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Proportional hazard model

For each item, we observe (Ti , δi ,Zi )

• Ti is a censored failure time random variable

• δi is the censoring indicator

• Zi is a set of covariates

• observations are i.i.d., independent censoring

Cox model: λ(t;Zi ) = λ0(t)exp(β
′
Zi )

• it is called semiparametric model because the shape of λ0(t) is unspeci�ed
→ the shape of λ(t) is not speci�ed

• λ0(t) is the same baseline hazard for every individual and it does depend
only on time t

• exp(β
′
Zi ) depends on covariates and causes di�erent hazards for di�erent

individuals



Proportional hazard model

Cox model: λ(t;Zi ) = λ0(t)exp(β
′
Zi )

• the hazard ratio does not depend on time:

HR = λ2(t)
λ1(t)

= λ0(t)exp(β
′
z2)

λ0exp(β
′
z1)

= exp(β
′
(z2 − z1))

• the covariates have a multiplicative e�ect on λ(t), they can induce only
proportional shifts in the hazard function but cannot change its shape:
HR = λ(t)

λ0(t)
= exp(β

′
z)



Proportional hazard model

Group Covariate value λ(t)

1 0 λ0(t)
2 1 λ0(t)exp(β)
3 2 λ0(t)exp(2β)



Graphical check

• Cumulative hazard: Λ(t; z) = Λ0(t)exp(β
′
z)

log [Λ(t; z)] = log [Λ0(t)] + β
′
z

log [Λ(t; z2)]− log [Λ(t; z1)] = β
′
(z2 − z1)

• Survival function: S(t; z) = S0(t)exp(β
′
z)

log [−log(S(t; z))] = log [−log(S0(t)] + β
′
z

log [−log(S(t; z2))]− log [−log(S(t; z1))] = β
′
(z2 − z1)

log [Λ(t; z)] is calculated by Nelson-Aalen estimator

log [−log(S(t; z))] is calculated by kaplan-Meier estimator



Graphical check

Leukemia data



Several covariates

z1 =treatment; z2 =age(dichotomous)

λ(t) = λ0(t)exp(β1z1 + β2z2)

Treatment Age λ(t) log(λ(t)) log(HR)

Untreated <56 λ0(t) log(λ0(t)) 0
Treated <56 λ0(t)exp(β1) log(λ0(t)) + β1 β1
Untreated ≥ 56 λ0(t)exp(β2) log(λ0(t)) + β2 β2
Treated ≥ 56 λ0(t)exp(β1 + β2) log(λ0(t)) + β1 + β2 β1 + β2



Several covariates

β1 = −2.25, β2 = 0.11

Treatment and age have independent e�ect



Interaction

Bone marrow transplantation: we restrict the analysis to patients diagnosed at early or
late stages and who receive transplant from identical sibling or unmatched related

z1 =stage; z2 =donor

λ(t) = λ0(t)exp(β1z1 + β2z2 + β3z1z2)

Stage Donor λ(t) log(λ(t)) log(HR)

Early Identical sib. λ0(t) log(λ0(t)) 0
Late Identical sib. λ0(t)exp(β1) log(λ0(t)) + β1 β1
Early Unmatched rel. λ0(t)exp(β2) log(λ0(t)) + β2 β2
Late Unmatched rel. λ0(t)exp(β1 + β2 + β3) log(λ0(t)) + β1 + β2 + β3 β1 + β2 + β3



Interaction

β1 = 1.49, β2 = 0.82, β3 = −0.49



Partial likelihood

L(β) =
∏
i

[
f (ti ;β)δi S(ti ;β)1−δi

]
=
∏
i

λ(ti ;β)δi S(ti ;β)

λ(t; z) = h0(t)exp(β
′
z)

S(t; z) = exp
[
−
∫ t

0

λ0(u)exp(β
′
z)du

]
L(β) =

∏
i

[λ0(t)exp(β
′
z)]δi exp

[
−
∫ t

0

λ0(u)exp(β
′
z)du

]
The likelihood depends on λ0(t) (nuisance factor) which has not been speci�ed
in the semi-parametric formulation

Partial Likelihood for a Semi-Parametric Model



Partial likelihood

t1 < t2 < . . . < tJ failure times
R(tj ) risk set at time t−j
zj covariates of subject failed at tj

