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The HOT BIG BANG 

The Hot Big Bang model, i.e. the standard (cosmological) model, and its time evolution 

rests on 3 pillars: 

1. the expansion of the Universe 

2. the microwave background radiation showing a Black Body spectrum at 2.73 K 

(CMB), which reveals the existence of a phase in the  life of the universe during 

which the there was thermodynamic equilibrium 

3. The prediction of the abundances of the light elements (D, 
3
He, 

4
He, 

7
Li), in particular 

helium; this cosmological nucleosynthesis requires also that there was an era in 

which T  10
9
K 

To these facts it may be added that the predicted age for the universe is comparable 

to the age estimated directly for some types of cosmic objects (globular clusters, ), 

and that it is possible to give a reasonable theoretical explanation for the formation 

of cosmic  structures through their gravitational collapse, starting  from the 

perturbations in the microwave background (CMB). 

We also mention the problems of flatness and horizon (+ the monopoles problem, 

see below) which we have already mentioned, and whose solution is not found in the 

standard model of cosmic evolution, but which are solved  through the mechanism of 

inflation. 

The Standard Model of Particle Physics and beyond 

We describe here some aspects of Particle Physics which are connected to cosmology 

and to particular epochs in the evolution of the Universe.  

In the Standard Model (SM) of particle physiscs, described by Quantum Field Theory 

(QFT), only three interactions are considered: electromagnetism, weak and strong 

interactions. Gravitation is much weaker and is not considered, at least at the energy 

scales involved in present experimental projects. But, as we imagine to go back in 

time, the temperature and the energy of particles increases and new aspects have to be 

taken into account. As we shall see, cosmology can set useful constraints to Particle 

Physics, beyond the SM. 

In QFT it is useful to use dimensionless quantities to estimate the strength of these 

interactions, the dimensionless couplings, like the fine structure constant  
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for electromagnetism. For weak interactions one can use the Fermi weak coupling 

constant GF [GF /( c)
3
=1.166×10

-5
 GeV

-2
] and the dimensionless coupling for a 

typical hadronic mass, the proton mass mp, is given by  

 

The weakness of weak interactions is due to the improbability of the emission of the 

very massive bosons W
+
, W

-
, Z

0
. The dimensionless coupling, according to 

Weinberg-Salam theory, is linked to GF by the relation 

  

     
 

 

  

  

  
   

 

where MW ~ 80 GeV/c
2
. For strong interactions (Quantum Chromo Dynamics, QCD) a 

dimensionless coupling αS can be defined.  

In QFT these couplings are not constant, but are “running”, i.e. change their values  

with the energy scale, linked to a distance scale r~ħc/E~ ħ/mc (E=mc
2
). For instance, 

in QCD,  
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and RC~10
-13

 cm (1 fm), the size of hadrons.  

The interesting point, as shown in the following figure, is that the couplings tend to 

converge to one single value at energies on the order of 10
15

 GeV, or higher. From 

this comes the idea that at high energy there is only one interaction, whose symmetry 

is broken at lower energies, as the electroweak interaction splits into weak interaction 

and electromagnetism at energies below ~ 100 GeV. One speaks of Grand Unified 

Theories (GUTs). 
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In GUTs there are new gauge bosons X which link quarks and leptons and mediate 

interactions that violate Baryon number B and Lepton number L. These new 

interactions must be wery weak since they have eluded detection so far, which means 

that the X  bosons must be very massive (MX c
2 

~ EGUT  ~ 10
15

-10
16

 GeV). Even if B 

and  L conservation are violated, in some GUTs B-L is conserved. 

The B-violating interactions would make the proton unstable. Since no proton decay 

has been observed so far, there are lower limits on proton lifetime τP>10
31

-10
32 

years. 

 

The Planck era 

What about gravity? A natural chice for a dimensionless, gravitational coupling is 

given by  

392 106/  cGmpG   

which is extremely small. But m=E/c
2
 and  
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So at energies of the order or above EPl gravitation becomes strong, and cannot be 

neglected in comparison to the other interactions. We need to link QFT and GR, but 

such a theory is not available at the moment (String theory could be such a theory). 

This means that all our extrapolations of the known and experimentally tested 

Physics have to stop at the Planck scale. 

At EPl the age of the Universe was t ~ tPl, the particle horizon was ~ lPl, the density 

was  

393

2

5

2
105~~

1
~  cmg

G

c

GtPl

Pl


  

and the mass within the horizon was MH ~ Pl lPl
3 
~ MPl. 

Moreover, EPl , lPl  and tPl  are the only possible results if one combines ħ (Quantum 

Mechanics), c (Special Relativity) and G (Gravitation) to obtain an energy-mass, a 

length and a time, and they are the most natural choice. 

 

SUPERSYMMETRY (SUSY) 

Supersymmetry (SUSY) is a generalizetion of the space-time symmetries of quantum  

field theory that transforms fermions into bosons and vice versa.  In particular, it is  

possible that supersymmetry will ultimately explain the origin of  the large hierarchy  

of energy scales from the W and Z masses to the GUTs and Planck scales.  

If  supersymmetry  were  an  exact  symmetry  of  nature,  then  particles  and  their  

superpartners (which differ in spin by half a unit) would be degenerate in mass. Since  

superpartners  have  not  (yet)  been  observed,  supersymmetry  must  be  a  broken  

symmetry. Nevertheless, the stability of the gauge hierarchy can still be maintained if  

the supersymmetry breaking is soft, and the corresponding supersymmetry-breaking  

mass parameters are no larger than a few TeV.   

In  the  Minimal  Supersymmetric  extension  of  the  Standard  Model  (MSSM)  B-L  

 is conserved.  As  a  consequence  of  B−L  invariance,  the  MSSM  possesses  a  

multiplicative R-parity invariance, where  R = ( − 1) 
3(B − L)+2S 

 for a particle of spin S.  

Note  that  this  implies  that  all  the  ordinary  Standard  Model  particles  have  even  

 R parity, whereas the corresponding supersymmetric partners have odd R parity
1
. 

 

The conservation of R parity in scattering and decay processes has a crucial impact  

                                                 
1
 In the SM: for leptons L=1, B=0, S=1/2; for quarks L=0, B=1/3, S=1/2; for bosons B=L=0 and S is an integer. So R 

turns out to be always +1. For the superpartners B and L are the same, but S=0 for fermionic partners and S=1 for 

bosonic partners, so R is always -1. 
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on  supersymmetric  phenomenology.  For  example,  starting  from  an  initial  state  

involving ordinary (R-even) particles, it follows that supersymmetric particles must  

be produced in pairs. In general, these particles are highly unstable and decay into  

lighter  states.  However,  R-parity  invariance  also  implies  that  the  lightest   

supersymmetric  particle  (LSP)  is  absolutely  stable,  and  must  eventually  be  

produced  at  the  end  of  a  decay  chain  initiated  by  the  decay  of  a  heavy   

unstable supersymmetric particle. In order to be consistent with cosmological  

constraints, a stable LSP is almost certainly electrically and color neutral.  

Consequently, the LSP in an  R-parity-conserving  theory  is  weakly  interacting   

with  ordinary  matter,  i.e.,  it behaves like a stable heavy neutrino and will escape  

collider detectors without being directly observed. So  the LSP is a promising  

candidate for dark matter. 
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Axions 

In QCD the vacuum is a superposition of degenerate states. This introduces a new 

arbitrary parameter Θ in the theory which leads to an additional term in the QCD 

Lagrangian. However, the existence of this term violates CP, T and P and leads to a 

neutron electric dipole moment of dn/e~510
-16

 Θ cm. Observations give an upper 

limit dn/e~10
-25

 cm, so Θ ≤ 10
-10

. Why is Θ so small? This is the strong CP problem 

of QCD.  

