Proportional hazard
model



PROPORTIONAL HAZARD MODEL

For each item, we observe (T;,di, Z;)
e T;is a censored failure time random variable
® J; is the censoring indicator
e 7; is a set of covariates

e observations are i.i.d., independent censoring
Cox model: \(t; Z;) = o(t)exp(8 Z))

e it is called semiparametric model because the shape of \o(t) is unspecified
— the shape of A(t) is not specified

® )\o(t) is the same baseline hazard for every individual and it does depend
only on time t

° exp(ﬂ/Z,-) depends on covariates and causes different hazards for different
individuals



Cox model:

PROPORTIONAL HAZARD MODEL

)\(t; Z,')

= Xo(t)exp(8'Z:)

o the hazard ratio does not depend on time:

HR — 22(8) _ lo(t)exp(8z2)
Noexp(5’

Ax(t)

z1)

= exp(f (2 — 21))

e the covariates have a multiplicative effect on A(t), they can induce only
proportional shifts i in the hazard function but cannot change its shape:

HR =

Hazard function
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PROPORTIONAL HAZARD MODEL

Group | Covariate value A(t)
1 0 Mo(t)
2 1 Ao(t)exp(B)
3 2 Ao(t)exp(28)

& =2

Logihazard)




GRAPHICAL CHECK
e Cumulative hazard: A(t; z) = /\o(t)exp(,B/z)
log[(t; 2)] = log[No(t)] + 5 2

log[A(t; z2)] — log[A(t; z1)] = ' (22 — 1)

e Survival function: S(t;z) = So(t)**® 2

log[—log (S(t; 2))] = log[—log(So(t)] + A z

/

log[—1log (S(t; z2))] — log[—log(S(t; 21))] = B (22 — z1)

log[A(t; z)] is calculated by Nelson-Aalen estimator
log[—1log(S(t; z))] is calculated by kaplan-Meier estimator



GRAPHICAL CHECK

Leukemia data

Kaplan-Meier estimates

logi-log((S(t)
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SEVERAL COVARIATES
71 =treatment; z =age(dichotomous)

)\(1.') = )\o(t)eXp(ﬁ121 + /3222)

Treatment Age A(t) log (A(t)) log(HR)
Untreated <56 Ao(t) log(Xo(t)) 0
Treated <56 Xo(t)exp(B1) log(Xo(t)) + B1 b1
Untreated > 56 /\o(t)eXp(ﬁz) /Og()\o(t)) + B2 B2

Treated > 56 Mo(t)exp(B1 + B2) log(ho(t)) +B1+ B2 B1+ B2

xizstcox treat age

Cox regression — Breslow method for ties

No.ofsubjects= 48 Number of obs = 48
No.offailures= 31
Timeatrisk = 744
Rchi2(2) = 33.18
Log likelihood = -83.323546 Prob>chi2 = 0.0000

_t| Coef. Std.Er. z P>|z| [95%Conf. Interval
+

treat | -2.254965 .4548338 -4.96 0.000 -3.146423 -1.363507

age | .1136186 .0372848 3.05 0.002 .0405416 .1866955




SEVERAL COVARIATES

By = —2.25, 3, = 0.11

Cox proportional hazards regression
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Smoothed hazard function
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Treatment and age have independent effect



INTERACTION

Bone marrow transplantation: we restrict the analysis to patients diagnosed at early or
late stages and who receive transplant from identical sibling or unmatched related

z; =stage; z» =donor

A(t) = Xo(t)exp(Brz1 + Paz2 + B3z2122)

Stage Donor A(t) log(A(t)) log(HR)
Early  Identical sib. Xo(t) log(Ma(t)) 0

Late Identical sib. Ao(t)exp(B1) log(Mo(t)) + B1 51
Early Unmatched rel. Xo(t)exp(B2) log(Xo(t)) + B2 B2

Late  Unmatched rel. Ao(t)exp(B1 + B2 + B3) log(Mo(t)) + B1+ B2 + B3 B1+ B2 + B3

xizstcox L.stage*i.donor,nohr

No. of subjects = 1241 Number of obs = 1241
No. of failures = 567
Time atrisk = 28082.48
R chi2(3) = 25209
Log likelihood = -3695.6474 Prob>chi2 = 0.0000
t | Coef. Std.Er. z P>|z] [95% Conf. Intervall

— +.
_Istage 3 1.492633 .1057702 14.11 0.000 1.285328 1.699939
_ldonor_2 | .8184858 .1181254 6.93 0.000 .5869642 1.050007
_lIstaxdon_~2 | -.4889019 .1939488 -2.52 0.012 -.8690346 -.1087692
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INTERACTION

By = 1.49, 8, = 0.82, 35 = —0.49
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PARTIAL LIKELIHOOD

L(B) =] [f(t: B)% S(ti: B)* %] H/\ ti; 8)% S(ti; B)

A(t:2) = ho(t)exp(5'z)

S(t;z) = exp[f )\o(u)exp(ﬁlz)du]

8) = TTDe(ew(d 21 e ~ [ o(ules(s'2)e]

