =2 R(t) = &26?)
Finally, if we drop the (inessential) tilde we can write the metric for our universe in the following way:
2

1—kr?

ds? = 2dt? — a?(t) { +r?(d6* + sin20dq§2)] (65)

which is the so-called Robertson- Walker metric (or line element). The Ricci scalar, giving the curvature of

the space part, is given by K = 6k/a?(t), where t is the cosmic time (proper time of co-moving observers), 6
and ¢ are angular coordinates and r is linked to the radial distance.

2.3 Topology of the Universe

Let’s see now in detail the topologiacal properties of the cosmological models corresponding to the three cases
k=0,+41,-1

2.3.1 The k =0 case

If k = 0 the space section at constant cosmic time is an euclidean (flat) space E?, with 0 < r < oo; space is
infinite. Surface areas and volumes are written in the usual way.

2.3.2 The k = +1 case

If d§ = d¢ = 0 we have dl = a(t)\/%, we see that |r| < 1 and the metric diverges if » — 1. We can eliminate

this divergence by choosing a new coordinate x instead of r, such that r = siny and

dr = cosydy = /1 —sin®ydy = /1 — rzdx

di? = a*(t) [(1 Ii Hdy® + sin Xdﬂz} 2(t) [de + sin2xd92} (66)

with0< x <7 0<0<7m 0<¢<2m.
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To better understand this metric let’s step back to the 2-D sphere E. In this case x = s/a; s = ay, asiny =
di? = a®dx? + 22d¢? = d? (dx2 + singxquQ)
Moreover, we define u = x/a, u =siny, du = cosxydx = /1 — sinydy = v/1 — «2dy and the metric becomes:

du?
1—wu?

di? =a? [ + u2d¢2] (67)

We see that the r coordinate in Robertson-Walker metric with & = +1 corresponds to x/a for the 2-D sphere;
X varies between 0 and 7.

Let’s go back to the R&W metric in the form di? = a?(t)[dx? + sin®xdQ?] and, remembering how we evaluate
the elements of surface and volume, we just calculate them.

For a 2-D sphere, by assuming dy = 0, we have

212
9 a“sin“y 0 2. 9 .
Jig = ( 0 a®sin®ysin?6 > - V29 = a”sin”xsinf

2m ™
Ax) = /¢>—0 /0_0 a’sin®ysinfdfdé = 4ma®(t)sin®y

This has a minimum both for x — 0 and x — 7, and has a maximum at the "equator” x = 7/2. It is always,
as expected for K >0, k= +1:

Surface Area  4ma2sin?
= X < 4r

(radius)2  a2x?
The proper radius is derived from the metric by imposing df = d¢ = 0 and is r, = ax.

To calculate the volume of the space we have

a® 0 0
3g;j=1 0 aZsin®y 0 — V/3g = a’sin®ysind
0 0 a?sin®ysin?6

The volume within the “radial” coordinate xis then:

X 27 T in2
Vix) = / / / asin?ysinfdfdedy = 27ma® (X _ smex )
x=0 J ¢=0 J =0 2

which monotonically increases and has a maximum, finite value for y = 7 , which is V = 27243,

The total volume of the space is proportional to a®, so a(t) is sometimes named “radius of the universe”. The
volume is finite, even if there are no physical boundaries and the topology of this space is named S3.
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2.3.3 The k= —1 case

In this case there are no discontinuities in 7 (0 < r < 00) and

dr?
1472

di? = a® [ + rdez}

We introduce here again the variable y and define 7 = sinhy so that (cosh?y — sinh?y = 1) dr = coshydy =

/1 + sinh?ydy = V1 + r2dy and

di? = a? [dx2 + sinh2><(d92 + sin29d¢2)] (68)

This space is named H?3. Similarly to what we did for k = +1 we can calculate the surface area of the sphere
of radius ax (proper radius):

2 ™
Alx) = / / a®sinh?ysinfdfd¢ = 4ra’sinh®y
$=0J0=0
and, since sinhy > y, we get

Surface Area 4ra?sinh?y
(radius)2  a2x?2

> 4

The volume, since y — oo, is infinite. Note the fact that the surface of the sphere increases more rapidly than
in the Euclidean space E3, while for S3 the area increases less rapidly than in E3.

We close the paragraph noting that the metric of R&W, as well as in the way it was presented above, namely

dr? .
ds? = 2dt* — a®(t) LW +7%(do* + sm29d¢2)} ,
can be also written in the equivalent form
ds? = 2dt* — R*(¢t) [dXQ + Sp(x) (46 + sin29d¢2)} (69)

with R(t) scale factor, and the function Sy (x) defined as:

sin(x)  (h=+1)
Sk(x) = X (k=0) (70)
sinh(x) (k=-1)

But, be careful, in some textbooks and scientific papers you can find r in place of y, so you need to understand
from the context which of the two relations is used! We will generally use the first of the two forms.

2.3.4 More complex topologies

In the three cases above we have seen the three simplest topologies: E2, S3ed H3. But, actually, General
Relativity is a local theory, and our assumption of local isotropy and homogeneity implies that the space is
locally that of E2, S and H3.

However, more complex topologies are possible'*. Let’s see some examples.

If we start initially in 2 dimensions (to help intuition) we can construct a 2-D Torus (T?) from a flat rectangular
surface (Euclidean). Points belonging to the edges of the rectangle are suitably identified, and this can be
visualized imagining to perform bending and gluing as shown below (but the curvature remains zero, while the
donut shown below has not zero curvature in E?!):

148ee, for example, the articles The Mathematics of Three-Dimensional Manifolds by W.P. Thurston and J.R. Weeks, Scientific
American, July 1984, p. 94, and La forma dell’universo by C. Adams and J. Shapiro, Le Scienze, 414, p. 72 (translation of The
Shape of the Universe: Ten Possibilities, which appeared in American Scientist in 2001). The book La segreta geometria del cosmo
by J.-P. Luminet, 2004, Raffaello Cortina Editore (see also the paper arXiv:astro-ph/0310253), and the site of Jeffrey Weeks
www.geometrygames.org
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]
1E0)

Now imagine an insect walking on the surface of the Torus. The insect crosses the upper boundary in 2 and
re-enters from the bottom in 2’, goes out in 3 on the right and re-enters in 3’, to the left. The Torus is equivalent
to a rectangle whose edges are identified two by two. Despite being finite, the surface has no boundaries.

2.3 Topology of the Universe

\ 4

Another typical effect of this type of compact topology is the presence of ghosts, that is multiple images of the
same object S, arriving in O from different directions. Since the paths, and then the travel times, are different
images of the same object show it at various stages of its evolution (so it is not trivial to recognize it!).

% ¥ | %

o ¥
_________________ 0 e ———————

¥ Yo | ¥

The analogue of T? in 3D is the 3D Torus, T3. An observer placed inside has the impression of being in a room

with walls, floor and ceiling covered with mirrors that do not reverse the image. Here too, for each real object
we see its ghosts in all directions.
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3D Torus T’

N

e
™

What we said above is true for an Euclidean space (2D or 3D). This can be represented not only by a cell of
parallelepiped shape, but also by a prism-shaped cell with hexagonal base. For an Euclidean 3D space there
exist 10 possible compact varieties able to represent the universe, which apparently do not have borders, such
as the 2D or 3D Tori.

There are also compact manifolds in non-Euclidean spaces, with positive and negative curvature. These include
the dodecahedral, hyperbolic space of Seifert-Weber, a compact variant (i.e. with finite volume) of H?, obtained
by pasting each face of the dodecahedron to the opposite face after a rotation of 108°(three tenths of a round
angle). A compact variant of the hypersphere S? is represented by the dodecahedral spherical space of Poincaré,
obtained by pasting each face of the dodecahedron to the opposite face after a rotation of 36°(a tenth of a round
angle).

Dodecahedral hyperbolic space Dodecahedral spherical space
of Seifert-Weber of Poincaré

Friedmann, in 1924, and Lemaitre, in 1927, realized that Einstein’s equations did not allow, alone, to decide
whether the universe is finite or infinite. Friedmann showed how space can be made finite if points are suitably
identifyied; he also realized that this allowed the existence of ghosts and observed that a positive-curvature
space is always finite. Lemaitre pointed out that the spaces with negative curvature admit topologies with finite
volume.

J.-P. Luminet ** interpreted the lack of fluctuations in the cosmic microwave background (CMB) on angular
scales greater than 60° as due to the finite size of our universe. The cell which agrees with the experimental
data (those of the WMAP satellite) would be the Poincaré spherical, dodecahedral space.

On the basis of what we said above, the claims that if the universe is finite its geometry must be locally spherical,
and that if the geometry is locally hyperbolic or Euclidean the universe must be infinite, are wrong. But all
spaces of constant curvature and locally spherical (kK = +1) are compact.

153 -P. Luminet et al., 2003, Nature 425, 593; also arXiv:astro-ph/0310253
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’ curvature \ topology (space volume) ‘
sferical k = +1 finite
euclidean k£ =0 finite or infinite
hyperbolic k=-1 finite or infinite

2.4 Hubble’s law

Let us consider a co-moving observer taken as the origin, a point characterized by the co-moving coordinates
(r,0,¢) and a beam of light (the most efficient way to exchange information) that joins them radially (df =
d¢ = 0). We know that for photons ds? = 0.

From R&W metric:
dr?