In 1977 Peccei and Quinn showed that Θ could be driven to zero by introducing in 

the Lagrangian a new symmetry which is spontaneously broken at an energy scale 

fPQ. This induces the existence of a new boson, the axion, which is not massless, but 

has a mass of the order 

   
         

       

        
   

In their original paper  Peccei and Quinn assumed that  fPQ was on the order of the 

vacuum expectation value v of the Electroweak phase transition (v ~ 250 GeV). In 

this case mA would be ~ 100 keV, excluded by experiments. But the value of fPQ can 

be anywhere between 250 GeV and 10
19

 GeV, and mA  spans a huge range of values. 

Limits on mA  are given also by stellar evolution. Detection techniques to find out 

evidence of the existence of axions are based on the conversion of axions into 

microwave photons in the presence of a very strong magnetic field. The contribution 

of axions to the dark matter is given, if they exist, by 

   
       

        

       
 

   

 

which means that, in order to represent a major contribution to dark matter, the mass 

of the axions must be          . 

 

Thermodynamics of the Early Universe 

Going back in time temperature T and density  grow and it is expected that the 

particles reach the thermodynamic equilibrium through rapid interactions. The rate of 

interaction       (n = number density, σ = cross section, v = particle velocity)  

grows more rapidly, with the temperature, than the rate of expansion H, so  » H at 

high T. This means that, with regard to the interactions, the expansion is quasi-static 

and there is enough time for the universe to continuously restore thermodynamic 

equilibrium. 

This allows a very simple treatment of the distribution functions of the particles. In 

thermodynamic equilibrium, the number density n of particles of a given species, 

with momentum between P and P + dP is 
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where E
2
=P

2
c

2
+m

2
c

4
,  is the chemical potential, and g is the spin-degeneracy factor 

, which counts the number of degrees of freedom, taking into account the spins and 

colors of particles (for spin states g=1 if m=0,s=0; g=2 if m=0, s0; g=2s+1 if m0; 

g=2, ge=2, but g =1 since neutrinos are only left handed; for each quark flavour 

g=6, a factor 2 for the spin and a factor 3 for the colors) The + or - sign corresponds 

to fermions (f) and bosons (b).   

For photons  is naturally zero since they have a planckian distribution with 

temperature T(t); if a species A is in thermal equilibrium with photons (A » H), 

TA=T and the same holds for all species in equilibrium. So we use the photon 

temperature as reference: T  TUniverse=T. 

In thermodynamic equilibrium the number density ni and the energy density ρic
2
 of 

“i” particles are given by 

    
  

  
   

 

 

  

     
 

  

 
   
    

 

 

   

 

   
    

  

  
   

 

 

  

     
 

   

 
   
    

 

 

   

For the pressure p, from   
 

 
        , and 

                                            

 

    
 

 
        

  

  
   

 

 

  

     
 

 

 

    

 

  

 
   
    

 

 

   

   
   

 

     
 

 

 

  

 
   
    

 

 

   

In the Early Universe, for various reasons, the chemical potentials are negligible 

(fermions are non-degenerate, bosons do not form a Bose condensate). The main 

argument comes from the fact that the net chemical potential in the early universe can 

be set to zero, because the asymmetry between particles and antiparticles is very 

small. From chemical thermodynamics, for a reaction 1 + 2 ↔ 3 + 4, the relation 

among chemical potentials is            . From a reaction like ( +  ↔    ), 
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since  =0, then         . So, for number densities,          and this gives a 

nonzero value for the quantum numbers (electric charge, baryon number, color 

charge, …) associated to particle A. But electric charge, color charge, …, of the 

Universe seem to be consistent with zero; moreover, the number density of baryons is 

much smaller than that of photons:                 . So, in the Early Universe, 

it is usually assumed that        and chemical potentials are set to zero. 

The above relations for number density, energy density, and pressure are general. It is 

easy to evaluate these integrals in two extreme cases: ultrarelativistic, non-

degenerate particles and non-relativistic particles. 

 Ultrarelativistic case: kT » mic
2
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(x): Riemann Zeta function  
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Remember that (4)= 
4
/90 and so, using Stefan-Boltzmann constant, 
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which can be approximated by         .  

For the pressure p it is easy to realize that, if E~Pc,  

pi=1/3 i c
2
. 

 Non relativistic case: kT<<mic
2 
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Note the strong exponential cut, since kT << mic
2
. This cut is due to 

annihilation of particles with their antiparticles. When particles are 

ultrarelativistic (kT » mic
2
), annihilation is balanced by pair production, but for 

kT<<mic
2
 pair production is ineffective and annihilation prevails. 

In a similar way we get  
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The contribution to the total energy density c
2
 (as well as the total pressure p) of the 

non-relativistic species is negligible (due to the exponential cut), so c
2
 can be well 

approximated only by the contribution of relativistic species 
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  

where g*(T) represents the total, effective number of degrees of freedom of 

relativistic) particles.  

For kT<<1 MeV the only relativistic species are photons and the three neutrinos (if  

m is negligible); since (see the proof below) T=(4/11)
1/3

T , 

g*=2+7/823(4/11)
4/3

=3.36 (2=    , 3=N). For 1 MeV kT 100 MeV we add e
+
 

and e
-
 and T=T , g*=43/4=10.75. Above 300 GeV all particles included in the 

Standard Model are relativistic, and g*=474/4=106.75. At energies higher than  EEW  

~ MWc
2 

~ 100 GeV (Electroweak breacking) g* depends on the adopted theory (for 

instance, in the minimal model of GUT, SU(5), for kT > EGUT ~10
16

GeV , g* ~ 160). 

In supersymmetric models, at each particle corresponds a supersymmetric partner, 

and  g* approximately doubles. If some sparticles have mass smaller than the Higgs 

boson, then there may be some changes in the following graph representing the 

behaviour  of g* as a function of temperature for the Standard Model of particle 

physics. 
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Time scale: In the Radiation Dominated (RD) era the Universe is well approximated 

by an EdS model,  so =3/(32 G t
2
), E ~ 3kT,  =R and 
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Thermodynamic equilibrium (TE): The Universe turns out to be in TE for 

1 MeV  kT  10
-3

 MPl c
2
 ~10

16
GeV (~EGUT) 

The upper limit is set by interactions mediated, at very high energy, by  

ultrarelativistic gauge bosons. The lower limit corresponds to interactions mediated 

by a massive gauge boson, like W
+
, W

-
 and Z

0
 below the scale of electroweak 

symmetry breaking (~ 100 GeV). At a mean particle energy of  ~ 1 MeV  these 

interactions are no more effective, are “frozen out”.  

Neutrinos do not interact any more with matter and radiation: they decouple when 

the mean energy per particle is about 1 MeV.  

Moreover, the mean free path of the particles is much greater than their average 

mutual distance  perfect gas. 

 

Entropy 

In thermodynamic equilibrium, the entropy S in a comoving volume element is 

preserved during the expansion (entropy can increase if processes like particle decay 

or phase transitions happen under condition which do not preserve thermodynamic 

equilibrium).  

Entropy S and the first law of thermodynamics are related by (we use 

d(pV)=pdV+Vdp) 

              
         
                                     

If we consider S=S(V,T)  
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Since entropy is a function of state, its differential form is exact and the integrability 

condition  
   

    
 

   

    
  gives 

 

  
 
           

 
  

 

  
 
 

 

         

  
  

 

  
  

     

  
 

  

  
             

 

 

     

  
 

  

  
 

     

 
               

  

 
 

We can use this result in the previous relation 

                     

and  we get 
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So, up to an additive constant, the entropy S for a comoving volume V=a
3
 (a is the 

scale factor) can be written as 
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This (due to the exponential cut in number density) is dominated by the contribution 

of relativistic particles. For each relativistic species si=(ic
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Note that if  Ti  T  for all relativistic particles, as it is for most of the time in the early 

Universe, then g*=g*S (see the figure above). 