The likelihood depends on Ao(t) (nuisance factor) which has not been specified
in the semi-parametric formulation

Partial Likelihood for a Semi-Parametric Model



PARTIAL LIKELIHOOD

t1 < t2 < ... <ty failure times
R(t;) risk set at time ;-
z; covariates of subject failed at t;

Aj(t)dt probability that the subject fails at t;, conditional on being survived
until ¢

The probability that it is just the individual with covariate vector z; to have an
event at time tj, given the risk set containing all individuals who could have an
event

A(tj; zj)dt Ao(t))exp(z;3)dt _ exp(z;3)
ZIGR(tl-) At Zl)dt ZIGR Xo(tj)exp(ziB)dt ZIGR(tl-) exp(z/3)

: exp(z;3)
“H(s,, ee@d)

j=1




PARTIAL LIKELIHOOD

It is called partial likelihood since it is not calculated as usual, but it is
proportional to conditional probability to have observed an event

It depends only on 3

Time-dependent covariates can be accounted for, by updating their values
at any subsequent point in time

Partial likelihood can be treated as if it were a standard likelihood:
estimates of coefficients, confidence intervals, Wald test, LR test, etc

B = maxg(L(B)): estimates of 3 are consistent and asymptotically normal
difficulties arise if there are ties times. Several simplifying approximations
have been proposed: Breslow method, Efrom method, exact marginal
likelihood, exact partial likelihood, ect



MAXIMIZATION OF PL
J
exp(z;3)
L(B) = _ eP\EP)
(B) E (ZIER(t,-) exp(z,ﬂ))
. calculate the logarithm: log(L(83)) = Zle z;0 — /og[ZieR(tj) exp(z;3)]

. calculate the derivatives with respect to 3:

2ier(e;) 2k1exP(28)
dlog(L J ER(t])
Ui(B) = 48 — 57 [z8, - SR T

Zier;) Pz1P)
zyj: value of the covariate z; on the subject who fails at ¢;

Zicr(e;) 2l P(Z15)

ZIER“I_) p(zB) " weighted average of the covariate z, on the set at risk at ¢;

3. U(B)=0— B =(B1,Ba...,5x)



MAXIMIZATION OF PL

e Estimation of variance-covariance matrix of B
e Hypothesis testing: Ho : Bx = 0 or Ho : 8 = 0 with 3 included in 3

1. Likelihood ratio test
2. Wald test

3. Score test (equivalent to Log-rank test with one variable and no ties
in the Cox model)



STATA OUTPUT

xi:stcox treat age

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time atrisk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t | Haz. Ratio Std.Err. z P>|z| [95% Conf. Interval]

+
treat | .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age | 1.120325 .0417711 3.05 0.002 1.041375 1.20526

xi:stcox treat

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time atrisk = 744
LR chi2(1) = 23.82
Log likelihood = -88.00019 Prob > chi2 = 0.0000

_t | Haz. Ratio Std.Er. z P>|z|] [95% Conf. Interval]
+
treat | .1327581 .0584002 -4.59 0.000 .0560555 .3144157




STATA OUTPUT

.Irtestab
Likelihood-ratio test LR chi2(1) = 9.35
(Assumption: a nested in b) Prob>chi2= 0.0022

. di 2%(-83.323546--88.00019)
9.353288

Prob>chi2= 0.0022

. scoretest_cox treat

(1) treat=0

chi2( 1)= 33.04
Prob>chi2= 0.0000



BRESLOW ESTIMATOR

The Breslow estimator is based on extending the concept of the Nelson-Aalen
estimator to the proportional hazards model:

. ~ d:
Nelson-AAlen estimator: A(t) = Zj:tjgt i
where d;j and n; are the number of failures and the number at risk, respectively,

at the jth failure time

When there are covariates and assuming the PH model, the Nelson-AAlen
estimator can be generalized to estimate the cumulative baseline hazard by
adjusting the denominator

d;

Po(t) = Xiiy<e S, enmd

> IcR: exp(z,B): weighted contribution which mimics the scenario where all
J
subjects have z; =0

If 3 =0, Breslow estimator is the Nelson-AAlen estimator



BRESLOW ESTIMATOR

A(t; 2) = No(t)exp(23)
So(t) = exp(—No(t))
3(t: 2) = So(£) PP

By using Breslow estimator we estimate Ko(t), go(t) and by maximization of
the partial likelihood we estimate (3



STATA OUTPUT

Leukemia data:
xi:stcox treat; predict cumhaz,basechazard

Breslow estimator

Baseline cumulative hazard
4
L

0 10 2{0 30

Untreated

Treated

40




STRATIFIED COX MODEL
Suppose the proportionality assumption is not satisfied for the categorical

covariate zx: the sample is split into strata (g strata corresponding to
categories of z)

Ai(t; z) = Aoj(t)exp(z™ ) i=1....q9

z~ set of covariated excluding z

e (3 and z~ are equal for each j-th strata
° )\01, )\027 ey )\Oq depend on _j

e The PH assumption holds within each stratum
q
L(8) = [T Li(8)
j=1
L;(B) is the marginal likelihood of 3 for the jth strata