2 _ 23,2 2
ds® = ¢“dt fa(t)l_kﬁ

=0 (71)

A light signal emitted from the point (r, 0, ¢) at ¢ = 0 (assuming that there is an initial instant of the universe,
as in the Big-Bang model) arrive at » = 0 (the observer) at time ¢ such that (note that if d¢ is positive, dr is
negative, that is, as time goes by the beam passes through points gradually closer to us):

t / r /
cdt dr
(35 ] o

o at) Jo VI—kr?
Let us see the meaning of the term to the right. Imagine to measure with a ruler, at a fixed instant ¢ (by freezing
the expansion during the measurement), the radial distance between the origin and the point of coordinates
(r, 0, ¢); from the space part (dt = 0) of R&W metric this distance, named proper distance dj,, will be given
by:
" oa(t) - dr’
(0-ar

T dr/
D —al0) [ s = al) () (73)

dpr(t) =

If we derive with respect to time the relation dp,(t) = a(t) - fx(r) we obtain the rate of variation of d,, in time
which, dimensionally, is a speed, and is named recession velocity v,:

) = 000 = 400 1) = S0 (0 = H(O) dy 1) (79
v (t) = H(t) dpr (t) (75)

From what we saw above, when we made the changes of coordinate r = siny, r = x, r = sinh x:

arcsinr ~ 7 +13/64+--- (k= +1)
fe(r)=2 r (k=0) ~r+krd/64 - (76)
arcsinhr ~r —r3/64--- (k= —1)

Actually, d,,(t) cannot be directly measured. Its relation with d,,(¢o) (¢t = to corrisponds to today) comes from
the fact that

dpr (1) _ dpr(to) _ r since r = const in time
o)~ alto) = fx(r) tint
dpr(t) = @dm(m) (ao - a(to) )

So dpr-(t) depends on time through a(t). The quantity fi(r), or also ag fx (), time-invariant, is named co-moving
distance (it corresponds to the proper distance today).

This is Hubble’s law, and the quantity H(¢) = a(t)/a(t) is named Hubble parameter. If we write this
relation for the present time to we get v.(to) = Hodpr(to), where Hy = H(to) is the Hubble constant.
The uncertainty on its value is parametrized by writing Hy = 100k km s~ Mpc™!, with 0.5 < h < 1.0. Hy
has dimension time~!, and approximately 1/Hy ~ 3 - 10'"h=1s. After decades of disputes, the value of Hy
seems today quite well defined; the value given by the devoted Key Program of the Hubble Space Telescope
is Hy = 72 £ 8kms~! Mpc™!, while the analysis of the cosmic microwave background (CMB) gives Hy =
70 £2km s~ Mpc=! (WMAPY9) and Hy = 67 & 1.5km s~ Mpc~! (Planck).
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An important point has to be made on Hubble’s law. Keeping H fixed, if d,, increases, v, may become greater
than the speed of light. The proper distance correspondig to v, = ¢ is named Hubble radius, Ry, which is

then defined by the relation
c

)= Hg)

(77)

and, like H, depends on time.

The fact that v, > c for dp, > Ry, can create some confusion, but this is not in contrast with Special Relativity
because, when referred to co-moving observers, the velocity of any object is, locally, always less than ¢. No
information travels with v > ¢. The distance between observers, the space interposed between them, grows
more rapidly than ¢, but this does not correspond to a transmission of information. In addition, to evaluate
the velocity of an object relatively to an observer, we must move the two velocity vectors (of the object and of
the observer) to the same locationt and make a difference; in Euclidean space this implies a parallel transport,
but in a curved space the result depends on the path followed. Therefore, in a curved space (or space-time) the
relative velocity of two objects, not located in the same position, is ambiguous and meaningless.

In addition to Hubble’s parameter, which depends on the time derivative of the scale factor, we define also the
so-called deceleration parameter ¢, related to d, always positive in a universe without cosmological constant,
but begative when expansion accelerates. By definition

__a(t)a(t)
q(t) = T (78)

with value go for ¢t = to (at the present time). The two parameters Hy and ¢ are useful for a series expansion
of a(t) around ¢ = t¢:

a(t) = a(to) + d(fo)(t — to) + %d(to)(t — t0)2 +...= a(to) [1 + Ho(t — to) — %qOHg(f — t0)2 + .. ] (79)

2.5 Conformal time - Redshift

We wrote R&W metric as

siny k=41
ds® = 2dt* — a®(t) [dx* + Sp(x)dQ?] with  Sp(x) =< x k=0
sinhy k=-1

In this case we use the so-called syncronous gauge. But sometimes it is useful to factorize completely the scale
factor. To do that we define the conformal time 7 in such a way that dn = cdt/a(t), and the metric can be

written as (conformal gauge):
ds? = a*(n) [dn2 — (dx2 + Sz(x)dQQ)} (80)

If a photon travels toward us radially, with § = ¢ = const, since ds? = 0, we have
a*(n)[dn® —dx*] =0 (81)

that is dn = +dy. This represents the light cone, with the rays inclined at 45°. If n = 0 represents the beginning
of the universe, We see that there are values of x such that no information has yet arrived from those points: we
say that there is a particle horizon (we will discuss better this point in next section). The equation of motion
of a photon traveling toward the observer (y = 0) is n = 19 — x with 79 = "7 today”.

n A A450 A
dn,
N, \45°
Mo
N=Mo—%
past
dn,
n=0 _ n|x=0 X -
3 Particle horizon N ) -
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2 THE ROBERTSON-WALKER METRIC 2.5 Conformal time - Redshift

Two signals, emitted at times 7. and 7. + dn. from a co-moving source at x = x., will be received in x = 0 at
times 1y and ny + dng.

In conformal gauge the motion of photons is always inclined at 45°, so dn. = dny and

cdt, cdty

a(te)  alto)

If dt. is the period of an electromagnetic wave with frequency v, = 1/dt., the observed frequency vy = 1/dtg is
related to ve by vea(t.) = voa(to) = vpap, that is:

Ve ag )\e a (te)
Ze AL 82
o a(te) - )\() ap ( )

The wavelength undergoes a "dilation" equal to that of the scale factor. This effect is produced by the variation
of the scale factor due to the expansion, and not by the relative velocity between source and receiver; thus it is
improper to call it a Doppler effect. To illustrate this fact let us suppose that, in an ideal cosmological model,
a photon is emitted when a(t) is constant, then a phase of expansion from a. to ag follows, and finally there is
a new phase of a = cost = ag, during which the photon is received by an observer. Source and observer are at
rest with rescpect to the universe when the photon is emitted and received, so there is no Doppler effect, but
the cosmological redshift is present and Ag/Ae = ag/a.!

a(t) A N
a VUV SN
o &
a A A,
¢ & s
/ '
The redshift z is defined as N ) )
0 — Ae 0 ag
= =— 1= -1 83
=T Y alty) (83)
and )
0 ao ag
21 -0 = t) = 84
Ae te a(te) alt) 1—=2 (84)

This relation is also useful to link the redshift (observable) to the scale factor.

The cosmological redshift is not due to a simple Doppler effect, but locally, to the first order in v/c, it can be
understood in this way. In fact, from the formula of the Doppler effect, we have:

/\ >\e >\e B a(te)
)

E A )\0 — )\e )\0 apg — a(te)
C

but a(te) ~ ag + Hoao(te - to) + O(At2

—Hopag(te — to)
ao + Hoao(te — to)

~ ~ cHo(to — te)[1 + Ho(to — te)] =~ cHo(to — te) =~ cHoAt

But, if ds* = 0 and df = d¢ = 0, ¢?dt? = a?dx? and cAt = apAx = d,, and so v = Hod,, which is just
Hubble’s law. Then, working backward from this, we find the formula of the Doppler effect. Locally, therefore,
the cosmological redshift can be seen as a Doppler effect due to the differential motion between two nearby,
co-moving observers.

But we can also interpret it as a large-scale integrated Doppler effect, the sum of many differential effects on
the path of the photon from the source to us.

Nobs photon path Nem
oo
© /77\ °
a a
’ A+d\ A ‘
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2.6 Horizons 2 THE ROBERTSON-WALKER METRIC

Consider the co-moving observers placed along the path the photon takes from its emission (a = a.) to its
arrival to us (@ = ag). Consider two of these observers, separated by an infinitesimal proper distance dl that the
photon travels in a time d¢ (dl = edt), which move with relative velocity dv due to the expansion (dv = Hdl),
and who observe the photon, emitted with A = A.,,,, with wavelengths Aand A+ d\, respectively.If we remember
that H(t) = a(t)/a(t), the local Doppler effect implies:

dA dv Hdl Hedt dal da

A c c c dt a a

By integrating this relation we get

Ao ag )\
/ dzmz/ dina  — znf:zn@ S A=A N (1+2)
A a

e e e Qe Qe

We can understand the cosmological redshift simply as a global effect due to the different relative speeds of
the co-moving observers placed along the path of the photon coming to us. There is no need to think of a
"stretching effect" of the wavelength of the photon due to the expansion of the space!

2.6 Horizons

The difficulty in defining the global topology of the universe resides also in a limit to observations, which is not
merely instrumental, but physical. One question we can ask is: Is there a mazimum distance from which I got
so far information? As we have repeatedly emphasized, the observational evidence suggests that the universe
had an origin in time (and most of the theoretical models support this evidence).

We have seen that a luminous signal, emitted at the co-moving coordinate r = ry at ¢ = 0 arrives at the
observer (r = 0) at time ¢t according to the relation

/t cdt’ /TH dr (85)
o at) Jo VI—kr?
According to the definition of proper distance we have
toedt! TH dr _ dpr (tv 7AH)

\/0 a(t’) - \/0 /71 — k"l“2 - fk(rH) = a(t) (86)

The quantity
bedt!
4(0) = ) = alt) | 25 (s7)

represents the mazimum proper distance from which, at time ¢, we received light signals. If dg () is finite, there
is a part of the universe from which we have not yet received a light signals and there is a so-called particle
horizon (PH). The fact that dg(t) is finite depends on the behavior of a(t). We will see that, for reasonable
cosmological models, dy o t and is therefore finite. For cosmological models without singularity (such as the
Steady State), the lower limit of integration should be placed not to 0 but to —co.