λj (t)dt probability that the subject fails at tj , conditional on being survived
until tj

The probability that it is just the individual with covariate vector zj to have an
event at time tj , given the risk set containing all individuals who could have an
event

λ(tj ; z j )dt∑
l∈R(tj )

λ(tj ; z l )dt
=

λ0(tj )exp(z jβ)dt∑
l∈R(tj )

λ0(tj )exp(z lβ)dt
=

exp(z jβ)∑
l∈R(tj )

exp(z lβ)

L(β) =
J∏

j=1

( exp(z jβ)∑
l∈R(tj )

exp(z lβ)

)



Partial likelihood

• It is called partial likelihood since it is not calculated as usual, but it is
proportional to conditional probability to have observed an event

• It depends only on β

• Time-dependent covariates can be accounted for, by updating their values
at any subsequent point in time

• Partial likelihood can be treated as if it were a standard likelihood:
estimates of coe�cients, con�dence intervals, Wald test, LR test, etc

• β̂ = maxβ(L(β)): estimates of β are consistent and asymptotically normal

• di�culties arise if there are ties times. Several simplifying approximations
have been proposed: Breslow method, Efrom method, exact marginal
likelihood, exact partial likelihood, ect



Maximization of PL

L(β) =
J∏

j=1

( exp(z jβ)∑
l∈R(tj )

exp(z lβ)

)

1. calculate the logarithm: log(L(β)) =
∑J

j=1 z jβ − log [
∑

i∈R(tj )
exp(z jβ)]

2. calculate the derivatives with respect to β:

Uk(β) = dlog(L(β)
dβk

=
∑J

j=1

[
zkjβk −

∑
l∈R(tj )

zkl exp(z lβ)∑
l∈R(tj )

exp(z lβ)

]
zkj : value of the covariate zk on the subject who fails at tj

∑
l∈R(tj )

zkl exp(z lβ)∑
l∈R(tj )

exp(z lβ)
: weighted average of the covariate zk on the set at risk at tj

3. Uk(β) = 0→ β̂ = (β̂1, β̂2, . . . , β̂k)



Maximization of PL

• Estimation of variance-covariance matrix of β̂

• Hypothesis testing: H0 : βk = 0 or H0 : β∗ = 0 with β∗ included in β

1. Likelihood ratio test

2. Wald test

3. Score test (equivalent to Log-rank test with one variable and no ties
in the Cox model)



Stata output



Stata output



Breslow estimator

The Breslow estimator is based on extending the concept of the Nelson-Aalen
estimator to the proportional hazards model:

Nelson-AAlen estimator: Λ̂(t) =
∑

j :tj≤t

dj
nj

where dj and nj are the number of failures and the number at risk, respectively,
at the jth failure time

When there are covariates and assuming the PH model, the Nelson-AAlen
estimator can be generalized to estimate the cumulative baseline hazard by
adjusting the denominator

Λ̂0(t) =
∑

j :tj≤t

dj∑
l∈Rj

exp(zlβ)

∑
l∈Rj

exp(zl β̂): weighted contribution which mimics the scenario where all

subjects have z l = 0

If β = 0, Breslow estimator is the Nelson-AAlen estimator



Breslow estimator

Λ̂(t; z) = Λ̂0(t)exp(zβ̂)

Ŝ0(t) = exp(−Λ̂0(t))

Ŝ(t; z) = Ŝ0(t)exp(zβ̂)

By using Breslow estimator we estimate Λ̂0(t), Ŝ0(t) and by maximization of

the partial likelihood we estimate β̂



Stata output

Leukemia data:
xi:stcox treat; predict cumhaz,basechazard



Stratified Cox model

Suppose the proportionality assumption is not satis�ed for the categorical
covariate zk : the sample is split into strata (q strata corresponding to
categories of zk)

λj (t; z) = λ0j (t)exp(z−β) j = 1, . . . , q

z− set of covariated excluding zk

• β and z− are equal for each j-th strata

• λ01, λ02, . . . , λ0q depend on j

• The PH assumption holds within each stratum

L(β) =

q∏
j=1

Lj (β)