After estimating 3, by the partial likelihood function, we can apply all methods
described for the proportional hazard model



STRATIFIED COX MODEL
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STRATIFIED COX MODEL

We can use the stratified model to verify the proportional hazards assumption:

Let (27, zx) be the covariates vector

Stratified PH model: \;(t;z) = )\oj(t)eXp(ﬁIZ_)

o If z is binary, Ao1(t) for subjects with zx =1 and Ao2(t) for subjects with
Z) = 0

e The covariates z~ are assumed to verify the PH assumption
If z is binary, we can estimate So(t; zx = 1) and So(t; zc = 0)

2, satisfied the proportional hazard assumption if and only if

log (—log (So(t; zx = 1))) = log(—log(So(t; z& = 0))) + 6



STRATIFIED COX MODEL

Bone marrow transplantation:
xi:stcox sex i.stage i.donor,strata(karnofsky) basesurv(S0)

log-log({S0(Hy)

0 20 40 60 80

karnofsky index=90

karnofsky index=90

100



RESIDUALS

Residuals can be used to examine different aspects of model adequacy:
o The validity of proportional hazard assumption

e The functional form in which experimental variable influences the
outcome, given that other covariates are already accounted for in the
model

e The presence of single influential observations

e The presence of outliers



SCHOENFELD RESIDUALS

Schoenfeld residuals are defined as the difference between covariate z; of the
subject failed at time t; and the mean of covariates of subjects at risk at time

tj with weights equals to exp(3 z)

ek, 216xP(B 2) ~
- = =7 E(lR)
ZIeRj exp(f'2)

=z

® z; is the covariate vector for the subject failing at ¢;

ZIERJ- ZIEXP(EIZ)

e —1 s the vector of weighted averages of z on the set at risk
Sicr, o# (8 2) g g
at t;

o If a covariate z satisfies the PH assumption one expects E(r;) = 0 for
each t;

e The proportionality assumption is violated if the plot of residuals shows a
pattern

e Scaled Schoenfeld residuals: rj/ =B+ r;/o2, where o2 is the variance of rj

’

e If the proportionality assumption is correct — E(r;) = B for each t;



SCHOENFELD RESIDUALS

Bone marrow transplantation

Istage 3
i

scaled Sehoenfeld

sealed Schoenfela- sex
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SCHOENFELD RESIDUALS

Bone marrow transplantation

. stphtest,d

Test of proportional-hazards assumption

Time: Time
| rho chiz  df  Prob>chi2
n
sex |  -0.04031 1.41 1 0.2344
karnofsky |  0.02860 0.71 1 0.4006
Istage 2 | -004287 165 1  0.1992
Istage 3 | -000353 001 1 0.9152
_Ildonor 2 | -0.04018 143 1 02319
_ldonor_3 -0.05037 2.26 1 0.1325
+
global test | 7.85 6 0.2493




TIME-DEPENDENT COVARIATES

In the PH model, z is a time-dependent variable if:
A(t) = Xo(t)exp(frzr + P2z + ... + Brzi(t) +...)
HR(t; zk1(t), zk2(t)) = exp(Bi(zka () — zka(t))
e The hazard ratio depends on the time by z(t) and not Ao(t) and by Sk«

e |t is not a proportional hazard model



TIME-DEPENDENT VARIABLES

Time dependent covariates can be:

o defined time-dependent covariates, whose total time path is determined in
advance in the same way for all subjects in the study (age: xo + t = x:)

e ancillary time-dependent covariates, whose time path is the output of a
stochastic process that is external to the units under study
(unemployment rates, pollution, weather)

in studying asthma attacks: x(t)=pollution level

shift of treatment group due to random event: screening for a compatible
sibling donor for bone marrow transplant, change of transplanted status
whenever a donor is available



TIME-DEPENDENT VARIABLES

o internal time-dependent covariates, whose time path depends on subject
under study (response to treatment, disease progression, so on)

1. if time-dependent covariates are qualitative, they change their values
at discrete points in time. At all points in time, when at least one
covariate change its value, the original episode is split into pieces

2. if time-dependent covariates is quantitative, the time is divided
arbitrarily into small time periods and the covariate is measured at
the beginning of each of these time intervals — approximation of
changes of the quantitative variable



EXAMPLE

Attention to model internal time-dependent covariates

Acute HIV syndrome.
Wide dissemination of virus Death
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The treatment influences survival by regulating viral load and cd4 level —
including biomarkers as time-dependent variable in the model may introduce
bias in the treatment effect estimate

Viral load at t0 Viral load at t1 Viral load at t2

NS ~ 7

Treatmentatt0 ————> Treatmentattl —————> Y



EXAMPLE

HIV data:
\ HR 95% Cl
Basic model
Treatment 0.54 0.32,0.92
Baseline Log(rna) | 1.23 1.11,1.37
Model with time-dependent covariate
Treatment 0.70 0.41,1.20
Baseline Log(rna) | 1.34 1.22,1.48

The treatment influences survival by regulating viral load level — including
viral load in the model masks the treatment effect via viral load