If instead we look forward, we can ask: From what distance may we receive, in the future, signals that start
today? The answer is obtained by integrating between ¢ and oo(or ¢ = ¢4, if the universe recollapses) instead
of between 0 and t.

dp(t) = a(t) /t h Z?f) (88)

If the integral diverges we have just to be patient enough to see any event, otherwise there are distances from
which we will never receive information. In this case, there is an event horizon (EH). For this to happen it

is necessary that a(t) grows faster than t. For example, if a(t) o ef'*) with H = const, we have:
< cdt! 1 > —Ht
dE(t):th.[ % :CEHt|:—H6Ht:|t :CGHt- eH = % =const = Ry (89)

as in models dominated by a cosmological constant and in the Steady State model. But while dg = const, the
distances of galaxies grow on their own as a(t) o eff* and then, as time goes on, they "go out" from dg: do we
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2 THE ROBERTSON-WALKER METRIC 2.7 Milne’s model

expect a lonely destiny in this cosmological model? Not exactly, since galaxies going beyond FEH are always
visible, but with a story, as seen by us, more and more slowed, and with photons increasingly reddened. In fact,
from galaxies at the edge we will receive photons at ¢ — oo,when a(t) — oo and then with a redshift z — oo
(Aoss — 00).

At first glance it may seem strange that in an expanding universe, initially very "small" compared to the present
universe, there is a particle horizon. The cause of this resides in the fact that the rate of expansion defined by
the recession velocity v,(t) can be, and in some cases is, much larger than ¢ (see the above). This does not
violate Special Relativity because the recession velocity does not correspond to a transmission of information,
but measures only how the space between co-moving observers increases.

Because of this expansion, which in the early stages of the Big Bang occurs with v, > ¢, a photon emitted
towards us in the early stages of the universe initially moves away from us because the space to cover increases,
per unit time, faster than the speed of the photon; this may finally come closer to us only when the velocity of
the expansion becomes smaller than c.

b b

—
Vv, »C v, LC

exp exp

obs obs
: (> > D L CCCCCQccccceeecccccccc @_, 4
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exp exp

Let us return briefly to the growth of the mutual distances between co-moving observers. It is usual to express
this fact by saying that the space "expands", but one should not think that expanding space carries with it the
galaxies, such as a cake that, brewing, remove the candies from each other. Immediately after the Big Bang,
the elementary particles present in the early universe (and which, later, formed galaxies) found themselves in
a state of mutual separation (for the moment we must take this as an initial condition of the motion, but the
mechanism may be similar to that producing inflation). The evolution of this mutual distancing, described by
the scale factor a(t), results from the application of Einstein’s equations. This mutual separation of objects can
also be given a description in terms of expansion of the cosmic substrate, but it is more correct and safe to think
that the objects, given the initial conditions, move under the effect of the gravitational interaction (in this we
include also the cosmological constant) with all sources of mass-energy of the universe, and not because they
are dragged or "elongated" and "stretched" by a mysterious expanding space (which, among the other, would
require to introduce a new type of interaction producing this "stretching").

At the conclusion of these observations on the geometry of the universe, we come to the conclusion that physical
limitations prevent us from accessing to the entire universe: we know only a part, and extrapolate our "local"
knowledge to the whole. Recall also that the universe, by definition, is the set of all existing objects and
physical concepts (such as stars, galaxies, atoms, space and time). There is not a physical space “outside” of
a finite universe. In this sense, certain "naive" representations of the universe like a balloon (2D) that swells
in space (3D) can be confusing. In addition, if the universe is spatially infinite, it was that even in the past,
when a(t) — 0. Finally, there is not a point from which we can say that everything expanded. Each point is
equivalent, and the Big Bang happened at any point: if, at any point, we come back in time, the density and
the local temperature increase and tend to infinity when ¢ — 0.

2.7 Milne’s model

We defined "cosmic time" in a way that seems obvious but, as we shall see, some consequencies of this assumption
(together with the finite value of the speed of light) are far less obvious. We will show this by means of the
cosmological model of E. A. Milne (1932), a most ingenious und simple model universe, which nicely illustrates
many of the features shared by the more complicated models. And, though it will not be immediately apparent,
Milne’s model satisfies the Cosmological Principle. It does not use General Relativity, but only Special Relativity.
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Furthermore, while this model is not satisfactory and in some way unphysical, it helps us to understand some
basic elements of the cosmic expansion.

Consider an empty Minkowski space-time. Totally neglecting gravity, Milne considered an infinite number of
test particles (no mass, no volume) shot out (for reasons unknown), in all directions and with all possibie speeds,
at a unique creation event C. Let us look at this situation in some particular inertial frame S, and suppose C
occurred al its origin O at t = 0. All the particles, being free, will move uniformly and radially away from O,
with all possible speeds u < c¢. The observer S, at rest with respect to O, sees a ball of dust particles whose
unattained boundary expands at the speed of light.

At first glance it seems that this model does not satisfy the Cosmological Principle, because O is a privileged
point. But the "boundary" of the universe behaves, kinematically, as a spherical front of light emitted in O at
timet = 0 (creation event, C). And each particle, having been present in C, consider itself at the center of the
wavefront.

The motion is radial from O, with r = w - ¢ for each particle. Then u =r/t = H - r with H = 1/t and Hubble’s
law holds. But Hubble’s law holds for every single moving “grain”: in fact, for particle 2, as for any other,
(F1 = urt, To = Ugl) T1 — T2 = (U1 —U2)t = d =wv-t. Each particie will consider the whole motion pattern
to be radially away from itself, and of course uniform.

There remains the question whether we can have an isotropic density distribution around each particle. To

study this, let 7 denote the proper time elapsed at each particle since creation. Then ng, the proper particle
density measured at any given particle P, is of the form

N
ng =

=3 (N = const) (90)

because a small sphere around P, containing a fixed number of particles, expands with the constant, relative
velocity du of the farthest particles, and thus has radius du - 7 and volume %ﬂ5u37’3.

For the particle P at a distance r from the origin of S in O it is:

O ——— (91)
V1—u2/c?

and the number density of particles in P, relative to O, is (recall that volumes are contracted by a factorl/y in
the direction of motion)

~ (u) Tt

_ 4
n:’y(u) N _ N _ Nt (92)
3 13 (2 —12/c2)2

Notice that (92) near the origin O (for r — 0) gives n ~ N/t3. It is clear that, conversely, a density defined by
(92) relative to the origin particle in O reduces to (90) at each particle, and thus to (92) relative to any other
particle taken as origin. This is therefore the density distribution we must require to hold around any particle;
t is the proper time of the observer.

Observe how this density approaches infinity at the “edge” r = ct; this is due to the fact that when we look at
points near the edge, we look back to times near the creation, when the density tended to infinity. Note also
that 7 is the cosmic time in Milne’s model, linked to the local number density via Eq.(90).

Although Milne’s model satisfies the cosmological principle, is not satisfactory since it accepts that there is an
"outside" of the universe of galaxies (over the edge r = ct) which can, however, interact with these (for example
by sending light signals that can be seen). The expansion of dust grains occurs in space, while in a satisfactory
cosmological model, without an "outside", the space between galaxies expands.
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Consider now Milne’s model from another point of view. We take now cosmic time as time coordinate and
consider co-moving coordinates (e.g., u,d, ¢) with respect to the inertial frame S. The speed v is a co-moving
coordinate since it doesn’t change in time and is linked to the proper distance r. The metric in spherical polar
coordinates will be, relative to S, a Minkowski metric in polar coordinates

ds? = dt® — [dr? +r2(d6? + sin?0d¢?)] (93)

and suppose the origin r = ¢t = 0 coincides with Milne’s creation-event C. We move now to cosmic time 7, (see Eq.
91): 7 =t-(1—u%/c?)? and define a new co-moving coordinate 7, more suitable than u, as ¢ = u/(1—u2/c?)z.
We introduce an auxiliary angle ¢ such that 7 = sinht¢) (remember that cosh®y) — sinh?y = 1) and we obtain:

uT

r =ut = ——= = ¢77 = c7sinhy
V1—u?/c?
: u/c 12 u?/c? 2
Slnh?ﬁ:\/?72/c2 — Slnh ¢:mzcosh ’ll)—l
1—u?/c® +u?/c? 1 1
h?yp = = hp = ————
cosh™y 1—wu?/c? 1—wu?/c? ” coshyp V1—u?/c?

This allows us to write ¢ = rcoshi. Note also that cosh?y = 1 + sinh®¢y = 1 + 72, and, from 7 = sinhe, by
differentiation, we have d7 = cosh) di, that is dy = dr/v/1 + 72.

If now, in (93), we go from r,¢ to 7, 7:

ds® = ¢*[rsinhyd) + coshydr] 2 [eTcoshipde + csinhepdr] ? _ 2r%sinh2yd 0>
= Adr? — P77 [dy? + 7297

~2
= 2dr? + 3272 [drﬂ + FQdQQ}

147
This corresponds to a R&W metric with K = —1 and with a(7) = ¢r (remember that time ¢ in R&W metric is
the proper time here named 7)!

The definition of cosmic time as the proper time of co-moving observers, the finite value of the speed of light,
and a negligible (actually vanishing) mass density produce a negatively curved space section (k = —1), but the
space-time curvature is zero, since we just changed reference frame from the flat Minkowski metric of Eq. 93.
If we gradually increase mass density, k£ becomes first equal to zero and then equal to +1.

Moreover, in this model (and only in this model!) based solely on Special Relativity, it is correct to apply the
the relativistic Doppler effect formula linking redshifts and recession velocity:

1+Z:W (94)
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3 Cosmological Models

3.1 Friedmann equations

We are now ready to derive the equations ruling the behaviour of the scale factor a(t) in a universe described
by a R&W metric, and by the energy-momentum tensor of a perfect fluid.

We start with the metric tensor; coordinates are (z°, 21, 2%, 2) = (ct, 7,0, ¢):
L0 0 0 10 0 0
’ 6,432 2
gap = |0 TR Y 0 R R N N
0 0 —a?r? 0 1— kr? 0 0 T a2 0
0 0 0 —a?r?sin®0 0 0 0 S

We than evaluate the affine connections. Most of them vanish; those different from zero are

o — 29
ij =

a c

. s
Fi_gﬁ
0j —

ac

where 4,7 = 1,2,3. Connections like I‘;- . are the same already estimated when we derived R&W metric (the
—1 factors present in g;; and g are simplified): just substitute, in place of the unknown function f(r), the

B 1. . .11l kr
expression ——; for instance: '}y = =7 .