Also note that s is proportional to n; in fact  
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Today (kT 1 MeV) g*S=2+7/8234/11=3.909 and  

nks  04.7  

Above ~ 1 MeV : g*  g*S (Note: g*S depends in general on T  s and n cannot be 

always considered as proportional!) 

Entropy S conservation implies s  a
-3

, and also 

constant33

*  aTg S  

while the Universe expands. 

The physical size of a comoving volume is  a
3
 and, since s  a

-3
, it is also  s

-1
. The 

number N of particles of a species inside a comoving volume (named comoving 

number density), N  na3
, is also equal (actually, proportional) to n/s, so we also 

write Ni  ni/s. If particles are neither created nor destroyed, then Ni  ni/s=const. For 

relativistic particles in TE the comoving number density can be written as 

       
      

  
 
  

  
 
 

 
  

           
 
  

  
 
  

     
      

   
 

  

        
 

where       is equal to 1 for bosons and to ¾ for fermions. 

The baryon number NB (the difference between baryons   and antibaryons   ) in a 

comoving volume is 

s

nn

s

n
N bbB

B


  

As long as the interactions violating  baryon number conservation (if they exist!) are 

very slow, nB/s is conserved. 

However, the baryon-photon ratio , a crucial parameter in primordial (or Big Bang) 

nucleosynthesis, 

s

n
Tgk

n

n B
S

B  )(8.1 *



  

doesn’t stay constant since  g*S  depends on T. But after e
+
 add e

-
 annihilation (at ~ 

0.5 MeV) g*S is constant (=3.909), so   7.04 k nB/s or nB/s can be indifferently 

used. 
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We shall see that primordial nucleosynthesis requires that   510
-10

, so in our 

Universe there are today about 10
9
 photons for each baryon.  Also the entropy per 

baryon, s/nB=7.04 k/  710
10

 k/10, is extremely high (10 /10
-10

) 

The fact that S = const. implies  

1

*
3

1 
 agT S  

If g*S is costant T  a
-1

. The g*S
-1/3

 factor enters the game when a species becomes 

non relativistic, annihilates and disappears (since annihilation is less and less 

balanced by pair creation): its entropy is transferred to photons and to the other 

interacting relativistic particles, so  T decreases more gently.  

If a relativistic particle decuples at time t=tD, when T=TD and a=aD, it doesn’t 

benefits of the entropy exchage due to the annihilation (at T<TD) of the other species. 

After decoupling P 1/a  P=(aD/a)PD and (if the particle is stable) n=(aD/a)
3
nD; 

since P 1/a, n will be given by 


















0

23

32

1
2

a

Pa

kT

c

DDDi

DD

e

dPP

a

ag
n

  

which gives the right dependence on a if T=(aD/a)TD. The distribution function of 

momenta keeps its shape, but with T a
-1

 instead of T g*S
-1/3

a
-1

  which holds for  

particles still coupled. If the particle, for instance a “light” neutrino, becomes 

eventually non relativistic, the shape of the distribution function of its momentum is 

preserved, with T a
-1

. 

This also explains the reason for CMB photons shows a black body spectrum even 

after the last scattering (at zls  1100), when they decouple  from baryons and are no 

more in thermodynamic equilibrium. 

 

Neutrinos 

We have already seen that at kT~E~1Mev, when a=a , neutrinos () decouple from 

other species, and so, while before T=T , after decoupling T =T(a)a /a. However, 

at a slightly lower energy, at E~0.5Mev (a=ae), electrons and positrons annihilate and 

their entropy goes to photons, but not to the decoupled neutrinos. Entropy is 

conserved (g*S T
 3

a
 3 

= const.) for still coupled particles (e
+
, e

-
 e   for a < ae, only   

for a > ae). We denote with a-, T- and a+, T+ the values just before and 

immediatleyafter electron-positron; we suppose that annihilation occurs 

instantaneously and we have
2
 (a+  ae  a-): 

                                                 
2
 We could also add, both on the left hand side and on the right hand side, the contribution of neutrinos, but this 

contribution is the same immediately before and after annihilation, since neutrinos are decoupled. So we omit their 

contribution. 
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333333

* 2)22
8

7
2(   aTaTaTg S  

 

     From this relation we get the the ratio (see also the following figure)  





T

T

T

T















31

11

4
   

After ae both T  and T scale as 1/a, 

and their ratio stays constant until 

now. So, if T0=2.73 K, T0=1.95 K. 

Actually, the photon temperature does 

not rise abruptly at a=ae, but 

decreases more slowly than 1/a  until 

the annihilation of e 
+
 and e

-  
ends (see 

the dotted line).  

 

 

 

It is now easy to derive the present values of number densities of CMB photons and 

of cosmological neutrinos. 

For today’s CMB the density and the number density are easily derived: 
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g  

For each neutrino family, counting   and  , 
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COSMIC RELICS 

The Universe seems to be neutral both from the point of view of electric charge and 

color charge. So Dark Matter candidates are thought to be indifferent to 

electromagnetic and strong forces. 

It is possible to foresee the cosmological effect produced by weakly interacting 

massive particles (WIMPs) or, viceversa, to see the constraints posed by 

cosmological observations on the properties of such particles. Here we assume that 

these particles interact exactly as neutrinos do, but the term WIMP is also used for 

particles having much weaker, possible interactions beyond the Standard Model of 

Particle Physics.  

There are two main cases: WIMPs can decouple when they are still relativistic (Hot 

Dark Matter, HDM,         ) or when they are non relativistic (Cold Dark 

Matter, CDM,         ).  

 

g     



Marino Mezzetti                                                                            COSMOLOGY I 

 

18 

 

Fbf 



Marino Mezzetti                                                                            COSMOLOGY I 

 

19 

 



Marino Mezzetti                                                                            COSMOLOGY I 

 

20 

 

larger 

speak 



Marino Mezzetti                                                                            COSMOLOGY I 

 

21 

 

        



Marino Mezzetti                                                                            COSMOLOGY I 

 

22 

 



Marino Mezzetti                                                                            COSMOLOGY I 

 

23 

 

 



Marino Mezzetti                                                                            COSMOLOGY I 

 

24 

 

 

 

 

Lee-Weinberg limit
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can form very small structures. 
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Recombination and Last Scattering 
When the temperature of the Universe drops below kT~13.6 eV (the ionization 

potential of hydrogen in the ground level) protons and electron begin to combine and 

form neutral hydrogen. This is the epoch of the recombination (actually, 

recombination is the name of the radiative process involved; for the Universe “first 

combination” would be more appropriate). But, due to the very large number of 

photons for each baryon (about 10
9
, as we have seen), hydrogen becomes (almost) 

neutral at a lower temperature (kT~ 0.3 eV, T~3000 K)
3
. We neglect recombination of 

He, which takes place earlier.  
 

There are different mechanisms involved in the making of neutral hydrogen. If 

recombination takes place in an isolated cloud of ionized hydrogen (HII cloud), two 

processes are dominant:  direct recombination to the ground state, and the capture of 

an electron to an excited state which then cascades to the ground level. In the first 

case, a Lyman continuum photon (with energy larger than 13.6 eV) is produced, 

while in the second case one of the recombination photons must have an energy 

higher than or equal to that of  Ly-α. If the cloud is optically thin (optical depth 

   ), all recombination photons can escape and do not contribute to further 

ionization.  
 

