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Seismology I - Green function

Elastodynamic Green function
- scalar problem
- Lamè theorem
- EGF in homogeneous media

- near and far field
- EGF for double couple in homogeneous media

- near, intermediate and far field 
- EGF for double couple in heterogeneous media

- surface waves in the far field 

Seismic sources - 2



Seismology I - Green function

G(x,s)

Green's function (GF) is a basic solution to a linear 
differential equation, a building block that can be used 
to construct many useful solutions.

If one considers a linear differential equation written as:

L(x)u(x)=f(x)

where L(x) is a linear, self-adjoint differential operator, 
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:

L(x)u(x,s)=δ(x-s)

Green’s function



Seismology I - Green function

Why GF is important?
If such a function G can be found for the operator L, then if we multiply the 
second equation for the Green's function by f(s), and then perform an 
integration in the s variable, we obtain:

  u(x) = G∫ (x,s)f(s)ds

Thus, we can obtain the function u(x) through knowledge of the Green's 
function, and the source term. This process has resulted from the linearity of 
the operator L.

  

€ 

L∫ (x)G(x,s)f(s)ds = δ∫ (x− s)f(s)ds = f(x) = Lu(x)

L G∫ (x,s)f(s)ds = Lu(x)
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The displacement from the simplest source, unidirectional unit impulse, is the 
elastodynamic Green function. 

If the unit impulse is applied at x=ζ and t=τ and in the n-direction, the i-th 
component of displacement at (x,t) is Gin(x,t;ξ,τ). 

This tensor depends on both receiver and source coordinates and satisfies, 
throughout V, the equations:

Elastodynamic GF

ρ
∂2Gin
∂t2

= δinδ x− ζ( )δ t − τ( ) +
∂
∂xj

cijkl
∂Gkn
∂xl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

The initial conditions for Gin(x,t;ξ,τ), and its time derivative, are that they 
are 0 for t≤τ and x≠ζ, and to be uniquely specified, it remains to state the 
boundary conditions on S (for example if it is rigid or free).



Seismology I - Green function

Inhomogeneous wave equation

Let us consider the simplest inhomogeneous scalar problem, i.e. a 
spherically symmetric one, to avoid the directionality of the source:

    L(u) = ˙ ̇ u −c2Δu = δ(x)δ(t)



Seismology I - Green function

Inhomogeneous wave equation

Let us consider the simplest inhomogeneous scalar problem, i.e. a 
spherically symmetric one, to avoid the directionality of the source:

and let us look for the solution, whose spatial dependence can be only 
on u=u(r,t)=u(|x|,t); expressing the Laplacian in spherical coordinates, 
one has that everywhere, except at r=0, u=f(t-r/c)/r is the general 
solution. At t=0, we have the Poisson equation 
whose solution is:

Thus the general solution is:

    

€ 

Δu =
δ(x)
c2

    

€ 

u =
δ(x)
4πc2

  
u(r,t) = 1

4πc2
δ(t -r/c)

r
and the rapidly varying function depends, at any position, only on the 
arrival time, and its shape is the same in time as the time function at 
the source term.

    L(u) = ˙ ̇ u −c2Δu = δ(x)δ(t)
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Properties of the solution

1) If
    

then
    

€ 

u(r,t) =
1

4πc2
δ(t - τ - x-ζ /c)

x-ζ

    

€ 

L(u) = δ(x-ζ)δ(t − τ)

2) If
    

then

    

€ 

L(u) = δ(x-ζ)f(t)

    

€ 

u(r,t) =
1

4πc2
f(t - x-ζ /c)

x-ζ

3) If the source is extended through a volume V:
    

then

    

€ 

L(u) =
Φ(x,t)
ρ

    

€ 

u(r,t) =
1

4πρc2
Φ(ζ,t - x-ζ /c)

x-ζ
dV

V
∫∫∫
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Helmholtz theorem

Any vector field u=u(x) may be separated into scalar and vector potentials

  u = ∇Φ + ∇× Ψ

and then the identity

since it is possible to solve the Poisson equation

    ∇2W = u

    
W(x)= − u(ξ)

4πx − ξV
∫∫∫ dξ

  Δ = ∇∇ • -∇ ×∇×
tells us that

    Φ = ∇ ⋅W and Ψ = −∇×W
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Lamè theorem

The problem is to find solutions to the elastodynamic equation for a

isotropic and homogeneous elastic space, in terms of soluble equations.

If the body terms and initial conditions can be expressed as:

with

then two potentials exist with the following properties:

    

€ 

∇ ⋅Ψ = 0; ∇ ⋅B = 0; ∇ ⋅D = 0,

    ρ˙ ̇ u = f + λ+2µ( )∇(∇ ⋅u)−µ∇× (∇× u)

    

€ 

f =∇Φ +∇×Ψ; u(x,0) =∇A+∇×B; ˙ u (x,0) =∇C +∇×D

    

u = ∇φ +∇× ψ; ∇ ⋅ ψ = 0;

˙ ̇ φ =
Φ
ρ

+α2Δφ;  ˙ ̇ ψ =
Ψ
ρ

+β2Δψ
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Solutions for elastodynamic GF

Let us consider for example that 

then we can build:

    

€ 

f = X0(t)δ(x) ˆ x 1 = ∇Φ +∇×Ψ

    

€ 

W =
X0(t)

4π
1,0,0( )

V
∫∫∫

δ ζ( )dV
x − ζ

= −
X0(t)
4πr

ˆ x 1

Φ x,t( ) = ∇ ⋅W = −
X0(t)