Then we move from I'j. to Ricci tensor Rop = R’Lw; with a bit of patience, the components different from
Z€ro are:

3a
Roo = =,
Ri; = _% [i ii; 2];202} (3 components # 0: Rij, R, Rs3)
and the Ricci scalar is: 6Ta o2 ke
R=g R =

We calculate the components of the stress-energy tensor Tos = (p + pc?)uaug — pgas

In the co-moving frame u® = (1,0,0,0); you can easily check that u, = gapu® = gaou’ = gao = (1,0,0,0). So
Too = (p+p?)—p=p e Ty =—pg

So we can finally write

1 81G

The 00 component gives
8rG 1
a® + ke = —7; pa* + gaQCQA (F1) (95)

From any of the three components (11, 22, 33) we obtain:

o1l inG 1,
a—i—%(a —|—kc):— =2 pa+§Aca
and, by using (F'1):
4 1
i= —%G(p + i—f)a + gAC% (F2) (96)

Equations (F'1) and (F2) aren’t really independent: if we make explicit p from (F'1) and derive with respect to

time we get:
) 3a |. 1,4 2
=——|0—— k
P~ 1nGa {a a(a e )}
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3 COSMOLOGICAL MODELS 3.2 The density of the Universe

By using (F2) for d and reusing (F'1) for the term in parentheses, we get:

p+3§(p+ £) =0 (F3) (97)

We have already seen a similar expression (Eq. 41) when we were speaking about the energy-momentum tensor
(we used the edge L of a cubic cell instead of the scale factor a). It is just a way to express energy and
momentum conservation through the First Principle of Thermodynamics, and is linked to the four-divergence
of T*? . T*#;5= 0. The above relation can be again derived from dQ = dU + dL = 0, which represent an
adiabatic expansion:

%(pczag) = —p% (a®) — d(pc*a®) + pd(a®) =0 (98)

3.2 The density of the Universe

One of the key parameters in Friedmann’s equations is the density of the Universe; we will try to estimate its
value. First of all we define the so-called critical density p.,:

3H?

Per =

which, like the Hubble parameter H, is a function of time. Its present value, from Hy = h-100km s ' Mpc™' =
h-3.241-10718s 1= (h/3.086 - 1017) s~ 1 is p., ~ 1.879 - 10~ 2°h2g em 3.

Usually the density p is referred to p.- by means of the density parameter (2 :

Q= P
Per

Since there are many contributions to the overall density of the Universe, there is a particular value of Q2 for
each of them. Let’s see now these different contributions.

3.2.1 Luminous Matter

The density pyum of luminous matter, basically stars, can be derived from the luminosity density py of the
Universe (pr, ~ 2 - 10%h Lo Mpe=3), by assuming a mass-to-light ratio (M/L) ~ 1 M /Ls. We obtain Qy, =

plum/pcr:
Quumh ~0.002 — 0.006

3.2.2 Galaxies

The presence of massive, dark halos around the luminous part of galaxies, revealed by flat rotation curves,
increases the mass-to-light ratio to a value (M /L) ~ 30 h M /L'®. This gives an estimate of 4, which is an
order of magnitude larger than $2;,,,:

Qgar > 0.03 — 0.05

3.2.3 Galaxy clusters

From the virial theorem applied to groups and clusters of galaxies (Zwicky, 1933), as well as from mass estimates
by means of gravitational lensing or from the X-ray emission of the intra-cluster medium (ICM), we obtain
(M/L) ~ 100 — 400 h Mg /Lg , i. e. a value about 10 times larger than that for single galaxies. So we get the
estimate

Qe ~01-0.3

16Recall that, for a galaxy or a galaxy cluster with mass M, M ~ V2R ~ V20D, where V is the velocity dispersion , D is the
distance, 6 the subtended angle, and R is the size of the system. The mean recession velocity of the system (v) is, according to
Hubble’s law, (v) = HoD oc h D, that is D oc h~'. So mass scales as M oc h~!. The measured flux is F' ~ L/D? and so L o« D?
h=2. It turns out that M/L oc h~'/h~2 o h. The luminosity density will then scale as L/Volume « L/length® o h=2/h=3  h.
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3.2.4 Primordial (Big Bang) Nucleosynthesis

The Hot Big Bang involves the synthesis (called primordial, or Big Bang, nucleosynthesis, BBN) of *He, *He, D, "Li
when the universe was about three minutes old. As we shall see, from theoretical calculations, compared with

the observations, we have that the density of baryons (in astrophysics this term is referred to protons, neutrons,
nuclei of helium, etc., i.e. the ordinary matter we and thing around us are made of) gives a contribution

Qph? ~ 0.005 — 0.024

with a preference for the higher values of this range, as suggested by observations of the Cosmic Microwave
Background (CMB).

3.2.5 The Baryon Catastrophe

The hot, diffused plasma (ICM) present in the space among galaxies of galaxy clusters, detected by means of
its X-ray emission, contributes by about 6 2~3/2% to the total mass of the cluster. Stars, in galaxies, contribute
with a further 2%.

From numerical simulations, the ratio between the mass M, in baryons and total mass My, of a cluster is
representative of the relation, on a cosmic scale, between the density of baryons and the total matter density,
or between the corresponding density parameters €, and Q,,. By taking into account that some of the baryons
may be dark, we get (by assuming Qyh? ~ 0.02)

0.02 h~2
O/ > 0.06 h~3/2 +0.02 Oy < <0.33
o/ = HO02 = M= G 002 =

if we use h ~ 0.7. The term baryon catastrophe dates back to the early nineties, when it was believed that
Q= 1; the catastrophe was represented by the impossibility to have a value of Q;; close to one.

3.2.6 Radiation and (massless) neutrinos

The Universe is also filled by the cosmic microwave radiation (Cosmic Microwave Background, CMB), discovered
in 1965; it has a thermal, black body spectrum with a temperature, today, T, ~ 2.73K; this corresponds to a
mass-energy density

aT?
Py = C—; ~4.7-10"%g/em? = Q,~25-10"°h2

There is also a contribution from a cosmic background of neutrinos. If they have no or negligible mass, they
behave like photons, i.e. as relativistic matter, providing

py ~ N, 1073 g /em?

where NN, is the number of lepton generations; if N, = 3, then €2, ~ 1.7 - 107°. The total contribution Qg in
the form of relativistic matter, i.e. photons and (massless) neutrinos is then

Qrh® = (Qy +Q,)h* ~4.2-107°

If neutrinos, as we shall see later, have a mass different from zero, their contribution may be larger than this,
but then it should be counted among the non-relativistic matter.
We see that, at present, the dominant contribution to the density of mass-energy is provided by matter, so

p ~ par. As this matter does not possess relativistic motions, pressure pg = p(to) will be negligible.
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3.2.7 Baryonic and non-baryonic dark matter

The following Figure summarizes the conditions described above for the various components of matter in the
Universe.

If we take Hg ~ 7T0km - s™' - Mpc™! we see that, compared to the luminous matter, the total contribution
by baryonic matter is larger by at least an order of magnitude. The dynamics of clusters of galaxies and the
baryonic catastrophe further increase by another order of magnitude the density.

Contributions to the total density of the Universe
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dynamics of galaxy clusters
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This shows that in the Universe the vast majority of matter is dark, i.e. not luminous. Moreover, there are
dark baryons, but the main contribution to the density of the Universe is due to some form of non-baryonic
dark matter.

3.2.8 The cosmological constant

In the last ten years the observations of SNIa up to z ~ 1, and the observed properties of the CMB, both
by satellites (COBE, WMAP, Planck) and by stratospheric balloons, have suggested that the geometry of the
space part (at ¢t = const.) of the REW metric is consistent with an Euclidean metric (k = 0). This is due to
the contribution of a cosmological constant A different from zero.

It is useful to include the cosmological constant into the energy-momentum tensor by the definition of an effective

energy-momentum tensor:

4
Tap=Tap + %Qaﬂ = (p+ pc*)uaus — Pgas (100)

where effective pressure p and effective density p are defined as

AC4 A02
_ - + 101
p=0p 3G and p=p+ 8C =p+ pa (101)

So A can be associated to a density py = Ac?/87G and to a density parameter

pA Ac? 8rG Ac?
Qp =

= 102
Per 87TG 3H2 3H2 ( )

The following Figure shows the observational constraints on the values of Q2 and s derived from distant SNIA,
from the CMB and from galaxy clusters. The meaning of the various curves will be clarified later [Adapted
from: Knop et al., 2003, The Astrophysical Journal (ApJ) 598, 102].
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As one can see, the confidence regions related to SNIA and to the CMB intersect almost at right angles, allowing
a good determination of Qy ~ 0.7 and Qs ~ 0.3.

3.3 Peculiar motions

Before we go on with the study of cosmological models, we examine the so-called peculiar velocites by using
the already computed affine connections. The peculiar velocity u® (4-velocity) is the velocity of a particle with
respect to the local co-moving frame. The equation of the geodesic motion is, as usual,

du® dz

ds + Fgw“ﬂuw =0 ( remember that u® = K)

For the a = 0 component:

For the R& W metric (see above) the only non-vanishing component of F%’Y is I‘?j = f% géj , (i,7=1,2,3), and

using the fact that 1 = g,pu®u® = (u°)? + gj;utu? = (u°)? — [u|?, with u the space part of the 4-vector, the
geodesic equation becomes

du® _ agy 5 alul’
ds a ¢ a ¢
If we differentiate 1 = (u°)? — [@[? we have u®du’ = [u|d|7|, and since u® = 92" = 9L we get
[a| d[7| a|al? d|a| a_ [ a
faldl _ _apml®  _ dEul _ _a L oom_ e 103
u9 ds a c dt a|u| [@] a (103)

This implies that || o 1/a, and recalling thet P® = mou®, |P| o< 1/a: the magnitude of the 3-momentum of a

freely-propagating particle “red shifts” as a 1.

