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Linear Systems

(remember GF definition)
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Convolution

Definition:

  
f(t) ∗h(t) = f(τ)h(t − τ)dτ
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Convolution
Pictorially

f(t)

h(t)
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Convolution

f(τ)

τ

h(τ−t)



Seismology I - LS&FT

Convolution

Consider the function (box filter):
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Convolution

This function windows our function f(t)

f(τ)
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Convolution

This function windows our function f(t).
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f(τ)
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This function windows our function f(t)
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Convolution

This particular convolution smooths out some of 
the high frequencies in f(t).

f(t)*g(t) f(τ)
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Various spaces and transforms

Signal 
type

Continuous 
time Discrete time Transform Domain

Finite 
duration Laplace z

Continuous complex 
frequency (s-plane)

Finite 
duration Fourier

Discrete-time 
Fourier (DTFT)

Continuous

real frequency

Periodic Fourier 
Series

Discrete 
Fourier Series 

(DFS)

Discrete

real frequency
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Laplace Transform

Transforms for Continuous Systems Analysis

Fourier Transform

Differential Equation:

systemx(t) y(t)
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Frequency Response

Transfer Function

The values of where the numerators is zero are referred to as zeros , as the response is zero at this 
frequency, regardless of the amplitude of the input signal. Conversely, frequencies for which the 
denominator is zero are called poles, as the response becomes very large at these frequencies.
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Difference Equation:

y[n] + a1y[n-1] + … + aky[n-k] = b0m[n] + b1m[n-1] + … + bmm[n-l]

m[n] y[n]DSP
System

Transforms for Discrete Systems Analysis

z Transform

Discrete Time Fourier Transform
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Frequency Response

Transfer Function – z transforms

y[n] + a1y[n-1] + … + aky[n-k] =  b0m[n] + b1m[n-1] + … + bmm[n-l]

The values of where the numerators is zero are referred to as zeros , as the response is zero at this 
frequency, regardless of the amplitude of the input signal. Conversely, frequencies for which the 
denominator is zero are called poles, as the response becomes very large at these frequencies.
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Fourier Spectra: Main Cases
random signals

Random signals may contain all frequencies. A 
spectrum with constant contribution of all frequencies 

is called a white spectrum
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36

Fourier Spectra: Main Cases
Gaussian signals

The spectrum of a Gaussian function will itself be a 
Gaussian function. How does the spectrum change, if I 

make the Gaussian narrower and narrower?
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Fourier Spectra: Main Cases
Transient waveform

A transient wave form is a wave form limited in time 
(or space) in comparison with a harmonic wave form 

that is infinite
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Pulse-width and Frequency Bandwidth

time (space) spectrum
N

ar
ro

wi
ng

 p
hy

si
ca

l s
ig

na
l

W
id

en
in

g 
fr

eq
ue

nc
y 

ba
nd



Seismology I - LS&FT

Sampling Function

A Sampling Function or Impulse Train is defined 
by:

where T is the sample spacing.
  
ST(t) = δ(t − kT)

k =−∞

∞

∑

T
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Sampling Function

The Fourier Transform of the Sampling Function 
is itself a sampling function.
The sample spacing is the inverse.

  
ST(t) ⇔ S1

T
(ω)
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Convolution Theorem

The convolution theorem states that convolution in 
the spatial domain is equivalent to multiplication in 
the frequency domain, and viceversa.

  

f(t) ∗ g(t) ⇔ F(ω)G(ω)
f(t)g(t) ⇔ F(ω) ∗G(ω)
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Convolution Theorem

This powerful theorem can illustrate the problems 
with our point sampling and provide guidance on 
avoiding aliasing.

Consider: f(t) ST(t)

f(t)

T
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Convolution Theorem

What does this look like in the Fourier domain?

F(ω)S(ω)
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Convolution Theorem

In Fourier domain we would convolve

F(ω)S(ω)

S(ω)*F(ω)
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Aliasing

What this says, is that any frequencies greater 
than a certain amount will appear intermixed with 
other frequencies.
In particular, the higher frequencies for the copy 
at 1/T intermix with the low frequencies centered 
at the origin.
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Aliasing and Sampling

Note, that the sampling process introduces 
frequencies out to infinity.
We have also lost the function f(t), and now have 
only the discrete samples.
This brings us to our next powerful theory.
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Sampling Theorem

The Shannon Sampling Theorem
A band-limited signal f(t), with a cutoff frequency 
of λ, that is sampled with a sampling spacing of T 

may be perfectly reconstructed from the discrete 
values f[nT] by convolution with the sinc(t) function, 
provided:
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Sampling Theory

Why is this?
The Nyquist limit will ensure that the copies of F
(ω) do not overlap in the frequency domain.
I can completely reconstruct or determine f(t) 
from F(ω) using the Inverse Fourier Transform.
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Sampling Theory

In order to do this, I need to remove all of the 
shifted copies of F(ω) first.
This is done by simply multiplying F(ω) by a box 
function of width 2λ.

F(ω)S(ω)

−λ λ
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A Cosine Example

Consider the function f(t)=cos(2πt).

x

ω

F(ω)

f(t)



Seismology I - LS&FT

Sampling Theory

So, given f[nT] and an assumption that f(t) does 
not have frequencies greater than 1/2T, we can 
write the formula:

f[nT] = f(t) ST(t) ó F(ω)* ST(ω)

F(ω) = (F(ω)* ST(ω)) Box1/2T(ω)

therefore,
f(t) = f[nT] *  sinc(t)
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A Cosine Example

Now sample it at T=1/2

x

ω

f(t)

1

F(ω)



Seismology I - LS&FT

A Cosine Example

Problem:
The amplitude is now wrong or undefined.

Note however, that there is one and only one 
cosine with a frequency less than or equal to 1 
that goes through the sample pts.

ω1

F(ω)
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A Cosine Example

What if we sample at T=2/3?

x

ω

f(t)

1

F(ω)
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Supersampling

Supersampling increases the sampling rate, and 
then integrates or convolves with a box filter, 
which is finally followed by the output sampling 
function.

t

f(t)
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Sampling and Anti-aliasing

The problem:
The signal is not band-limited.
Uniform sampling can pick-up higher frequency 
patterns and represent them as low-frequency 
patterns.

F(ω)S(ω)


