Problem set 8

- 1) Consider the following game:
 - a. 2 players, 1 and 2
 - b. $A_1 = \{T, B\}, A_2 = \{L, R\}$
 - c. $t_1 \in \{1, 2\} \ t_2 \in \{1, 2\}$
 - d. Utilities are:

		Player	2, $t_2 = 1$
		L	R
Player 1	Т	2, 2	0, 0
$t_1 = 1$	В	0, 0	1, 1
	1		
		Dlaver	2 $t_{a} = 1$

		Player	2, $t_2 = 1$
		L	R
Player 1	Т	1, 2	0, 0
$t_1 = 2$	В	0,0	3, 1

		Player	2, $t_2 = 2$
		L	R
Player 1	Т	2, 1	0, 0
t ₁ = 1	В	0,0	1, 2

		Player	2, $t_2 = 2$
		L	R
Player 1	Т	1, 2	0,0
$t_1 = 2$	В	0, 0	3, 2

Assuming that $t_1 = 1$ by probability $\frac{1}{4}$, $t_2 = 1$ by probability $\frac{3}{4}$; t_1 and t_2 are i.i.d.

Suppose that Player 1 plays a strategy (T, B) and Player 2 plays a strategy (R, L)

Note: (X, Y) means she plays X when t=1 and Y when t=2.

- a. Compute the probability to observe Player 1 plays B and Player 2 plays R
- b. Compute the probability to observe Player 1 plays B and Player 2 plays L
- c. Compute the Player 2's expected payoff in this strategy profile
- d. Repeat the computation in the previous points assuming that

-
$$t_1 = 1$$
 and $t_2 = 1$ by probability $\frac{4}{10}$

-
$$t_1 = 2$$
 and $t_2 = 2$ by probability $\frac{4}{10}$

- $t_1 = 2 \text{ and } t_2 = 1 \text{ by probability } \frac{1}{10}$ $t_1 = 1 \text{ and } t_2 = 2 \text{ by probability } \frac{1}{10}$

- 2) Find all Bayesian Nash equilibria of the previous game, Assuming that $t_1 = 1$ by probability $\frac{1}{4}$, $t_2 = 1$ by probability $\frac{3}{4}$; t_1 and t_2 are i.i.d.
- 3) Two firms, 1, 2 produce an homogeneous good. Firms have no fixed cost and produce at constant marginal cost of 1. By q1 and q2 we denote the quantities produced, respectively, by firm 1 and 2. The inverse demand function is P(Q) = 100 Q by probability $\frac{1}{3}$ and P(Q) = 50 Q by probability $\frac{2}{3}$ where Q = q1 + q2. Firms 1 and 2 simultaneously choose the quantities to produce. Firm 1 knows if the demand is high or low but firm 2does not. What is the Bayesian Nash equilibrium of the game? (read the example3.1.A in the textbook.)
- 4) Consider the following game.

Nature determines if payoffs are as in G1 or in G2 by equal probability

		Play	er 2	
	G1	L	С	R
yer 1	Т	2,0	1, 1	4, 2
	Μ	3,4	1, 2	2, 3
	В	1, 3	0, 2	3,0

Players 1 and 2 move simultaneously

Players 2 knows which game Nature has chosen, but Player 1 does not.

- a) Describe all possible strategies of players 1 and 2
- b) Find the Bayesian Nash equilibrium