We see again that the co-moving frame is the most natural one. In fact, in an expanding universe the peculiar
velocity (3-velocity) decreases with increasing expansion: the particles tend to stay at rest with respect to
co-moving observers. We can understand this just thinking that if a particle is moving away from a point at a
certain speed it will cross the positons of observers, in motion with respect to the original one, for which the
peculiar velocity of the particle will be smaller:
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D =wv,- At vy = HyD = Hyv,At vé:vp—vé

1 dv do

= Av, = v, —v, = —v) = —Hov,At = ——P - _Hgy=——
L 0 P vp dt ag

Since the temperature of an ideal gas is proportional to the square of the mean velocitiy of particles: Tqs o<
[u|*> o< 1/a® (Traq x 1/a), consistent with the adiabatic expansion of a perfect gas: pV? = const =
TVY~! = const v=5/3, Vxa? = Ta? = const.

3.4 The equation of state

Friedmann equations contain, in addition to density and cosmological constant, another relevant parameter,
the pressure p of the cosmic fluid. In cosmology the pressure is linked to the density by means of a barotropic
equation of state such as p = wpc?, with w = const, 0 < w < 1.

As we have seen, the case w = 0 corresponds to non relativistic matter for which, even if p = w(T)pc? is
non-zero, p < pc? (note that pressure is always associated to density in Friedmann equations) , and then w ~ 0.
For a non-degenerate, ultrarelativistic fluid in thermal equilibrium the equation of state is p = %pc2 with , also
valid for a photon gas.

The quantity w is also linked to the adiabatic speed of sound (at constant entropy):

1/2
cs = ((’9}9) = cs = cw

op) ¢
If w= 0, then ¢, = 0; if w = 1/3 then ¢, = ¢/v/3. We have already seen that, with this equation of state,

pu VI = const, but V o< a® = p,a®1t®) = const = p0wag(1+w) (the suffix 0 implies ¢t = to):
— 40y3(14w) 104
Pw = Pow( a ) (104)
ew=0 — pyad=ponad; W=1+2 = pym = pom(1+2)3
e w=1/3 — pra*=poras = pr=por(l+2)*

Regarding the behavior of the cosmological constant, we refer to the effectitive quantities defined in Eq. 101.
If we imagine that the pressure and density of matter and radiation are negligible, we obtain

- Act _ . Ac?
=pr=— e =pA =
b=Dpa Ry P =PA Ry
which gives
pa = —pac? — wp =—1
Thus we see that the cosmological constant is characterized by an equation of state with w = wy = —1. A
similar case, as we shall see, is present during the phase of inflation that occurs in the early Universe. If w = —1,

Eq. 104 tells that p,, (in this case pa) is constant in time: pp = const.

Eq. 104 can be derived also from (F'3) in the form given by Eq. 98

d(pc2a3) +pd(a3) =0
In fact, by writing p = wpc?,
d(pcza?’) + wpc? d(a3) =0
a*d(pc?) + pc?(1 +w) - 3a*da = 0
d d
L 301+ w);“
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which, by integration with w = cost, gives

PO ao
dlnp= —3(1—|—w)/ dIna
P a
and again
ao
puw = pou(—>)* )

If w is not constant in time (as occurs in some theories that, in place of the cosmological constant, consider a
scalar field variable in time to explain the origin of so-called dark energy) the factor 1 + w cannot be taken out
of the above integral and the formal solution is

p(a) = poexp {3/:0[1 +w(a)]d lna}

If we want to use the redshift z, remember that a = ag/(1 + 2), so da = —ag/(1 + 2)?dz and

p(2) = poexp {3 / 1 w(z)] Wdz}

(14+2)%2 ap
p(z) = po exp {3/: [1—1’_4_71022)} dz} (105)

3.5 A useful relation among cosmological parameters

We start from (F'1) and divide it by a?:

8rG 1 1
-2 2 _ 2 2 2
a—|—l<;c-Tpa —|—§acA /a—2
£+L§_8WG H72_|_12AH72
2 @2 3 m T3
kc? p A
H? + — = H? H? —
A= Per * 3H?
k 2 2
ke e A
a? per  3H?
Remember that Ac?/3H? = Qa, p = pa + pr and then
k 2
= H [+ Qr+ O — 1]
We name Q = Qp; + Qg + Q4p, and get
kc? 9
o =H Q1] (106)

This relation holds at any time; in particular, today (at t = to, with H = Hy and Q = ) we have

kc?
— = H{ [ — 1] (107)
ag

This relation shows the link between the density parameter 2y and the curvature k£ of the space section at
constant cosmic time:

e y>1 = k=+1
.QOZI = E=0

.Qo<1 = k=-1

These relations explain why the quantity 3H?/87G is named critical density. Eq. 107 gives also (for k # 0) the

present value of the scale factor:
c \/T
ag = —
TV 0 -1

58




3 COSMOLOGICAL MODELS 3.6 The Hubble parameter

3.6 The Hubble parameter

Let’s consider again (F'1), divide it by a3, and rimember that kc®/ad = HZ [Qo — 1], Qo = Y., Qow, Qow =
Pow/ Poer; We include the cosmological constant into p through the relation py = Ac?/87G:

1
d2+k62:87era2 /=

o
i SnG a0 ke
at  3H? a) — at

where p =3 pu = 3, Pow(22)30HY) = po o S Qou(22)3(+w) Then

2
HSZQ ao 3(1+w)( 0) = —H? lZQOw_1]

[

=H; (108)

Sol &

Z QOw( 1+3w (1 - Z QOU))

w

If we remember that H(t) = a/a, and we multiply by (ag/a)?, the previous relation gives

H*(t) = Hj <20)2 |:2w:QOw (20) o +(1- %:QOUJ)} (109)

Since ag/a = 1 + z, this gives the dependence on redshift H(z)

H?(z) = H2(1+ 2)? [ZQO (14 2)1+3v 4 1ZQM] (110)
Making explicit the different components we finally get

H?*(2) = H{(1 + 2)* [QR(l + 224+ Q14+ 2)+ Q1 +2)24+1— (U + Qs + QA)} (111)

The quantity 1 — (Qr + Qs + Q) is named (2, a density parameter linked to curvature.

3.7 The three eras of the Universe

In Eq. 111, describing the evolution of H(z), and also the evolution of the scale factor a, there are three different
contributions depending on Qg, Qs, Q4. These contributions evolve differently in redshift.

At high z the term containing Qa, as well as the term 1 — (g + Qs + Q4 ) which is on the order of unity, are
negligible if compared to the terms containing Q2 and ;. Moreover, the term depending on Qg grows more
rapidly and, even if today Qg < Qyy, relativistic matter dominates the dynamics of the Universe before the
epoch of equivalence (or matter/radiation equality), corresponding to

QR(I + Zeq)2 = QM(l + Zeq)

Q
1+ 2eg = (TM ~ 23800 Qp,h? (112)
R

which, for Qp; ~ 0.3 and h ~ 0.7, gives z.q ~ 3700. We have first, starting with the birth of the Universe, an
era during which the dynamics is dominated by relativistic matter. Then, after the equivalence, non-relativistic
matter dominates. This era lasts until the cosmological constant enters the game, that is when

Qu(1+2) =Qx(1 + 2)72
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i.e. at a redshift z5 given by

O\ 3
1424 = <(fx> (113)
M

which, for Q) = 0.7 and Q,; = 0.3, gives zy = 0.33.

Summarizing, we have three phases (eras): a first era dynamically dominated by relativistic matter (radiation)
(radiation dominated - RD - era); a second phase dominated by non-relativistic matter (matter dominated -
MD - era); a third phase dominated by the cosmological constant (or by some form of dark energy) named
dark-energy dominated era or vacuum dominated (VD) era. During the RD era, as we shall see, an inflationary
phase occurs, dynamically similar to the VD era.

3.8 Hubble time

Suppose that, at a time (for instance at t = tg), @ > 0 (expansion); Eq.(F2) tells us that if (p + 3p/c?) > 0
(ie. if (1 +3w)p >0, w > —1/3) d is always < 0, the graph of a(t) has the concavity facing downwards, and
a(t) must be zero at a certain instant, that we can take as ¢t = 0. At t = 0 p and H diverge, and we have a
singularity, the so-called Big Bang.

Cl(t) A

\{

x
.

We also see that ap/Tyg =ay = 1/Tyw =Hp and Ty >to thatis Hotg < 1: the inverse of Hy gives
an upper limit to the age of the Universe (T is called Hubble time = 1/Hy). This is no more true if the
expansion is dominated by the cosmological constant, as we shall see.

We also note that, if at any moment is @ < 0, the concavity of a(t) implies that in the future there will be an
unstoppable collapse: the Big Crunch. We finally note that the effect of expansion is not due to the pressure,
which always acts in the direction to decelerate the expansion, if w > —1/3.

3.9 Evolution of the density parameter ()

If we divide Eq. 106, referred to a generic time,

kc?
by the corresponding Eq. 107, referred to time t = ¢y, we get

2 2 2.2
ag H* Q-1 Hiag
e = 0-1=(Q—1)=0%
a?>  HZQo—1 (@0 = 1) Fa gz

The time evolution of H (Eq. 109)gives:

Q-1

Q-1=
1—-Q0+ >, Qow(l+z)t+3w

Making explicit the three components R, M, A:
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3 COSMOLOGICAL MODELS 3.10 Evolution of the deceleration parameter q(z)

Qo —1
Q—-1= 114
Qr(1+2)2+Qu(1+2)+Q(1+2)"2+1-Q (114)

which gives the time evolution of Q(z). We first see that, since the denominator of the right hand side is always
positive (see Eq. 111) the sign of Q(z) — 1 does not change during the evolution. So if Qp > 1, Q(2) is always
greater than one through cosmic history. Similarly if Qg < 1; if Q¢ = 1 it keeps that value at all times. This
effect is strictly linked to the fact that the curvature & cannot change during cosmic evolution.