In the case of cosmological recombination, however, recombination photons will be 

absorbed again because they cannot escape from the Universe. In fact, the direct 

capture of electrons to the ground state does not contribute to the net recombination, 

because the resulting photon is energetic enough to ionize another hydrogen atom 

from its ground state. The normal cascade process is also ineffective, because the 

Lyman series photons produced can excite hydrogen atoms from their ground states, 

so that multiple absorptions lead to re-ionization. Therefore, recombination in the 

early Universe must have proceeded by different means. 
 

That leaves two main processes for the production of neutral, atomic hydrogen. One 

is two-photon decay from the metastable 2s level to the ground state, at the rate Γ2γ ≈ 

8.23 s
-1

 (in this process two photons must be emitted in order to conserve both energy 

and angular momentum, and the energies of the two photons may not be able to 

contribute to ionization). The second is the loss of the Lyman-α resonance photons by 

the cosmological redshift. Two-photon decay turns out to be the dominant process.  

Moreover, since expansion dilutes proton and electrons, at a certain time (redshift) 

recombination stops, is frozen, and a tiny fraction of ionized hydrogen remains. 

We use the following definitions and relations: ionization fraction Xenp/(np+nH), 

nB/n = const. =2.710
-8bh

2
, nB=np+nH=0b/mp, mp proton mass, b=0b(1+z)

3
, 

0b=b0cr, T=T0(1+z). So electron (and proton) density is given by 

 325 11013.1)(/)()()( zhzXmzXnzXzn bepbeBee    

                                                 
3
 For order of magnitude estimates, the Kelvin temperature TK can be linked to energy 

by:                 4     
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The following figure shows the evolution of the ionization fraction versus redshift for 

ΩM=0.3, Ωb=0.04 and h=0.7. 

 

Conventionally recombination corresponds to Xe=0.1. We see in the figure that Xe ~ 

0.1 at a redshift around 1100. The figure also shows that recombination is never 

complete. The recombination process freezes, and a residual ionization remains (at z 

~ 10): 

               
     

   
 

 

on the order of 10
-4

 . 

The dependence on cosmological parameters is due to the balance between the 

recombination rate, proportional to np (equal to ne), and the expansion rate H. So 
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An approximation for      , good for 800 <z <1200 is given by (Jones & Wise, 

1985): 

  75.12

2

212
3

1000
104.2)( 












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h

h
zX

b

M
e  

Recombination is also associated to the last scattering of CMB photons, since after 

recombination the Universe becomes finally transparent.  

A useful parameter is the  optical depth: since d =  - ne σT c dt ( grows starting 

from us, cosmic time increases toward us), where σT is the Thomson 

scattering cross section (T=6.6510
-25

cm
2
). When we integrate we have 

[                  ] 
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When estimating the optical depth , the dependence on cosmological parameters 

disappears since ne(z)=Xe(z) nB(z) ~ Xe(z) ΩBh
2
, and H0 E(z) ~ ΩM

1/2
 h, so  

25.14

1000
37.0)( 










z
z  

The probability of receiving a photon from the optical depth  is equal to    . The 

probability of receiving a photon from the interval between  and +d corresponds 

to the probability of receiving it from the interval between z and z+dz: 

dz

d
ezgdzzgde


    )()(  

With the above approximation for (z) 
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which has a maximum for z=1067, and conventionally we assume that the last 
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scattering corresponds to this redshift (        ). The following figure shows the 

probability distribution for the last scattering redshift. The 68% probability is 

included in a z ≈ 170  around the maximum, so the last scattering event is not 

instantaneous and does not correspond to a single redshift. This means that the last 

scattered photons have a spread in their temperatures, but this is compensated by the 

higher redshift suffered by photon which decoupled earlier. 

The age of the Universe at the last scattering can be derived, approximately, by using 

a MD – EdS model with ΩM =0.3 and h=0.7, which gives 

       
 

             
   

               

while a better approximation gives about 410
5
 years. 

Probability distribution for the last scattering redshift 

 

BIG BANG NUCLEOSYNTHESIS (BBN) 

 

                                            At 
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where mn and mp are neutron and proton masses, and  (mn-mp)c
2
=1.293 

MeV. The rate of the interactions exchanging n into p and vice versa is 

(GF = Fermi weak coupling constant) : 

5215)(2 TGskT FMeVpn  

  

Compare this with H=1/2t (EdS in RD era), where 

221

* )(4.2(sec)  MeVkTgt  

(g*  10). np  H for kTD  0.7 MeV , tD  1.5 sec. The neutron to 

proton ratio freezes at 

r0=nn,0/np,0  exp(-1.293/0.7)  0.16. 

Only neutron  decay is now possible, with n=885.70.8 sec (about 15 

minutes). 

 

The key process is the formation of deuterium 
2
H, which has a binding 

energy BD = 2.23MeV. Because of the relatively large number of 

photons with respect to baryons, the high energy tail of the distribution 

of photons immediately dissociates the deuterium which is formed, and 

this until the number of dissociating  photons n
diss  

becomes comparable 

with that of baryons, nB . We will have: 


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The density of the dissociating photons is obtained by putting        

in the relation that gives the density of photons, placing BD as the lower 

limit in the integration: 

 
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 , 

a good approximation since E/kT > BD/kT » 1. For 1<10<10, n
diss

/ nB  

1 if kT  0.1 MeV, T10
9
K. (10= / 10

-10
) 

At this time the deuterium is no longer destroyed by photons and quick 

reactions occur leading to the formation 
4
He: this is the era of BBN. The 

universe has an age of about (g* = 3.36 at kT = 0.1 MeV) 

sgt MeVBBN 150)1.0(4.2(sec) 221

*  
 

That is about three minutes. 

Between the freezing, tD  1.5 sec, and tBBN neutrons decay to protons 

and, from r0  0.16, we arrive to 
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After the bottleneck of deuterium, all neutrons that did not decay end up 

embedded in the nuclei of 
4
He. Since it takes two neutrons for each 

4
He nucleus 

and this has atomic weight 4, the abundance in mass YBBN, of  
4
He  is 

 npn

n
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nnn
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The detailed calculation, much more complicate, provides similar values, in 

agreement with the experimental data that suggest Yobs around 0.24-0.25. 

As shown in the following figure, the predicted abundance of  
4
He does not vary 

much with the baryon-to-photon ratio η, because n is long (compared to the age 

of the universe) and neutrons decay slowly. However, YBBN  depends strongly on 

TD , which depends on H, which in turn depends on g* at a temperature of about 1 

MeV: 
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where    is the number of neutrino species. The higher the value of    the higher 

is TD  and so the greater are r0 and YBBN (                 , see the 

lines in the figure). The observational limits on YBBN give       . In the 80s, 

until LEP at CERN measured the decay (width) of Z
0
 and obtained          

     , the best estimate of     was given by BBN. We notice that BBN and LEP 

are sensitive to different kinds of particles: BBN is sensitive to particles that were 

relativistic at kT~1 MeV; the width of Z
0
 is sensitive to neutrinos with masses 

        . So they measure different things.
4
  

 

                                                 

4
 If you are interested in the possibilities offered by BBN to explore physics beyond the 

Standard Model, look at the Particle Data Group site (http://pdg.lbl.gov/), and in particular the 

review on BBN (http://pdg.lbl.gov/2015/reviews/rpp2015-rev-bbang-nucleosynthesis.pdf). 
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So, for the production of Carbon, Nitrogen Oxigen and so on, we have to wait for 

the formation and evolution of stars. 
 

