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Seismic sources - 2

Elastodynamic Green function

- scalar problem

- Lame theorem

- EGF in homogeneous media
- near and far field

- EGF for double couple in homogeneous media
- near, intermediate and far field

- EGF for double couple in heterogeneous media
- surface waves in the far field
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Green's function

Green's function (GF) is a basic solution to a linear
differential equation, a building block that can be used
to construct many useful solutions.

If one considers a linear differential equation written as:
L(x)u(x)=F(x)

where L(x) is a linear, self-adjoint differential operator,
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:

L(x)u(x,s)=0(x-s)

6(x,s)
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S Why GF is important? G5

If such a function G can be found for the operator L, then if we multiply the
second equation for the Green's function by f(s), and then perform an
integration in the s variable, we obtain:

[Lx)G(x.5)f(s)ds = [ 8(x-s)f(s)ds = f(x) = Lu(x)
L [ 6(x.5)f(s)ds = Lu(x)

ux)= [ 6(x.s)f(s)ds

Thus, we can obtain the function u(x) through knowledge of the Green's
function, and the source term. This process has resulted from the linearity of
the operator L.
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The displacement from the simplest source, unidirectional unit impulse, is the
elastodynamic Green function.

Elastodynamic GF 4&

If the unit impulse is applied at x=C and t=t and in the n-direction, the i-th
component of displacement at (x,1) is Gjn(x,t:E 7).

This tensor depends on both receiver and source coordinates and satisfies,
throughout V, the equations:
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The initial conditions for Gin(x,t.€,t), and its time derivative, are that they

are O for t<t and x2C, and to be uniquely specified, it remains to state the
boundary conditions on S (for example if it is rigid or free).
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Inhomogeneous wave equation

e

4‘ ' .i‘h
Let us consider the simplest inhomogeneous scalar problem, i.e. a
spherically symmetric one, to avoid the directionality of the source:

L(u) = U - c°Au = 8(x)d(t)

Figure 4.4-7: Modeling an explosive source as a triple force dipole.
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Let us consider the simplest inhomogeneous scalar problem, i.e. a
spherically symmetric one, to avoid the directionality of the source:

L(u) = U - c°Au = 8(x)d(t)

and let us look for the solution, whose spatial dependence can be only
on u=u(r,t)=u(|x|,1); expressing the Laplacian in spherical coordinates,
one has that everywhere, except at r=0, u=f(t-r/c)/r is the general

Inhomogeneous wave equation sy

solution. At =0, we have the Poisson equation AU = 6(’2‘)
. .. 6()() C
whose solution is: -
4c?
Thus the general solution is:  y(p,t) = ! " 3t -r/c)
4mc r

and the rapidly varying function depends, at any position, only on the
arrival time, and its shape is the same in time as the time function at
the source term.
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Properties of the solution

1) If

then

2) If

then

3) If the source is extended through a volume V:

then
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L(u) = d(x - 5)d(t - T)

u(r )= — : 6“"‘;‘-"@"@\/‘3)

4rc

L(u)=8(x-T)f(1)

u(r,t) = >

P, T -|x-T|/c) ny

1
)= o [ 2

L(u) = d(x,T)




mﬁ;y Helmholtz theorem aé;y

Any vector field u=u(x) may be separated into scalar and vector potentials

U=VDP+VxW

since it is possible to solve the Poisson equation

V2W=u( )
W) = — ([~
(X) f{f4nX—§|d§

and then the identity

A=VVe-VxVx

tells us that

Od=V-WandW¥ =-Vx W
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A’ﬁj\/ Lame theorem _m‘%y

The problem is to find solutions to the elastodynamic equation for a

piu=f+(A+2u)V(V-u)-uV x(V xu)

isotropic and homogeneous elastic space, in ferms of soluble equations.

If the body terms and initial conditions can be expressed as:

f=VD+VxW; u(x,0)= VA+VxB; u(x,0)= VC+V xD

then two potentials exist with the following properties:
Uu=Vo+Vxy;V-9=0;

b= s a2Ad; b=+ B2AY
P P
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Solutions for elastodynamic GF

-
Let us consider for example that

f= X (1)d(X)X, = VP + V x ¥

then we can build:

o Xy
f{fmo \x \‘ 4o
(X, )= V-W = - Z;T)aill

P(x,t)=-VxW = O(T)(

61_81
4r
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Solutions for elastodynamic GF

and we have to a) solve the wave equation for the Lameé potentials of
body force and then b) to calculate the displacement.