If we go back in time, for z — 0o, @ — 1 — 0, i.e. 2 — 1: going back into the past, the Universe increasingly
resembles that with £ = 0 and the effects of the curvature are negligible in the early stages of cosmic evolution.

The fact that Q tends to diverge from 1 as time goes on, while today it seems to be very close to 1, requires
that in the distant past 2 was actually extremely close to 1, with considerable "fine tuning” between density
and expansion rate. This is the so-called flatness problem, which is solved by the paradigm of inflation. The
existence of a phase of inflation, dominated by the energy density of a false vacuum that mimics the effects
of a cosmological constant, provides the mechanism through which Q is so forced towards unity in the early
Universe, that it stays up to date very near to 1. To understand the reason for the cosmological constant forces
Q to one, let’s look at Eq. 114. Remember that ag/a = 1 + z, so that in the future, when a — oo, z — —1.
Now let z — —1in Eq. 114: the numerator of the left hand side diverges and 2 —1 — 0, i.e. 2 — 1. Something
similar happened during inflation.

3.10 Evolution of the deceleration parameter ¢(z)

The deceleration parameter, defined by Eq. 78, by using the definition of the Hubble parameter, can be written

q(t)zf".) - Z S (115)

We use again Eq. 108; time ¢y corresponds to a generic reference time, not necessarily to the presen time. We

rewrite Eq. 108 as
a
a = HOG‘O [ E Q()wZ 0 1+3w1 + <1 - 2901117>‘| (116)

and derive it with respect to time. We obtain

a0\ 3y, —00Q
2ai = HZa2 lz Qouw, (1 + 3w;) (;0)3 i a;)]

wi

a?

Hoao _ Hoao a0 \ 3w, a0 \ 3w,
o ZQM 1+ 3w;) (X2 ) = Zﬂom (P +5 szﬂo% (=) (117)

We insert this in Eq. 115 and we have

a Hga% 1 a0 \3w; 3w,
q:_aH2:H2a3 5290“’1( ) g szﬁom( ) )

wq

If we now take t = t( this relation simplifies and we get
7129 +§Zw-§2 (118)
do = 9 ‘ Ow; 9 v 1850w, -

But, as we already said, time ¢y is just a suitable reference time, and the above relation holds at any time
or redshift, provided we use the density parameters corresponding to that reference time. We put Q:(2) =
> w, Qw,; (2) and finally get

q(z) = 1 tot sz wl (119)
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We apply now this formula to a particular Universe. We neglect Qp (i.e. z < z.q), and assume k = 0. So
Diot(2) =1 at any time and Qpr(2) + Qa(z) = 1. Eq. 119 gives

q(z) = % - gQA(z) (120)

How do we estimate 24 (z)? In our particular case Eq. 111 becomes

H?(2) = HZ(1 + 2)? QM(1+z)+QA(1+z)‘2]:H§(1+z)3[QM+ 2 }

(1+2)3]
Now Qa(z) =1 — Qp(2) and, by definition,

pv(z)  por(1+ 2)3

Qur(z) = - et 121
M= @) o B (2
where we used the relation
_3H® 3H; H®_ H?
Per =8aG ~ 8nG HZ PO HE
So Eq. 121 can be written
1 3
Onr(2) = Qs (1+2) (122)
(14 2)3 {QM + (12’;)5}
and Q U o Q
1+2 A
On(z) =1 M —o M - : 123
r(2) Qn Qu(1+2)3+Qx  Q+(1-0Q4)(1+2)3 (123)
D+ e
Finally, Eq. 120 can be written
1 3 Qa
==-—-= . 124
1z) =353 {QA+(1—QA)(1+z)3] (124)

We see that, for z > 1, ¢ — 1/2, i.e. & < 0, the expansion slows dows. For z = 0, since Q ~ 0.7, ¢ < 0, the
expansion is accelerated. Eq. 124 tells us that ¢ = 0 for a particular value of z = Z given by

1/3
N 20
_ 1 12
“ (1 — QA> (125)

which, for Qy = 0.7, gives z = 0.67. We can compare this result with Eq. 113, another way to define the
beginning of the era dominated by the cosmological constant (or dark energy).

3.11 Cosmological models

Friedmann equations (F'1) and (F2)

81G 1
a® + ke = %pcﬂ + §a262A (F1)
.. 4G 3p 1, 5
a:fT(er?)aJrgAca (F2)

allow a qualitative classification of cosmological models with A # 0, for different values of the curvature para-
meter k. We assume for simplicity that p = par = ooar(ao/a)?, i.e. we are in MD era (a more general treatment
leads to the same qualitative conclusions).

Let’s first consider eq. (F'2) and assume that ¢ = 0; we get (pressure is negligible in MD era)

—Ac?a = inG

3 3 (0t B)a /- (126)

c? c
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(127)

Notice that the notation A(a) does not mean that A (which is always constant in space and time) depends on
the scale factor; it just represents the behaviour of a critical line in the A — a plane, as in the following figure
(the dashed line). This curve is contained in the region A > 0. It marks the border between the region where
G < 0 and that where @ > 0.

Let’s now consider eq. (F1) and assume that, in this case, a> = 0. We act as for eq. (F2) and we get

1, 595 5 881G 3

gAC a® = kc* — Tpa / @ (128)
3k 8nCG @@ A B

Afa) = 2 @ Pz =5 s (129)

(Also here A(a) represents the behaviour of a critical line in the A — a plane) Now we must distinguish two
cases: k=0 or —1, and kK = +1. In the first case the right hand side of eq. 129 is always negative, as shown
on the left side of the following figure. The curve corresponding to 4 = 0 marks the border between the region
of the (A, a) plane where ¢ > 0 and that where @? < 0, forbidden by dynamics (and mathematics!). So, for
a given vale of A < 0, a starts from zero and grows (it moves horizontally in the plane) until the crossing of
the @? = 0 line. Since it cannot enter the forbidden region, the scale factor must go back to zero: the Universe
recollapses. On the contrary, for A > 0, the scale factor can grow indefinitely; it starts in the ¢ < 0 region
and self-gravitation slows down expansion, but after the crossing of the & = 0 line, in the @ > 0 region, the
expansion accelerates. If A =0, @ is always negative and expansion is slowed forever.

The other case, k = +1, is more complex. According to eq. 129, for small values of a, the —B/a® term prevails
and A(a) < 0, while for large values of a the A/a? term, positive, prevails. So the % = 0 line crosses the A = 0
line and has a maximum at a particular value of a: a = ag = 3B/2A, corresponding to A = Ag. Moreover,
the two curves defined by eq. 127 and eq. 129 cross at the point (¢ = ag, A = Ag), as can be easily checked.
So at this point we have both a?> = 0 and G = 0: this corresponds to the static Einstein model (see below for
more details). This situation is described on the right side of the following figure. For A < 0, and for A = 0,
the Universe has to recollapse. For A > 0 we have three possibilities. For A > Ar we have again an initial
deceleration followed by acceleration and expansion to infinity. Among the cases with A > Ag there is the
so-called Lemaitre model, in which, if A = Ag(1+¢) with € < 1, the evolution of the scale factor can have an
arbitrarily long stationary phase (the smaller is €, the longer this almost-static phase). This model was invoked
in 1967 to explain an observed excess of quasars'” at z ~ 2 (this observational evidence is today ascribed to
the evolution of quasars). In this model Ty = 1/H > t, is violated, as it is in many models with A > 0. If
0 < A < Ag, depending on the initial condition, we may have a contraction phase, followed by an expansion
era (bouncing universe), or still a model that recolapses, such as those with A < 0.

AA \

Forbidden region Forbidden region

The following figure shows, in summary, all the cases above discussed.

17Quasars are active galactic nuclei, i.e. supermassive black holes hosted in the center of galaxies and emitting a huge amount of
energy
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Now we will start to see in detail some models that are interesting for historical reasons or because they may
be useful approximations in certain stages of cosmic evolution.

3.11.1 Einstein model

If we include the cosmological constant into the energy-momentum tensor, as done in eq. 101, eq. (F'1) and eq.
(F2) become:

881G

dQ + kC2 = TﬁGQ (Fl)
.. 4G, 3p
a:—T( +67)a (FQ)
These equations have a static solution with ¢ = 0 and a = 0 if:
_ 3p 3kc?
j=—2 =

2 8nGa?
If this model corresponds to our Universe as it is today, dominated by non relativistic matter, then matter
pressure is negligible and p ~ 0 , so that:

30 3 (A 3k LAk
2 2 871G ) 8nGa? T a2
Ac? 3kc? kc?

p= =

Pt 87G  87Ga? ~ 4rGa?
Since p > 0 we have k = +1 and A > 0. The value of A which makes the Universe static is
k 47Gp c

A = = = d = =

E an a ap ﬁﬂGp

a? c2
This model is unstable because even small fluctuations in density may lead both to local collapse or local
expansion. There are two models, the so-called Eddington-Lemaitre models, with A = Ap and k = +1,
whose asymptote is the Einstein model. The first starts from ¢ = 0 and tends asymptotically to ag, with
a < ag. The second one starts from a = ag and, after a long time (tending to infinity) slowly diverges with
a > ag.

3.11.2 de Sitter model

This model is empty (p = 0 and p = 0) and flat (k = 0). In this case eq. (F'1) is simply

A oy ] [A
a? = gcga2 = a(t)=Ae get with H = a_ §C = const
a
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3 COSMOLOGICAL MODELS 3.12 Einstein-de Sitter model

This model, characterized by an equation of state p = —pc?, describes the inflation phase in the early universe.
It also represents the asymptotic behavior of the models with A > 0, as can be seen by examining eq. (F1) and
by letting a grow to infinity. Therefore, this model also represents the asymptotic behavior of the cosmological

model which currently has more credit.