Concordance, Dark Matter, and the CMB 

We now use the observed light element abundances to test the theory. We first 

consider standard BBN, which is based on Standard Model physics alone, so Nν = 

3 and the only free parameter is the baryon-to-photon ratio η. Thus, any 

abundance measurement determines η, while additional measurements 

overconstrain the theory and thereby provide a consistency check. Also 

observations of the CMB constrain the value of η. 

First we note that the overlap in the η ranges spanned by the larger boxes (which 

include systematic errors) in the Figure above indicates overall concordance. More 

quantitatively, when we account for theoretical uncertainties, as well as the 

statistical and systematic errors in observations, there is acceptable agreement 

among the abundances when 

5 ≤ η10 ≤ 6.5 (95% CL).  

However, the agreement is much less satisfactory if we use only the quoted 

statistical errors in the observations. In particular, as seen in the Figure, D and 
4
He 

are consistent with each other, but favor a value of η which is higher than that 

indicated by the 
7
Li abundance determined in stars. Actually, there is a possible 

problem with Lithium, which maybe requires new physics; the discrepancy could 

also be explained by astrophysical processes during stellar evolution. 

Even so, the overall concordance is remarkable: using well-established 

microphysics we have extrapolated back to an age of ∼ 1 s to correctly predict 

light element abundances spanning  9 orders of magnitude. This is a major success 

for the standard cosmology, and inspires confidence in extrapolation back to still 

earlier times. This concordance provides a measure of the baryon content 

0.019 ≤  Ωbh
2
 ≤ 0.024 (95% CL),  

a result that plays a key role in our understanding of the matter budget of the 

Universe.  
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Primordial Baryosynthesis 

 

  

 

The asymmetry could be linked to the breaking of GUTs or of the electro-weak 

interaction. The question is open and, very likely, requires new physics. 



Marino Mezzetti                                                                            COSMOLOGY I 

 

35 

 

INFLATION 

 

We have already mentioned two problems affecting the Hot Big Bang model: the 

flatness problem and the horizon problem. To them one can add the magnetic 

monopoles problem (monopoles are zero-dimensional topological defects, that are 

produced at the time of the phase transition corresponding to the breaking of GUTs; 

their  number density, coupled with their very high mass, would produce a value of  

clearly unacceptable). 

The paradigm of inflation, which solves these problems, has been proposed by Alan 

Guth in 1981. It assumes that there has been an accelerated expansion phase between 

the times ti and tf (with tPl < t i < tf  <<teq), produced by an equation of state that 

mimics that of a cosmological constant: 

)(
)()( ittH

ifi etatattt


  
(H ~ constant).  The scale factor grows as in a de Sitter model (which has 0 and 

density of matter negligible), instead of growing as          , like an EdS model in 

the RD era. 

The exponential growth, if sufficiently prolonged, produces a growth of the particle 

horizon dH sufficient to solve the horizon problem;  converges towards unity (as in 

models dominated by the cosmological constant), resolving the flatness problem 

(remember also that the curvature of the spatial section scale as        , and the 

exponential growth of a(t) force this curvature towards zero). The problem of 

monopoles is resolved through a strong dilution of their number density. 

If inflation occurs around the time of the breaking of grand unification (GUT), the 

above problems are solved provided  

60ln 







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i

f

a

a
 

where N is the number of e-foldings. 

 

Lagrangian formulation of Field Equations 

 

As we have seen, to have a phase of inflation is necessary that the universe possesses, 

for a certain time interval, an equation of state of the type P  - c
2
.  

This can be achieved in a natural way by means of a scalar field present in the early 

stages of the early universe.To understand the mechanism it is necessary to introduce 

some concepts used in Quantum Field Theory. 
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In Classical Mechanics the equations of motion of a dynamical system can be derived 

from a Lagrangian function L 

)()(),( iiii qVqTqqL    

where qi are the generalized coordinates, T is the kinetic energy and V is the potential 

energy. The action S, involved in the motion of the system from one configuration at 

time t1 to another at the time t2, is given by 


2

1

t

t

LdtS  

and, according to the principle of least action, the evolution of the system between 

the two configurations is that which corresponds to the minimum value of S. This 

condition leads to the Euler-Lagrange equations: 

0

















ii q

L

q

L

dt

d


 

These relations describe the motion of particles, that is, of localized objects. A field 

instead occupies a certain region of space, and Field Theory wants to calculate one 

(or more) functions of position and time:  =  (x, y, z, t) (eg .: temperature, electric 

potential, the three components of the magnetic field in a room). While, in the 

mechanics of particles, the Lagrangian L is a function of the coordinates qi and of 

their derivatives, Field Theory works with a Lagrangian density L which is a 

function of the field  and of its derivatives with respect to x, y, z, and t. To keep the 

relativistic covariance of physics more apparent, we use space-time coordinates x0 ct 

and x1, x2, x3 x, y, z, so that the Lagrangian is the volume integral of L  

 xdL 3L  
and the action is 

xd
c

S 41
 L

 
(the factor 1/c, inessential, serves to keep the dimensions of the action). 

In relativistic field theory qi is replaced by the field , and the index i is replaced by 

space-time coordinates x
α
. Since each time derivative can be associated to a similar 

term involving a gradient, we use all the covariant derivatives            and 

Euler-Lagrange equations become 

   
0

)(



























LL
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Actually this writing is correct in a Euclidean space and in orthogonal coordinates; to 

take account of a more general choice of coordinates (e.g. co-moving spatial 

coordinates) the volume element d
4
x is replaced with g d

4
x  where g is the 

determinant of the metric g. So the Euler-Lagrange equation becomes 
 

   
0

)(



























LL gg
 

In a flat, static Minkowski space, the metric is g      diag(1,-1,-1,-1). Then 

 




























 ;,,;

1
0

zyxtcx  

 


























 );(,,;

1
0

0

zyxtc


   

























 2

2

2

22

2

2

2

2

2

2

2

2

11

tczyxtc


  

If we use comoving coordinates (r =a x) in a flat, expanding space: g  diag(1, -a
2
, 

-a
2
, -a

2
) and g = a

3
. We have then ( x  is the gradient referred to the co-moving 

coordinate x) 

 x ;0  







 x

a2

0 1
;

 
2

22

2

2

11
x

atc





 

  

Let’s consider, for instance, the following Lagrangian (density): 

      222

2

2

1

2

1

2

1

2

1
 




 











cm
L  

where  is a real, single scalar field. In this case, i.e. Minkowski space, ( g =1), 

 











L
 



2

2

















cmL
 

and hence Euler-Lagrange formula requires
5
 

  0
1 222

2

2

2

2 












 

tc
 

                                                 
5
 The first result above can be derived by expanding completely the Lagrangian: 

  
 

 
                                        

 

 
 
  

 
 
 

   , so that 
 

      
         ,  

 

      
      

    and so on. 

2 

2 
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which is the Klein-Gordon equation, describing (in Quantum Filed Theory) a particle 

of spin 0 and mass m. 

In analogy with  L = T - V, in the Lagrangian written above the first term,  

½()(

), is named kinetic energy term, while the second term, in this case 

quadratic in  (the term corresponding to the mass), is the potential energy term. For 

a scalar field we will write the Lagrangian in the general form 

   )(
2

1
 

 VL  

where V() is a suitable potential (V()=1/2   2 
in Klein-Gordon case). If L , written 

as above, depends on x only through   and its derivatives  , the following 

quantity (energy-momentum tensor) is preserved (i.e., has four-divergence equal to 

zero): 

L  gT   

In the case of a perfect fluid we have seen that the energy-momentum tensor has the 

form 
  gpuucpT  )( 2

 

where P is the pressure, c
2
 the Energy density and u


 is the four-velocity (u

  

dx

/ds); in the co-moving reference frame u


=(1,0,0,0). In a flat space, by using co-

moving coordiantes, the comparison of the two relations gives: 

   

   







V
atc

TTT
ap

V
atc

Tc

x

x





















 
















2

2

2

2

332211
2

2

2

2

2

002

1

6

11

2

1

3

1

2

11

2

1

 

(see the following scanned page for the proof). 

