Problem set 5

1) Three oligopolists operate in a market with inverse demand function given by $P(Q)=a-Q$ where $Q=q_{1}+q_{2}+q_{3}$ and q_{i} is the quantity produced by firm i. Each firm has constant marginal cost of production, c, and no fixed cost. The firms choose their quantities as follows: (1) firm 1 chooses $q_{1}>0$; (2) firms 2 observes q_{1} and then chooses q_{2}; (3) firms 3 observes q_{1} and q_{2} then chooses q_{3}. Find the subgame perfect outcome.
2) Consider the following normal form game where Player 1 chooses the row (either T or B), Player 2 chooses the column (either ror I), Player 3 chooses the table (either R or L)

Player 3

a) find all Nash equilibria in pure strategies
b) assume that player 1 moves first, then player 2 and finally player 3 ; every player, before to play, observes the choices of the predecessors.
a. Represent the game using the extensive form
b. Find all subgame perfect Nash equilibria
3) Three periods sequential bargaining. Two players, 1 and 2 , are bargaining over $\$ 1$ using the following bargaining procedure (alternating offers):
Period 1: Player 1 proposes to take a share s1 of the dollar, leaving 1 - s1 for player 2; Player 2 either accepts (game ends) or rejects (Play goes to period 2)
Period 2: Player 2 proposes a share s2 of the dollar for player 1, leaving 1 - s2 for player 2; Player 1 either accepts (game ends) or rejects (Play goes to period 3)
Period 3: Players receives 0.1 dollars.
Players do not discount future payoffs, i.e. factor $\delta=1$.
Find the backward induction outcome and describe the subgame perfect Nash equilibrium

