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Seismology I - 2D modes

Wave equation & Laplacian

Laplacian in Cylindrical and Spherical systems
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Seismology I - 2D modes

Special Coordinate systems

In these cases, the variable separation approach also 
facilitates the solution. In the Euclidian case the 
eigenfunctions were Fourier series. Here, after the 
substitution:

The differential equations arise, which solutions are special 
functions like Legendre polinomials or Bessel functions.
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Circular Membrane Problem

A thin circular elastic membrane has a radius a:

a

and the wave equation, with a circular boundary condition, is:

and if it has separable solutions: 
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Variable separation

m is a positive integer
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ω=ck

that is a Bessel equation of order m
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and the general solution is:

The BC at the (regular singular) origin point is: R(0) is finite 

The radial factor of the solution is a Bessel function of the first kind: NOT 
periodic and the distance between zeros is NOT constant.

that are to cylindrical waves what cosines/sines are to waves on a straight line.
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The other BOUNDARY CONDITION of the circular membrane problem is:

u=0 at r=a

this implies that       Jm(ka)=0 
Therefore nth positive zero of Jm
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and the general solution is:

General solution

but if we assume that the initial conditions are rotationally symmetric, 
i.e. goes like f(r), we have that we need only m=0
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Oscillation of a Clamped Membrane

Mode: (0,1)

f0 1 = v/λ;  v = √(S/ σ)

f0 1 = x0 1 /(π d) ‧． √(S/ σ)

x0 1 = 2.405

Surface density σ

Surface Tension S

Surface density  σ= mass/area  σ= density ‧． thickness

Surface  Tension  S= force/length

d 
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Membrane vs string

ffnmnm  = = xxnmnm//((ππ d) d)(S/(S/σσ))1/21/2

xx0 1 0 1 = 2.405= 2.405

Tension Tension on on surface surface SS

TensionTension T T

Linear Linear density density µµ

ffn n   = n /(= n /(2 L) 2 L) (T/(T/µµ))1/21/2

nn  = 1, 2, 3, 4, 5, 6,= 1, 2, 3, 4, 5, 6,……..

dd

Areal Areal density density σσ

LL

ffnmnm  = = xxnmnm//((ππ d) d)(S/(S/σσ))1/21/2

xx0 1 0 1 = 2.405= 2.405

Tension Tension on on surface surface SS

TensionTension T T

Linear Linear density density µµ

ffn n   = n /(= n /(2 L) 2 L) (T/(T/µµ))1/21/2

nn  = 1, 2, 3, 4, 5, 6,= 1, 2, 3, 4, 5, 6,……..

dd

Areal Areal density density σσ

LL

Mode: (1,1)

f1 1 = (x1 1 / x0 1) f0 1 

x1 1 / x0 1 = 1.594

Mode: (2,1)

f2 1 = (x2 1 / x0 1) f0 1 

x2 1 / x0 1 = 2.136

http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html
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Mode: (0,1)  

xn m / x0 1 : 1
(1,1)     1.594 (2,1)    2.136 (0,2) 

2.296
(3,1) 

2.653

(1,2) 

2.918
(4,1) 

3.156
(2,2) 

3.501
(0,3) 

3.600
(5,1) 

3.652

Membrane modes
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Traveling surface waves

Vertical displacements of the Earth's surface 
recorded by seismometers.
The traces are arranged by distance from the 
epicenter in degrees. The earliest, lower 
amplitude, signal is that of the compressional 
(P) wave, which takes about 22 minutes to 
reach the other side of the planet (the 
antipode). 
The largest amplitude signals are seismic 
surface waves that reach the antipode after 
about 100 minutes. The surface waves can be 
clearly seen to reinforce near the antipode 
(with the closest seismic stations in Ecuador), 
and to subsequently circle the planet to return 
to the epicentral region after about 200 
minutes. 
A major aftershock (magnitude 7.1) can be 
seen at the closest stations starting just after 
the 200 minute mark (note the relative size of 
this aftershock, which would be considered a 
major earthquake under ordinary 
circumstances, compared to the mainshock). 
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