In the case in which the field  is spatially homogeneous (from which       ; even 

if      is different from zero the term containing      becomes rapidly negligible due 

to the a
-2

 factor 
6
) and the term 1/2c

2
 (/t)

2
 is negligible compared to the potential 

V(), we have

 

  2

2

cVp

Vc









 

that is, an equation of state that mimics that which corresponds to the cosmological 

constant! 

                                                 
6
 Actually there are small fluctuations on the scale of the Hubble radius, which are the 

"seeds" of the large-scale structure of the universe 
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If  :  is negligible with respect to V(), which is then constant, 




 g

G

c
gVgcgpT

eff

8
)(

4

2


  

and the term of potential energy corresponds to an effective cosmological constant. 
 

Phase transitions and Symmetry Breaking 

In the history of the early universe one or more phase transitions have occurred. At 

high energies, according to the unified theory of the electroweak interaction, the 

weak and electromagnetic interactions were manifestations of a single force. Then, 

due to the progressive cooling produced by cosmic expansion, at a certain time 

(around a critical temperature TEW10
15

K,  EEW10
2
GeV) the universe has undergone 

a phase transition, after which the two interactions separated. 

The Grand Unified Theories (GUTs), which attempt to unify electromagnetism and 

weak and strong interactions, in turn, require a phase transition in the universe at 

critical temperature TGUT10
28

-10
29

K, EGUT~10
15

-10
16

 GeV,  above which there was 

symmetry between the three interactions. 

Let’s consider an analogy with the magnetization of a ferromagnetic material. Above 

the Curie temperature TC the magnetic moments linked to the spins of atoms are 

randomly oriented and rapidly fluctuating, there is rotational symmetry around each 

point of the material and the expectation value of (the mean value) of the spin is null 

(<S> = 0). However, falling the temperature below TC, alignemet of spins becomes 

energetically more favorable, and there is a phase transition to a magnetized state, 

with <S> 0 in a certain direction î. The original symmetry is lost, broken, because 

the different domains that begin to form, independently of each other, have spins with 

different directions. In the end, when the whole mass has turn into domains, defects 

form at the borders of the different regions. 

In a similar way, while above TGUT there was symmetry between the three 

interactions, below TGUT it is broken. Going back to the case of the ferromagnetic 

material, the way in which the rotational symmetry is broken in the different portions 

of the mass can be measured by the growth of the spin S and the orientation of the  

different domains. Similarly, the way in which the symmetry between the three 

interactions breaks down can be characterized by the acquiring of non-null values of  

parameters named Higgs fields; this phenomenon is called spontaneous symmetry 

breaking (SSB). The symmetry is present when the Higgs fields have zero 

expectation value; it is spontaneously broken when at least one of the boson fields 

acquires an expectation value other than zero. As in the case of ferromagnetic 

domains, defects remain at the boundaries of the different regions in which the 

symmetry is broken in different ways, assuming different sets of values for the Higgs 

fields. These defects are called topological defects, and may be two-dimensional 

(domain walls), uni-dimensional (cosmic strings) and zero-dimensional (magnetic 
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monopoles). During the phase transition that leads to the breaking of the symmetry a 

period of exponential expansion may also occur: the inflation. Let's see how. 

For simplicity we consider a single Higgs field, the scalar field . We consider again 

a Lagrangian  

   )(
2

1
 

 VL
 

The equation of motion, a generalization of Klein-Gordon (KG) equation, becomes
 

0








V
 

Free particle states are the solution of this equation with only a quadratic term in  in 

the potential V(), like in KG case; the coefficient of this term specifies the mass m of 

the particle: V()=1/2 2
  2

 ,  = m c/ħ. The “vacuum” state, which by definition is 

the state in which there are no particles, occurs when V/  0; in the KG case this 

occurs at   0.  

Higher-order terms in V() correspond to the interactions between these particles. 

The equation written above admits the solution constant at  any value of  for 

which V/0. The vacuum (no particles) state will therefore be one of those in 

which the expevtation value of  assumes one of these constant values. There are 

several possibilities: 

 It may be that the V/  0 has only one solution. In order for the energy to be 

bounded below, this should correspond to a minimum of V() and also 

corresponds to the unique vacuum of the theory 

 On the other hand there may be multiple solutions of  V/  0. The maxima 

of the  potential are unstable, but all the minima are possible vacua of the 

theory. If there is more than a minimum, the lowest would be the ultimate 

vacuum, the "true vacuum" of the universe.  

 However, the universe may be, at a certain moment, in a local minimum with a 

higher value of the potential; it would be in a "false vacuum", with the 

possibility, by tunnel effect, to move to the true vacuum.  

 

2 

Inflation, for  

this potential, 

corresponds 

to the trapping 

of the field in  

the well at ϕ=0. 
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 In some cases there may be several such minima that have the same value of the 

potential, and the vacuum is degenerate. 

 
This Figure corresponds to a potential of the form 

)0(
4

1

2

1
)( 422 VV  

 

with μ and λ real constants (λ > 0 if the potential is bounded from below). The first 

term on the r.h.s. looks like a mass term and the second like an interaction, but the 

sign of the mass term is wrong, the mass should be imaginary! However, ϕ=0 is a 

maximum for the potential, and we have two, degenerate, minima corresponding to 

possible “vacua” or groud states for 
 

v   

Peturbation theory involves an expansion of L in ϕ around a minimum of the 

potential. We arbitrarily choose one of the two minima, for instance +v, and define a 

new field      . We write the potential as a function of the new field   and now 

the Lagrangian is 

  
 

 
       

                                                    

which possess the right sign of the mass term and complicated interactions. If we 

chose the other minimum the mass term remains the same (only the    term changes 

his sign).  

This is an example with only two possible 

values for the true vacuum, but more 

general potentials can lead to an infinite 

number of possible values in which the 

true vacuum may end. Here we see a two-

dimensional (complex) case for the 

potential [we substitute     to    and 

       to   , where    is the complex 

conjugate of  ]. True possible vacua 
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correspond to points belonging to the circle of the minimum values of V(). 

The random choice of one of the minima generates a spontaneous symmetry 

breaking (SSB),  similar to the formation of a domain with a particular orientation of 

the spins of its atoms in a portion of a ferromagnetic material that cools below TC. 

The potential written above has this form, with a negative coefficient for 2
, at a 

temperature T = 0. But in the early universe, when the temperature is very high, to 

take into account this effect, corrections to V() produce an effective potential with 

additional terms proportional to 2
T

2
. Therefore, at high enough temperature, the 

minimum of the potential is at  = 0, and the symmetry is unbroken. 

During the cooling of an expanding universe, according to details that depend on the 

particular shape of V (), the spontaneous symmetry breaking will take place: 

 Through a phase transition of first order, in which the field, initially in  = 0, 

crosses, by tunnel effect, a potential barrier within which it remains trapped for a 

certain time; inflation, with /t  0, occurs during this trapping phase. This is 

the model initially proposed by Guth, named old inflation, which presents, 

however, some problems. In fact, a phase transition of first order occurs through 

the formation of bubbles of the new phase in the middle of the old phase; these 

bubbles expand, collide and coalesce until the new phase completely replaces the 

old one. 