3.12 Einstein-de Sitter model

In this model (EdS) we neglect the cosmological constant (A = 0)and it is assumed that the dynamics is
dominated by a single component (radiation or matter), with g, = 1 (this, as seen above, implies that
O, (2) = 1 always); i.e. kK =0. To be more precise, the EdS model has k = 0 and w = 0, but in general we give
that name also to models with w # 0. We have, from eq. (F1), in the phase dominated by the w component:

d2 ao 143w
— = H02 () — H02(1 _|_Z)1+3w
a3 a

that is

1+ 3(14w)

a3 da=Cdt = a o =(C'-t

t J(%W
a(t) = ag (to> .

The Universe expands forever. Eq. 131 can be written as a function of z:

and, referring to ag and tg:

_ 3(14w)
2

t=1to(1+ z)

For this model we also have:

a 2 Hyty 3(1+w)
=-=—-— — Ht= t - H= = Hp(1 2
a 3(1+w)t cons o(1+2)
aa 2 at—a a 143w "
[y M —— = const =
@ 31tw) 2 a 2 @
2
toerw =t = ————— f the first relati
Ocr, 0 3(1 T w)HO rom € nrst relation
—3(14w) -2 2
w t wl
Pt = const  — P _ (a) = () = puw(t) = p02 °
Pow aop to t
Since Qg = Q, =1, it follows that p = pe = %, and
(t) = 3H? 2 1 1
Polt) = 8rG\ B0+ w)Hy ) 2 67G(1 + w)2e2
It is useful to explicitly write these relations in the two cases:
e w = 0 “dust”, matter-dominated Universe (= non relativistic fluid)
t\3 2 .
a(t) = ao — t=to(l+2)"2 H=2 =Hy(l+2)3
to 3t
B L2t 0=
qo = 2 Ocr,m — U0 — 3 HO Pm - 67TGt2
e w = 1/3 relativistic matter, radiation dominated Universe
ty? -2 1 2
a(t) = aog| — t=1to(1+2) H=—=~Hy(l+z2)
to 2t
=1 oo = to = — S
do = Ocr,r — L0 = 2H, Pr = 39712
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Note that when the pressure increases (from w = 0 to w = 1/3) the deceleration parameter ¢o grows.

This model can also be extended to more general cases. Indeed, in the phases dominated by radiation or matter,
when the contribution of 2, is negligible as well as the term of curvature, the evolution of a(t) is given by

a? ap\ T

20y, <0) (134)
a

similar to eq. 130, but with an effective Hubble constant Hy .f¢ given by

Hoerr = HovQow

So, at high 2z, we can use the relations derived for EdS model just by putting Hy — Hy .sy; for instance:

2 _3(1+w)

TRy Qow(1+z) 2 (135)

H(Z) = Hy/ Q()w(l + Z)

The relations giving p.(t) (in which the terms with Hy are simplified) and ¢ (which does not depend on Hy)
remain the same.

t(z) =

3(1+w)
2

(136)

These relations are useful to have some rough estimates of the correct values of cosmological quantities. More-
over, at high z the FdS model is an excellent approximation of the real model of Universe, whatever its
curvature.

For instance, we can use eq. 135 to estimate the age of the Universe at matter/radiation equality, at z = z¢q
given by eq. 112. Since z.4 is at the edge of the MD era we use eq. 135 with w = 0:

2
B 3H0m(1 + Zeq)%

t(2eq) = ~ 1.8-10%(Qah?) 72 years, (137)

about 8 - 10* years for Q; = 0.3 and h = 0.7. A more precise calculation gives an age of about 5 - 10* years.

3.13 Matter dominated models

As we have just seen, the epoch of matter/radiation equality corresponds to an age of the Universe of about
50000 years, much less then about 13.5 billion years (see below), the present age of the cosmos in which we live.
If we neglect this "small" amount of time (if compared to the total age), and suppose that the cosmological
constant is zero or negligible, we obtain the classic cosmological models listed in all the texts, popular and not,
more than ten years old. So let’s see in detail these models, pointing out that the EdS model dominated by
matter is already one of these cases, the one with Q = Q,; = 1.

For matter dominated models eq. 108 gives

. 2
(“) ~ H2 [QM“O 1 Qu (138)
ap a

Let’s see the two cases Q) > 1 and Qs < 1:

o Q> 1: Since 1 — Qpy < 0, while Q,/(ao/a) becomes smaller and smaller as a grows, there is a value of
the scale factor which makes a? = 0; larger values of a would make @ an imaginary number. This means
that the scale factor has a maximum value a,, at the time t = t,,, given by

Qum
Qp —1

a(tm) = Gm = ag (139)

The evolution of the scale factor can be derived by using an auxiliary parameter, the development angle
6, defined by the relation (%) . 2(%#1\4—1) =1—-cosf, 0 €[0,27]. The parametric solution is:

C2(Q —1)3/2

937;

Hot a(t) = a0m

(0 — sin ) (1 —cosb) (140)
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This is the parametric equation of a cycloid. The maximum is obtained for 8 = 6,, = =:

QM QM
Hotpy = ——
Qun — 1 0 2(Qpy — 1)3/2

QM’R’
2(Qpr — 1)3/2

a(tm) = am = ao (O —sinb,,) =

For t = 2t,, (0 = 2m) the scale factor collapses (Big Crunch). We obtain an expression for ¢y by putting

a(to) = agp-
2(Qp — 1 2-0Q 2
toaongy = 2O s oy = 2 ()
By transforming cos 6y — sin 6y we easily obtain, from eq. 140 (sinfy > 0 since the universe is expanding
at the moment).

Qs 2 2 2
Hoty = —————— [ ——1) — —/Qu —1 —
olo 2<QM_ 1)3/2 {arccos <QM ) s M } < 3’

i.e. less than for the EdS model, in which Hoto = 2.

e QO < 1: In this case it is useful to write (ﬁ) . 2(1573’”) = cosh 1) — 1, and the parametric solution is
Qnr . Qum
Hyt= ————+ hy — t) =ay——— hy —1 141
0 2(1 — Q)32 (sinh ) — ) a(t) = ag 21— Qar) (coshyp —1) (141)
In a way similar to what we did for Q,; > 1
21— Q) 2 Qur 2 (2 2
hipo = 1422 "M 2 1 and Hoto= ——2 | 2 /T - Qp—cosh™ [ ——1 ‘
cosh g + 7 0 an oto 21— Q)32 | O M —COS 0 > 3

By means of the relation cosh™(2) = In[z + v/22 — 1] and expanding for Qs — 0 we get
QM In QM

Hoto = 1+ ——— = 1.
The asymptotic behaviour for the scale factor can be inferred from eq. 138 for a — oo
a2
() ~ HZ (1 — Qyp) = const => i = const = a(t) x t (142)
ag

and a grows linearly with time, while in EdS a t3.

Why do we study models that are clearly not representative of the currently accepted cosmological model?
Regarding the model with Qy; > 1, it may represent the evolution (simplified) of a density fluctuation in excess
of the average density: if we suppose that a spherical region of the universe has a density greater than the
mean density and also greater than the critical one, the spherical region evolves (its radius evolves) as the scale
factor of a Universe with Qs j0cq; > 1, reaching a maximum and then recollpsing, while the rest of the Universe
continues to expand. The model with Q,; < 1 shows us that, as the density tends to zero due to the expansion,
the universe approaches the Milne model, with a ¢, H =1/t, k = —1.

3.14 Models with A # 0

We have already seen a qualitative classification of these models. Let’s now try to be more quantitative. We
have also seen that the models that begin with a Big Bang recollapse or expand indefinitely. But in other cases
the universe never had a Big Bang: the universe collapsed in the past, but the repulsive effect of a A > 0 slowed
the collapse to turn it into expansion.

To see in detail the various cases it is necessary to integrate numerically Friedmann equations; if we neglect the
contribution of radiation, one can also proceed analytically. The Friedmann equation (F1) with 2z = 0 (see
eq. 108)becomes

a

() =8 o ()0 (2) 10 o

If we put a/ap = R and 7 = Hy - t we get:

<(:£>2_1+QM<;1> +Qr(R* - 1) (144)
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The present epoch corresponds to R = 1 and the slope of the curve, at present, is equal to one.

Let’s explore the future (and the past) of cosmological models as a function of the present values of the density
parameters ,; and Q4.

We have seen that, if A < 0 (25 < 0), the Universe finally recollapses in all cases. We have also seen that, if
k<0and A >0 (Q > 0), the Universe finally expands to infinity like in de Sitter model.

The case with k = +1 and A > 0 (5 > 0) is more complicate. If we look at the past, it is possible, at least
in principle, that our Universe is a bouncing universe. Since it is now expanding, the bounce already happened
and a(t) had a minimum in the past. So we must find the conditions for dR/d7 = 0. But eq. 143 leads in this
case to a cubic equation for R, and cubic equations are not so easy to solve.

We will do in another way. As we can see in the following figure, the limiting case between a bouncing universe
and a model with a Big Bang in the past corresponds to the case in which our universe is described by an
Eddington-Lemaitre model, i.e. a deviation from an originally static Finstein model. In this case, in the past,
both @ and @ had to be equal to zero. So we use eq. 108 and eq. 117 with Qr = O:

Q14+ 2)+ Qa1 +2)2+1—-Qy — Q4 =0 (145)

O (1+2)° +Qa(—2) 1+ 2)2 =Qp — 200 (1 +2)2 =0 (146)

Q,<(*)

Eq. 146 gives immediately

Qp = QTM(l +2)3 (147)

This means that, given Q,;, if @ = 0 at redshift z, 25 is given by eq. 147. Remember that 23, and Q4 refer
always to the present epoch. We can work in a similar way with eq. 145; we multiply it by (1 + z)? and, after
some algebra, we finally get
(1+2)?
=—(149Q 148
We want that both @ and & are zero, so eq. 147 and 148 have both to be fulfilled. If we solve both equations
we get

{ i (2) = 75 (149)

P 3
NOEE = IO

If we want to explore the past, z must go from 0 to co. If we let z to move within this range we obtain the
curve labelled “past” in the following Figure. Some values of z are shown. Note that in bouncing models the
scale factor has a minimum value and, since ag/a = 1+ z, this means that there is a maximum value for z. The
minimum value of @ and the maximum value for z correspond to those of the Eddington-Lemaitre model and
are, also in this case, those shown in the following Figure on the “past” curve. We see that, in order to have
a maximum redshift much larger than one, the value of 2); must be very low, in disagreement with with the
observations. So bouncing models are excluded for our Universe.