4π
∂
∂x1

1
r

Ψ x,t( ) = −∇×W =
X0(t)

4π
0, ∂
∂x3

1
r

,− ∂
∂x2

1
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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Far field term

Near field term

Solutions for elastodynamic GF

and we have to a) solve the wave equation for the Lamè potentials of 
body force and then b) to calculate the displacement.  
After some heavy algebra (Stokes, 1849), generalizing from the xj 
direction and using direction cosines   

€ 

γi = xi /r = ∂r /∂xi

    

€ 

ui = X0(t)∗Gij =

=
3γiγ j − δij( )
4πρx 3 τ

x /α

x /β

∫ X0(t - τ)dτ +

   +
γiγ j

4πρα3 x
X0(t - x

α
) +

   +
3γiγ j − δij( )
4πρβ3 x

X0(t - x
β

)
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Near field term

The near-field expression of the point force delta function GF is:

Figure 2: Time Dependence of Near Field Terms at a Source Distance of r.
Delta Function Force in Isotropic Whole-Space

8

and the response has a static (time-independent) 
component that corresponds to a permanent deformation 
of the medium, both in radial and transverse directions.

  

€ 

ui
NF =

3γiγ j − δij( )
4πρ

⋅

1
r3 (t - r

α
)H(t - r

α
) -(t - r

β
)H(t - r

β
)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
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+

1
r2

1
α

H(t - r
α

) - 1
β

H(t - r
β

)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
⎫ 
⎬ 
⎭ 
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Far field term

The far-field expressions of the point force delta function GF are  
characterized by: 
1) decay as 1/r; 

2) are made of P and S waves;
3) the displacement waveform is proportional to the applied force at 
the retarded time;

4) have a radiation pattern

Figure 2: Time Dependence of Near Field Terms at a Source Distance of r.
Delta Function Force in Isotropic Whole-Space
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Figure 3: P and S Far-Field Displacement Radiation Patterns for a Delta Func-
tion Force in an Isotropic Whole-Space
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€ 

uP
FF ∝ γ1γ j = cosθ

uS
FF ∝−γ j'= sinθ
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Far field term

Near field term

GF for moment tensor

We can calculate the radiation pattern from a point source with an arbitrary 
moment tensor by noting that Green’s function for a couple is just the spatial 
derivative of Green’s function for a point force, so that the displacement field 
from a moment tensor Mpq is just:

  

€ 

un = Mpq ∗Gnp,q = lim
Δlq→0
Fp→∞

ΔlqFp ∗
∂Gnp

∂ζq
=

Intermediate 
field term

    

€ 

=
uNF

4πρx 4 τ
x /α

x /β

∫ Mpq(t - τ)dτ +

   + uP
IF

4πρα2 x 2 Mpq(t - x
α

) - uS
IF

4πρβ2 x 2 Mpq(t - x
β

) +

   + uP
FF

4πρα3 x
˙ M pq(t - x

α
) - uS

FF

4πρβ3 x
˙ M pq(t - x

β
)
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Far field term

Near field term

GF for double couple
An important case to consider in detail is the radiation pattern expected when the 
source is a double-couple. The result for a moment time function M0(t) is:

Intermediate 
field term

    

€ 

u = ANF

4πρx 4 τ
x /α

x /β

∫ M0(t - τ)dτ +

   + AP
IF

4πρα2 x 2 M0(t - x
α

) - AS
IF

4πρβ2 x 2 M0(t - x
β

) +

   + AP
FF

4πρα3 x
˙ M 0(t - x

α
) - AS

FF

4πρβ3 x
˙ M 0(t - x

β
)

    

€ 

ANF = 9sin2θcosφˆ r −6 cos2θcosφ ˆ θ − cosθsinφ ˆ φ ( )
AP

IF = 4sin2θcosφˆ r −2 cos2θcosφ ˆ θ − cosθsinφ ˆ φ ( )
AS

IF = −3sin2θcosφˆ r +3 cos2θcosφ ˆ θ − cosθsinφ ˆ φ ( )
AP

FF = sin2θcosφˆ r 
AS

FF = cos2θcosφ ˆ θ − cosθsinφ ˆ φ 
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NF DC (static) Radiation pattern 
The static final displacement for a shear dislocation of strength M0 is:

    

€ 

u = M0 ∞( )
4πρx 2 ANF 1

2β2 −
1

2α2
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⎜ 
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1
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⎜ 
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Figure 7: Near-field Static Displacement Field From a Point Double Couple
Source (φ = 0 plane); α = 31/2, β = 1, r = 0.1, 0.15, 0.20, 0.25, ρ = 1/4π,
M∞ = 1; self-scaled displacements

The near-field term gives a static displacement as t→∞

u =
M0(∞)
4πρr2

�
AN

2

�
1
β2
− 1

α2

�
+

AIP

α2
+

AIS

β2

�
(64)

=
M0(∞)
4πρr2

�
1
2

�
3
β2
− 1

α2

�
sin 2θ cos θr̂ +

1
α2

(cos 2θ cos φθ̂ − (cos θ sin φφ̂)
�

,

where M0(∞) is the final value of the seismic moment. Interestingly, this ex-
pression contains two terms with the same angular dependence as those for the
far-field, but decays as r−2. The strain field, which is the usual observable used
to study such permanent near field terms, will correspondingly decay as r−3.
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FF DC Radiation pattern