Lj (β) is the marginal likelihood of β for the jth strata

After estimating β, by the partial likelihood function, we can apply all methods

described for the proportional hazard model



Stratified Cox model



Stratified Cox model

We can use the strati�ed model to verify the proportional hazards assumption:

Let (z−, zk) be the covariates vector

Strati�ed PH model: λj (t; z) = λ0j (t)exp(β
′
z
−)

• If zk is binary, λ01(t) for subjects with zk = 1 and λ02(t) for subjects with
zk = 0

• The covariates z
− are assumed to verify the PH assumption

If zk is binary, we can estimate Ŝ0(t; zk = 1) and Ŝ0(t; zk = 0)

zk satis�ed the proportional hazard assumption if and only if

log(−log(Ŝ0(t; zk = 1))) = log(−log(Ŝ0(t; zk = 0))) + θ



Stratified Cox model

Bone marrow transplantation:
xi:stcox sex i.stage i.donor,strata(karnofsky) basesurv(S0)



Residuals

Residuals can be used to examine di�erent aspects of model adequacy:

• The validity of proportional hazard assumption

• The functional form in which experimental variable in�uences the
outcome, given that other covariates are already accounted for in the
model

• The presence of single in�uential observations

• The presence of outliers



Schoenfeld residuals
Schoenfeld residuals are de�ned as the di�erence between covariate zj of the
subject failed at time tj and the mean of covariates of subjects at risk at time

tj with weights equals to exp(β̂
′
z)

rj = zj −

∑
l∈Rj

zlexp(β̂
′
z)∑

l∈Rj
exp(β̂′z)

= zj − Ê(zl |Rj )

• zj is the covariate vector for the subject failing at tj

•
∑

l∈Rj
zl exp(β̂

′
z)∑

l∈Rj
exp(β̂

′
z)

is the vector of weighted averages of z on the set at risk

at tj

• If a covariate zk satis�es the PH assumption one expects E(rj ) = 0 for
each tj

• The proportionality assumption is violated if the plot of residuals shows a
pattern

• Scaled Schoenfeld residuals: r
′
j = β̂ + rj/σ

2

r , where σ
2

r is the variance of rj

• If the proportionality assumption is correct → E(r
′
j ) = β̂ for each tj



Schoenfeld residuals

Bone marrow transplantation



Schoenfeld residuals

Bone marrow transplantation



Time-dependent covariates

In the PH model, zk is a time-dependent variable if:

λ(t) = λ0(t)exp(β1z1 + β2z2 + . . .+ βkzk(t) + . . .)

HR(t; zk1(t), zk2(t)) = exp(βk(zk1(t)− zk2(t))

• The hazard ratio depends on the time by zk(t) and not λ0(t) and by βk

• It is not a proportional hazard model



Time-dependent variables

Time dependent covariates can be:

• de�ned time-dependent covariates, whose total time path is determined in
advance in the same way for all subjects in the study (age: x0 + t = xt)

• ancillary time-dependent covariates, whose time path is the output of a
stochastic process that is external to the units under study
(unemployment rates, pollution, weather)

in studying asthma attacks: x(t)=pollution level
shift of treatment group due to random event: screening for a compatible
sibling donor for bone marrow transplant, change of transplanted status
whenever a donor is available



Time-dependent variables

• internal time-dependent covariates, whose time path depends on subject
under study (response to treatment, disease progression, so on)

1. if time-dependent covariates are qualitative, they change their values
at discrete points in time. At all points in time, when at least one
covariate change its value, the original episode is split into pieces

2. if time-dependent covariates is quantitative, the time is divided
arbitrarily into small time periods and the covariate is measured at
the beginning of each of these time intervals → approximation of
changes of the quantitative variable



Example

Attention to model internal time-dependent covariates

The treatment in�uences survival by regulating viral load and cd4 level →
including biomarkers as time-dependent variable in the model may introduce
bias in the treatment e�ect estimate



Example

HIV data:

HR 95% CI

Basic model
Treatment 0.54 0.32,0.92
Baseline Log(rna) 1.23 1.11,1.37

Model with time-dependent covariate
Treatment 0.70 0.41,1.20
Baseline Log(rna) 1.34 1.22,1.48

The treatment in�uences survival by regulating viral load level → including

viral load in the model masks the treatment e�ect via viral load