 

But in the model of Guth, to have a phase of inflation sufficiently long, the 

probability of forming bubbles is low and, since the false vacuum expands 

exponentially, the bubbles can not coalesce and the transition to the true vacuum 

does not occur. 

 Through a phase transition of the second order, in which the field evolves 

smoothly from one phase to another. This is the model of new inflation, proposed 

by Linde, Albrecht and Steinhardt in 1982, in which the field evolves very slowly 

(slow-roll) from the condition of false vacuum at  = 0 to the true vacuum. Again, 

if the evolution from   = 0 takes place slowly and V ()  V (0) for a long enough 

time before falling into the true vacuum, we have a phase of inflation (we will see, 

later, what are the conditions for this to happen). 
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Orders of magnitude for Inflation 
 

The expansion in the Early Universe, if we neglect the curvature (which, however, 

tends rapidly towards zero due to the enormous growth of the scale factor), will be 

given by the equation 




3

8
2

G

a

a








 
 

and the energy density is given by 
222 ccc R    

with 

 
 3

4

*

2
2 )(

30 c

kTTg
cR





  

)0(2   Vc  
Where V() corresponds to the energy density of the field  that, at high temperature, 

has its minimum in  = 0.  

Until ρc
2
 is dominated by ρRc

2
, the universe behaves as in the model of EdS 

dominated by radiation, with a(t) ~ t
1/2

. But while ρRc
2
 scale as 1/a

4
, ρΛc

2
 remains 

constant. At a certain time ti, ρRc
2 

~ ρΛc
2
, and, from that moment, the expansion 

becomes dominated by an "effective" cosmological constant Λeff, as in the 

exponentially expanding de Sitter model: 

 

slow-roll 

V() 

oscillations 

and 

reheating 

t 

V(0) 

inflation 
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 
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3
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3

8
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c

G
tH

ttV
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G
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ii
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
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where ai  is the scale factor at  ti. At the equality time, at T=T, 

 
 

 

  34
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3440

3

4

*

2
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where kT15 is the energy scale in units of 10
15

GeV. To this energy density 

corresponds  an "effective" cosmological constant 

24

15

52

2482

4

)(103.2

)(103.2
8

















cmkT

cmkTc
c

G
GeVGUT 



 

If we compare this value (    ) for  kT15= 1, with that of the cosmological constant 

today (         cm
-2

) we get a huge ratio (fine-tuning?): 

108

0

10


GUT

 

The Hubble constant, during the phase in which the system is trapped in the false 

vacuum and the expansion occurs exponentially, is 

12

15

3626 )(106.2)(106.2
3



 


 skTkTcH GeV

 

If we take  kT15= 1 , and we want that Htf  60 to solve the horizon and flatness 

problems, then we have that 

s
H

t f

35102
60 

 

as the epoch of the end of inflation, while the start, using a model of EdS dominated 

by radiation, is given by 
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s
H

ti

37102
2

1 

 

These are order of magnitude estimates and depend on the value of kT adopted. 

 

Dynamics of the Inflaton 

 
Let us derive the evolution equation of inflaton, i.e. the scalar field , starting from 

the Lagrangian density: 

xdg
c

S 41
  L 

 

For an expanding universe, spatially flat, in orthogonal coordinates,         and 

the Euler-Lagrange equations are applied to the quantity a
3L: 

)(
2

3
3

3  
 Va

a
a L

 

If the inflaton is solely dependent on time, and not on the spatial coordinates, only 0 

will be different from zero and 
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and the Euler-Lagrange equations give: 
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
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
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
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Putting together and simplifying we get ( Haa / ) 
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03 2 



d

dV
cH 

 

which represents the evolution of the inflaton. 

This equation, if we refer to the typical potential of new inflation, has two different 

regimes, one called "slow roll" and one during which rapid oscillations around the 

minimum develop. Let's look at them in more detail. 

a) Slow-roll regime: is this phase there is a slow "rolling" of the non-accelerated  

field  which corresponds to the phase of inflation. In this regime the term    is 

negligible (            ) and the equation of motion reduces to 




d

dV
cH 23 

 

that is, the “friction” due to the expansion is dynamically balanced by the 

acceleration due to the slope of the potential. 

By using the time  derivative of the above relation, since H is essentially constant 

during inflation, and naming  V  the d
2
V/d2

, the condition             gives 
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Another crucial condition to have        is that             , which leads to 
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
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The two constraints on the potential,          are the slow-roll conditions. 

b) Fast oscillations: At the end of the inflation phase, the potential "falls" in the true 

vacuum and the inflaton oscillates rapidly around the minimum. If nothing more 

happened, we would have oscillations undergoing redshift as time goes on, in a 

universe that has already cooled dramatically during the inflationary adiabatic 

expansion. In order that the thermal history of the universe evolves as suggested by 

the evidence (e.g. BBN) it is required that the energy of the false vacuum is converted 

into matter and radiation with a certain efficiency. This process is named reheating. 

We have already noted that inflation rapidly diluted magnetic monopoles because the 

energy density of the scalar field remains constant, while the density of monopoles 
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decreases as 1/a
3
 (this does not mean that they disappeared completely, one day they 

will return within the horizon) . However, in order not to be recreated by reheating, it 

is necessary that this does not bring again the temperature of the universe to values 

able to remake them. 

The number of e-foldings: It is immediate to calculate the number N of e-foldings. 

We start from 

 

f

i

f

i

a

a

t

t

dtHaddtH
a

da

dta

da

a

a
H )ln(


 

 
  










f

i

f

i

t

t

t

ti

f
dt

Vcc

VG
dt

H

H

a

a





'

3

3

8
ln

22

2 
N  

 
  

f

i

d
V

V

c

G









'

8
4

N . 

Other models of inflation 
In the model of inflation that we have described, a spontaneous breaking of the 

symmetry occurs, and the field starts from zero or from a small value (in this case one 

refers to small scale models). However it is possible to achieve inflation even without 

SSB and with large initial values of the field, which then rolls toward zero (large 

scale models). This is the case of the so-called chaotic inflation model proposed by 

Linde (1983), in which the potential V() is simply 

    224 21   VorV  

and the potential has a minimum at   = 0. The phase of inflation takes place if, 

within the horizon, the field, due to quantum fluctuations, assumes a value different 

from zero in a region of the universe and then returns toward the minimum. This is 

more likely to happen at the end of Planck era, rather than at the time of the breaking 

of great unification.  

To solve the problems of the standard model it is not necessary a stage with 

exponential expansion of the scale factor; it is sufficient that  

  1 ptta p  

(power-law inflation) The required potential has the shape 

   eV   
In the above discussions we have assumed that space is flat, homogeneous and 

isotropic. What happens if it is not the case? It can be seen (see for example chap. 8, 

paragraph 6, in "The Early Universe", Kolb and Turner) that, unless the initial space 

curvature is so high to force the universe to recollapse before inflation, this phase 

produces, for a wide class of models, huge regions uniform and flat, which exceed in 
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size the current Hubble radius, and then solve the problems of the standard model. 

Inhomogeneity and/or anisotropy are, however, only delayed and will eventually 

reappear.  

Cosmological constant and Dark Energy 
 

How can we interpret today's cosmological constant? In Einstein's equations (and 

those of Friedmann), if we remove all matter and radiation, the cosmological constant 

is the only source of the field:  Λ corresponds to the density of the vacuum. 

But, according to Quantum Field Theory, the vacuum is not the nothingness of 

metaphysics, but the ground state of minimum energy, with no particles, of the field 

itself. We have seen that the cosmological constant behaves as a perfect fluid with 

ρΛc
2
=εΛ=Λc

4
/8πG and pΛ=-εΛ=-ρΛc

2
, and the energy-momentum tensor is 

diagonal 


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


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Moreover, it must be expected that the values of εΛ and pΛ, that define the state of 

vacuum, are the same in any, not accelerated, reference frame, so they have to be 

relativistic invariants. 