After some heavy algebra (Stokes, 1849), generalizing from the x;
direction and using direction cosines Y. = X./P=0r/ox.
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U, = Xo(1) Gij =

/(3Yin - 6ij) B

= X, (T -1)dt
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Near field term

The near-field expression of the point force delta function GF is:

NF - (3Y1YJ _ 61‘]) . a) Near Field Time Functions
u. =
4T[;p et

. r r r ry 3
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and the response has a static (time-independent)
component that corresponds to a permanent deformation
of the medium, both in radial and transverse directions.
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Far field term a@

The far-field expressions of the point force delta function GF are
characterized by:

1) decay as 1/r;
2) are made of P and S waves;

3) the displacement waveform is proportional o the applied force at

the retarded time; -
Up | < Y,Y. = COSO
4) have a radiation pattern P VY

ug |oc —y,'= sin6
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GF for moment tensor

We can calculate the radiation pattern from a point source with an arbitrary
moment tensor by noting that Green's function for a couple is just the spatial
derivative of Green's function for a point force, so that the displacement field
from a moment tensor Mpq is just:

6‘6
u, =M, =6, = A||'T0AI F, * GC
F o q
g UNF \x\/[& )
= ('|' t)dt}+ Near field term
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GF for double couple

An important case to consider in detail is the radiation pattern expected when the
source is a double-couple. The result for a moment time function Mo(%) is:

ANF ’il/ﬁ
u= ™™, (T -t)dt+
4np‘x‘4 \x\/oc °
Ap Xy A x
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field term

(AY = -3sin20cos¢P + 3( cos20cosh - cosBsing)

4 . A )
AT = sin20cos¢r

\A';F = c0520c0s00 — cosOsingd )

Far field term
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.&-. 5 NF DC (static) Radiation pattern

The static final displacement for a shear dislocation of strength Mo is:

Mo () ANF(I 1)+A,£F AT

u= 4np\x\2 2[32 _2(12 o2 + B2 =
Mo<w> 3 1 . A 1 ~ . ~
= — sin20cos — 20cosp0 — cosOs
4np\x\2 (2[32 2(12) INZ0co (I)r'+oc2 (Cos Cos®0 — cos qup)}
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Figure 7: Near-field Static Displacement Field From a Point Double Couple
Source (¢ = 0 plane); o = 3Y/2, 3 =1, r = 0.1, 0.15, 0.20, 0.25, p = 1/4m,
M, = 1; self-scaled displacements
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FF DC Radiation pattern

FIGURE 4.5

Diagrams for the radiation

pattern of the radial com-

ponent of displacement due

to a double couple, i.c.,

sin 20 cos ¢ T. (a) The lobes 0 = 90°
are a locus of points having a

distance from the origin that

is proportional to sin 26. The

diagram is for a plane of con-

stant azimuth, and the pair of

arrows at the center denotes

the shear dislocation. Note + - Fault normal
the alternating quadrants of
inward and outward direc- 8 = t80°
tions. In terms of far-field
P-wave displacement, plus
signs denote outward dis-
placement (if Mo(t — rja)
1s positive), and minus signs
denote inward displacement.
(b) View of the radiation pat-
tern over a sphere centered
on the origin. Plus and minus
signs of various sizes denote
variation (with 9, ¢) of out-
ward and inward motions.
The fault plane and the aux-
iliary plane are nodal liues
(on which sin 26 cos ¢ = 0).
An equal-area projection has
been used (see Fig. 4.17).
Point P marks the pressure
axis, and T the tension axis. (b)

8=90°

8 =90°

6 = 90°

8= 180°

(a)

Auxiliary plane

Fault plane

= (50°,0°)
Fault normal Auxiliary plane

Fault plane

(b)

FIGURE 4.6

Diagrams for the rad1at1on pattern of the transverse component of displacement fue to a double
couple, i.c., cos 26 cos ¢ 6 — cos 8 sin &b ¢ {a) The four-lobed pattern in plane i1 =0,¢ =nr}.
The central pair of arrows shows the sense of shear dislocation, and arrows xmposcd on each lobe
show the direction of particle displacement associated with the lobe. If applicd to the far-ficld -
wave displacewnent, it is assumed that Mo(z — r/B) is positive. (b) Off the two planes # =7 /2 and
{¢=0,¢=m)}, the ¢ component is nonzero, henee” (@) is of limited use. This diagram is a view of
the radiation pattern over a whole sphere centered on thie: origin, and-arrows (with varying size and
direction) in the spherical surface denote the variation (with 8, ¢) of the transverse motions. There
are no nodal lines (where there is zero motion), but nodal points do occur. Note that the nodal point
for transverse motion at (8, ¢) = (45°, 0) is a maximum in the radiation pattern for longitudinal
motion (Fig. 4.5b). But the maximum (ransverse motion (e.g., at @ = 0) occurs on a nodal line for
the longitudinal motion. The stereographic projection has been nsed (see Fig. 4.16). It is a conformal
projection, meaning that it preserves the angles at which curves intersect and the shapes of small

SeismOIOQY I - Gr'een funCTion regions, but it does not preserve relative arcas.