But our Universe could tend to an FEddington-Lemaitre model not in the past but in the future. This would
mark the border between a recollapsing universe and a universe expanding to infinity. We can again apply egs.
149, but the trick is to let z to move now within the range between 0 and —1, since as a becomes larger than
ap the relation ag/a = 1 + z shows that 2 < 0 and z — —1 as a — co.
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(no Big Bang)

expands forever
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The Figure above shows a synthesis of the discussion. The following Figure shows some models with the
corresponding values of (a7, 4.
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Fig, |: Evelution of the scale parameter with respect to tume for different values of matter density and cosmiclozical parameter,
The horizontal axis represents v = Halt — ta). While the vertical axis is g v fup i each case. The values of ($1y, 124
for different plots are! A={L.00, B=(D.1.00,C=(1 5.00, D300, E=(01 090 FHOOLT), G=(3,. 13 H=(3.1). =01 3) (5. - 1),
E=(1.0.2.707); L=(1, 2595 M=(0.1.1.5), N=(i.1 . 2.5). From Ref [7]
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3.15 Our Universe?

We have seen that our Universe, after matter/radiation equality, is first matter dominated and then vacuum
dominated. There exists an analytical solution for a Universe with matter and cosmological constant and
spatially flat (Qar + Qp = 1).

Eq. 108 is, in this case,
N 2
(L) =3 o (22) 0 (2) 7], (150)
ag a a

and, by putting R = a/ao,

Q 1/2
dr _ H, {M + QARQ] — Hydt = dr
dt R Qur/R+ QA R?

/R dz /R Vadz
Hot - = R —
0 \/QM/.’E-i-Qsz o VOQu + Qaz?

3=

We use the substitution x u? and we get

R3/2

2 du

_3\/91\ 0 \/QM/QA—FUQ.

, we finally obtain

Hyt

By solving the integral'®

2 . —1 a 3/2 QA
Hot = h — — 151
0 3m81n [(ao) QM ( 2 )
i = \13
a(t) = ag (QM) {sinh (3 S Hot)} (152)
Qa 2

Since a/ag = (1 + 2)7 1, eq. 151 gives, for this model, the age of the Universe as a function of redshift. In the
following Figure we draw a(t) for Qp; ~ 0.3, Q4 ~ 0.7 and h ~ 0.7. Note that the dashed line, tangent to
the curve at the present time, goes approximatly through the origin; Hoty = 0.964 and the present age of the
Universe (to ~ 13.5 Gyr'?) is almost equal to the Hubble time.

1.5 ///
(,{_.-"(10 """""""""""""""""""""""""""""""""" 7
0.5 ////’//’/ i
00/1/11/ IS 1IO I15 20
tempo in miliardi di anni

8By defining ¢ = Va2 + a2, [ \/md;ﬁ =In(z + q) and In <IT+‘1) =sinh™! (£)
90ne Gyr = 10%year
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The following Figure (with the same cosmological parameters) shows the link between redshift and age of the
Universe (in billion year).
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3.16 The age of the Universe

We have so far seen the age of the Universe as a function of redshift for some particular models. Now let’s see
a general formulation. From the very definition of the Hubble parameter, we have:

a 1lda da d(a/ap)
a adt a-H (afag) - H(a) (153)
If we write a/ag = u,
a/ag du
t(a/ao) /O T H (154)

which can be integrated, at least numerically, by using the known dependence of H on a/ag and on the
cosmological parameters (see eq. 109). It is more useful to use the redshift; remember that a/ag = 1/(1 + 2)

and so

ag ag dz
da=—-——2"_qz — dt=——"%  qp=__ = 155
(14 2)? (1+2)2aH (1+2) H(2) (155)

where we used again ag/a = 1 + z. Finally, we get the useful, general relation

o0 dZ/
0= G 0

in which
H(z)=Ho(142) [Qr(14+2)> + Qu(1+2) + Q(1+2) 2 +1— Qo}l/2

where Qp = Qg + Qar + Q4.

The following Figure shows the effect produced by the cosmological constant on the age of the Universe. It
compares, in the (Hp, Q) plane, the "flat" case (Qps + Q4 = 1) with the "open" case (g = Q). Note that
the cosmological constant makes the age of the Universe longer, in better agreement with the estimated age of
globular clusters.
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A cosmological parameter often used is the so-called look-back time, t;, = to —t(2), which is the time elapsed
between redshift z and today. In particular, for EdS model:

_3(0+w) _3(14w)
2 2 ]

ti = to —to(1 + 2) =to[l1—(1+42) (157)

Example: Let’s take w = 0, and assume Hy = 70 km s~ ! Mpc~1!.

1 -1 2 2 - . o

T 44.1007° = tO:3H0:§4-4'10 §=29-10""s =9.3-10%years

If we observe a quasar at z = 2, how many years ago was emitted the light we see today? Eq. 157 gives in this
case

Hy

tiy =to [1 -1+ 2)73/2] =0.8075ty = 7.5 - 10° years ago.
For the model described by eq. 151 #;,(z = 2) ~ 10 Gyr-

3.17 Horizons again

Let’s estimate the size of the horizons for a particular,useful model, the EdS model.

tedt t/to cd %’ a t/to .
() =att) [ S5 —at) [ to((o)z(t)'cto/o A
ao

%)ﬁ ag e}
143w
a(t) ’ 314+ w) (t 30+ 3(1+w)
ap 143w \to 1+ 3w

We see that dy(t) o ct; if w =0, dg(t) = 3ct; if w=1/3, dy(t) = 2ct. If we calculate the event horizon for
EdS model, we find that the integral involved diverges; this means that we don’t have, in this model, an event
horizon: if we are patient enough we will receive information from any future event.

Let’s now estimate, for the same model, the value of the Hubble radius Ry, defined by eq. 77.

_ ¢ e 314wt 143w
R(t):H(t)_ 2 T2

dg(t) (158)

Although Ry and dy appear comparable in the EdS model, they are actually two very different things: Ry (t)
is an instantaneous quantity, depending on the instantaneous value of H, while dg(t) is an integral quantity
that depends on the entire past history of the Universe. For this reason, if an object has entered the particle
horizon it will always remain inside, while it may happen that an object is, for example, first inside, then out,
then back within the Hubble radius. If H = const (as in de Sitter model), Ry = const = ¢/H.
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4 Observational cosmology

4.1 Introduction

In the previous Section we have met many different theoretical cosmological models. Now it’s time to see which
of these models matches better the observational constraints. To do that we will need some useful tools and
quantities. Then we will use them into the “classical” tests which have been used to derive estimates of the
theoretical cosmological models.

4.2 agr(z)

As a first step we derive a quantity which is involved in almost every cosmological, observational test: ag r(z).
Let’s consider the radial motion of a photon travelling towar us (see eq. 71). We get

adr da da

= —edt = —¢ — = —e—— 159
V1 —kr? § “a ‘ol (159)
which can be rewritten (remember that a = ag/(1+ 2) — da = —ag/(1+ 2)?dz) as
ag dr c 14z ag
. =——. N - d 160
I+2z Vi—k2  H a [ (1+Z)2} : oo
and gives
ag dr c c
= dz = dz 161
ik YT G (161)
where we have defined the quantity E(z) = H(z)/Hy. Going back to eq.111 we have (2o = Qg + Qar + Q)
1/2
E(z) = {QR(1+Z)4+QM(1+2“)3+QA+(1—!ZO)(1+Z)2 . (162)

If we use now eqs.72, 73 and 76 we have

arcsinr (k= +1)

T dr’ c o dy
Fu(r) = / _ / Iy . k=0 \. (163)
o VI—kr? aoHo Jo E(2) arcsinhr (k= —1)

We use also eq.107:

kc? c c
?:Hgmo—l]—>7aOH0:v|90—1|—>1:4 (164)

agHo\/[20 — 1|
Finally, for k = 41,

¢ /Z ? —arcsinr—)r—sin( ¢ /Z dZ/>— ¢ sin(W/ZdZ/>
CL()HO 0 E(Z/) CLOHO 0 E(Z/) aOHO\/|QO_1| 0 0 E(Z/)

(165)

and:

c z
agr(z) = ————-sin 20 —1
or(2) o100 = 1] (\/I 0 \/O

For k = —1 we get a similar result, with sin — sinh:

c _ 2 d L
apr(z) = m - sinh <\/|.QO - 1|/O E(z’)> (k=-1). (167)

For k = 0 we have simply (notice , from eq. 73, that in this case agr(z) represents the comoving distance, i.e.
the proper distance today):

dz’
E(z’)) (k=+1). (166)

aor(z) = Hio OZ Ed(zl/) (k=0). (168)
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The functionE(z), eq. 162, can be approximated in different ways: for z < z.4, neglecting the contribution from
QR;

1/2
E(z) = {(1 +2)2(1+ 2p2) — 2 (2 + z)QA] ; (169)

when (2, is also negligible this gives

Ez)=0Q4+2)V/1+ 2nmz; (170)

finally, when ) = 1,i.e. 2y + 24 =1, 25 =0,

1/2
E(z) = {1 — 2+ Qu(1+ z)?’} : (171)

There are no general. analytical expressions for agr(z); in the case 24 = 0 the following expression can be
obtained (the so called Mattig formula):

_ 2¢ Quez+ Qv —2)[(Qmz + Y2 —1]

= 172
aor(z) HO Q%V[(]. + Z) ? ( )
which holds for both 2;; > 1 and 2, < 1.
For z > 1 (z — oo) Mattig formula gives
2c
()= o (2a=0), (173)
while, when 25, + 24 = 1, a useful approzimation is
2c
aor(z) = ];IOT% (.Q]V[ + QA = 1) (174)
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