If, for example, we make a Lorentz transformation with velocity v=βc [γ
2
=1/(1-β

2
)] 

along the axis x
1
, T

αβ
 changes according to the rule 
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and T
γδ

 is diagonal, as above. We get (see the following scanned page for the proof): 
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and all the other terms of T'
αβ

 are null. In order that ε'Λ = εΛ, p'Λ = pΛ and T'
αβ

 is 

diagonal, pΛ =-εΛ =-ρΛc
2 

is required. Thus we see that  the "false" vacuum of 

inflation, and the "true" vacuum share a similar equation of state. 

We can also consider the vacuum as a "substance" with given εΛ and pΛ, in the sense 

that the relation dU = -dL = -pdV (since dQ = 0) is satisfied. Indeed dU = d (εΛV) = 

εΛdV = - pΛdV if pΛ = -εΛ. 

But can we estimate the expected value for εΛ? (Note that in the following pages 

c=1). 

 

 

From periodic boundary conditions (n=integer number)    
 

 
  

 

 
, so   

  

 
  and 

similar relations hold for the two other directions. If we move from discrete to 

continuous values of n (a good approximation if n is not very small),    
 

 
  , 

     
 

 
 
 
    ; since only positive values of n are possible, the volume in n or k 

space is     of the total space and we get (5.31). From 

                ω      we get          if      . From 

spherical symmetry            and (5.32) and (5.33) are obtained. 



Marino Mezzetti                                                                            COSMOLOGY I 

 

52 

 

 

This is the so-called cosmological constant problem from the point of view of Field 

Theory. There is a second problem linked to the coincidence between matter-energy 

density and cosmological constant: why do they are comparable today? 

Many attempts have been done to find a solution to these problems. 

The discovery of SUSY led to the hope that, since bosons and fermions (of identical 

mass) contribute equally but with opposite sign to the vacuum expectation value, the 

cosmological constant should be zero. But SUSY is today broken, so Λ could be zero 

only in the early universe. Attempts has been done to produce a (almost) vanishing 

cosmological constant also with broken SUSY. 

Anthropic explanations have been proposed. In several cosmological theories the 

observed big bang is just one member of an ensemble. The ensemble may consist of 

different expanding regions at different times and locations in the same spacetime, or 

of different terms in the wave function of the universe. If the vacuum energy density 

ρV varies among the different members of this ensemble, then the value observed by 

any species of astronomers will be conditioned by the necessity that this value of ρV 

should be suitable for the evolution of intelligent life. 

The anthropic bound on a positive vacuum energy density is set by the requirement 

that ρV should not be so large as to prevent the formation of galaxies (the accelerated 

expansion stops the growing of the amplitude of density fluctuations). A negative 

value for the cosmological constant, as we have seen, acts as an additional self-

gravity and forces the recollapse of the universe; if this recollapse happens too early, 

no intelligent life can develop.  

 

-1 
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Dynamical models of Dark Energy 

 
Many ideas have been proposed to solve the problem of Dark Energy (if you are 

interested in this subject you can refer to the book “DARK ENERGY, Theory and 

Observations” by Luca Amendola and Shinji Tsujikawa, 2010, Cambridge University 

Press).  

There are basically two approaches for the construction of dark energy models. The 

first approach is based on “modified matter models” in which the energy-momentum 

tensor Tµν on the r.h.s. of the Einstein equations contains an exotic matter source with 

a negative pressure. The second approach is based on “modified gravity models” in 

which the Einstein tensor Gµν on the l.h.s. of the Einstein equations is modified. 

Here  we mention the so-called quintessence
7
 model as one of the representative 

modified matter models. 

Quintessence is a canonical scalar field Q with a potential V(Q) responsible for the 

late-time cosmic acceleration. Unlike the cosmological constant, the equation of state 

of quintessence dynamically changes with time:           with 

     
   

   
      

   
   

   
      

   

   

        

   

        

 

where    can be in the range from -1 to +1. Here we can use relations similar to 

those use when working on inflation. We assume a flat, k=0, universe. The evolution 

of the field and the dynamics of the universe  are given by the already known 

relations 

 
Peebles and Ratra proposed a potential like 

                                                 
7
 According to ancient Greek science, the quintessence (from the Latin “fifth element”) denotes a 

fifth cosmic element after earth, fire, water, and air. 
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and assumed that at high redshift the density of the field is “subdominant” with 

respect to that of matter/radiation, in order to preserve the BBN. We assume that the 

scale factor grows as 

        

 

 

 
 

the solution is 

 doesn’t depend on q !!! 

The equation of the field is 
 

       

   

  

  

   

The energy density associated to the scalar 

field is negligible at early times, but it 

becomes finally dominant. See next page for 

details. 
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While Λ or vacuum are spatially homogeneous, quintessence feels the gravitational 

field of the other components, like dark matter and baryons, and fluctuations δQ 

develop. But, for a slowly varying eq. of state (compared to the expansion rate), those 

fluctuations rapidly dissipate on scales smaller than the Hubble radius RH and so the 

Q field is smooth on scale relevant for structure formation. 

In any case, the first thing to understand is if the vacuum energy density is constant or 

varies over time. To do that all the available sets of cosmological observations are 

used to fit, for instance, a linear dependence on scale of the equation of state 

 w(a)=w0 + wa (1 – a/a0) 

The results are not conclusive, and a cosmological constant is still consistent with the 

data (plot taken from Planck satellite 2015 results).  

 

 

 

 

 

 

 

α=0, V(Q)=const., corresponds to the cosmological constant,      . 

For α>0 the scalar field becomes finally the dominant component, even if it was 

negligible at high redshift.  

Since, in EdS,       , both for matter and radiation 
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SHORT COSMIC HISTORY 

Era t (sec) E(3kT) T (K) Events 

Planck 10
-44

 10
19

GeV 510
31

 Quantum Gravity 

GUT 
10

-38
 

10
-36

 

10
16

GeV 

10
15

GeV 

510
28

 

510
27 

GUT’s SSB 

Inflation? 

Baryogenesis? 

Electroweak 10
-10

 10
2
GeV 510

16
 Electroweak SSB 

Adronic 10
-4

 200 MeV 10
12 

 Quark-adrons transition 

Leptonic 
0.7 1 MeV 10

10 
Decoupling of e 

5 0.5 MeV 510
9 Annichilation  e

+
e

- 

BBN 2-3 min 0.1 MeV 10
9 

BBN:  
4
He, 

3
He, D, 

7
Li 

Radiation-Matter 

Equality 
610

4
 yr 2 – 3 eV 10

4  Matter-dominated era begins  

Recombination 410
5
 yr 0.7 eV 3000 

The universo becomes neutral 

and transparent 

Void 10 Gyr 10
-3

 eV 3.6 Vacuum-dominated era begins 

Today 13.7 Gyr 710
-4 

eV 2.73  

yr sidereal year (1900) 3.155814998410
7 

sec 

ly light year 9.460510
17 

cm 

a.u. astronomical unit 1.49598510
13

 cm 

pc parsec 3.085610
18

 cm 

H0 Hubble constant  3.24110
-18 

h sec
-1 

1/H0 Hubble time 3.08610
17 

h
-1

 sec 

M


 solar mass 1.98910
33 

g 

R


 solar radius 6.959810
10

 cm 

L


 solar luminosity 3.9010
33

 erg sec 

M Earth mass 5.97710
27 

g 

R equatorial Earth radius 6.3781710
3
 km 

 

 


