SEISMOLOGY I

Laurea Magistralis in Physics of the Earth and of the Environment

Linear systems

Fabio ROMANELLI

Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it

Figure 6.3-1: Definition of a linear system.

$$
x(t) = \int x(\tau)\delta(\tau - t)d\tau
$$

$$
\int x(\tau)h(\tau - t)d\tau
$$

$$
X(t) * h(t) = y(t)
$$

(remember GF definition)

$f(t) * h(t) = \int f(\tau)h(t-\tau) d\tau$ −∞ ∞

Consider the function (box filter):

This particular convolution smooths out some of the high frequencies in f(t).

$$
\frac{d^{n}y}{dt^{n}} + a_{n-1} \frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{1} \frac{dy}{dt} + a_{0}y = b_{m} \frac{d^{m}x}{dt^{m}} + \dots + b_{0}x
$$
\n**Transfer Function**\n
$$
s^{n}Y(s) + a_{n-1}s^{n-1}Y(s) + \dots + a_{1}s^{1}Y(s) + a_{0}s^{0}Y(s) = b_{m}s^{m}X(s) + b_{m-1}s^{m-1}X(s) + \dots + b_{0}X(s)
$$
\n
$$
H(s) = \frac{Y(s)}{X(s)} = \frac{s^{m} + b_{m-1}s^{m-1} + \dots + b_{1}s + b_{0}}{s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}} = \frac{(s - z_{1})(s - z_{2})\cdots(s - z_{m})}{(s - p_{1})(s - p_{2})\cdots(s - p_{n})}
$$
\n**Frequency Response**\n
$$
(j\omega)^{n}Y(j\omega) + a_{n-1}(j\omega)^{n-1}Y(j\omega) + \dots + a_{0}Y(j\omega) = b_{m}(j\omega)^{m}X(j\omega) + \dots + b_{0}X(j\omega)
$$
\n
$$
H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{b_{m}(j\omega)^{m} + b_{m-1}(j\omega)^{m-1} + \dots + b_{1}(j\omega) + b_{0}}{(j\omega)^{n} + a_{n-1}(j\omega)^{n-1} + \dots + a_{1}(j\omega) + a_{0}}
$$

The values of where the numerators is zero are referred to as **zeros** , as the response is zero at this frequency, regardless of the amplitude of the input signal. Conversely, frequencies for which the denominator is zero are called **poles**, as the response becomes very large at these frequencies.

$$
m[n] \longrightarrow \begin{array}{c} \text{DSP} \\ \text{System} \end{array} \longrightarrow \begin{array}{c} \text{Y}[n] \end{array}
$$

Difference Equation:

 $y[n] + a_1y[n-1] + ... + a_ky[n-k] = b_0m[n] + b_1m[n-1] + ... + b_mm[n-1]$

$$
X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n} \text{ and } x[n] = \frac{1}{j2\pi} \oint_{\text{contour}} X(z)z^{n-1}dz
$$

Discrete Time Fourier Transform $X(e^{j\omega}) = \sum_{n=1}^{\infty} x[n]e^{-j\omega n}$ and $x[n] = fX(e^{j\omega})e^{j\omega n}d\omega$ $n = -\infty$ 2π

$y[n] + a_1y[n-1] + ... + a_ky[n-k] = b_0m[n] + b_1m[n-1] + ... + b_mm[n-1]$

Transfer Function – z transforms

$$
z^{n}Y(z) + a_{n-1}z^{n-1}Y(z) + ... + a_{1}zY(z) + a_{0}Y(z) = b_{m}z^{m}X(z) + b_{m-1}z^{m-1}X(z) + ... + b_{0}X(z)
$$

$$
H(z) = \frac{Y(z)}{X(z)} = \frac{b_{m}z^{m} + b_{m-1}z^{m-1} + ... + b_{1}z + b_{0}}{z^{n} + a_{n-1}z^{n-1} + ... + a_{1}z + a_{0}} = \frac{(z - z_{1})(z - z_{2}) \cdots (z - z_{m})}{(z - p_{1})(z - p_{2}) \cdots (z - p_{n})}
$$

Frequency Response

 $e^{j\omega n}Y(e^{j\omega}) + a_{n-1}e^{j\omega(n-1)}Y(e^{j\omega}) + ... + a_0Y(e^{j\omega}) = b_me^{j\omega m}X(e^{j\omega}) + ... + b_0X(e^{j\omega})$

$$
H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{b_m e^{j\omega m} + b_{m-1} e^{j\omega (m-1)} + \dots + b_1 e^{j\omega} + b_0}{e^{j\omega n} + a_{n-1} e^{j\omega (n-1)} + \dots + a_1 e^{j\omega} + a_0}
$$

The values of where the numerators is zero are referred to as **zeros** , as the response is zero at this frequency, regardless of the amplitude of the input signal. Conversely, frequencies for which the denominator is zero are called **poles**, as the response becomes very large at these frequencies.

random signals

Random signals may contain all frequencies. A spectrum with constant contribution of all frequencies is called a white spectrum

Gaussian signals

36 make the Gaussian narrower and narrower?The spectrum of a Gaussian function will itself be a Gaussian function. How does the spectrum change, if I

Transient waveform

A transient wave form is a wave form limited in time (or space) in comparison with a harmonic wave form that is infinite

Widening frequency band

Widening frequency band

Narrowing physical signal Narrowing physical signal

A Sampling Function or Impulse Train is defined by: $S_T(t) = \sum \delta(t - kT)$ $k = -\infty$ ∞ ∑

where T is the sample spacing.

- **The Fourier Transform of the Sampling Function** is itself a sampling function.
- **The sample spacing is the inverse.**

$S_T(t) \Leftrightarrow S_{\perp}(\omega)$ T

The convolution theorem states that convolution in the spatial domain is equivalent to multiplication in the frequency domain, and viceversa.

\mathbf{I} $f(t) * g(t) \Leftrightarrow F(\omega)G(\omega)$ $f(t)g(t) \Leftrightarrow F(\omega)*G(\omega)$

This powerful theorem can illustrate the problems with our point sampling and provide guidance on avoiding aliasing.

What does this look like in the Fourier domain?

In Fourier domain we would convolve

- What this says, is that any frequencies greater than a certain amount will appear intermixed with other frequencies.
- \blacksquare In particular, the higher frequencies for the copy at 1/T intermix with the low frequencies centered at the origin.

- Note, that the sampling process introduces frequencies out to infinity.
- We have also lost the function f(t), and now have only the discrete samples.
- This brings us to our next powerful theory.

The Shannon Sampling Theorem

- A band-limited signal f(t), with a cutoff frequency of λ , that is sampled with a sampling spacing of T
	- may be perfectly reconstructed from the discrete values f[nT] by convolution with the sinc(t) function, provided:

$$
\lambda < \frac{1}{2T}
$$

Why is this?

- The Nyquist limit will ensure that the copies of F (ω) do not overlap in the frequency domain.
- \blacksquare I can completely reconstruct or determine $f(t)$ from $F(\omega)$ using the Inverse Fourier Transform.

- In order to do this, I need to remove all of the shifted copies of $F(\omega)$ first.
- This is done by simply multiplying $F(\omega)$ by a box function of width 2λ.

Seismology I - LS&FT

- \blacksquare In order to do this, I need to remove all of the shifted copies of $F(\omega)$ first.
- This is done by simply multiplying $F(\omega)$ by a box function of width 2λ.

Consider the function $f(t) = cos(2\pi t)$.

 \blacktriangleright So, given <code>f[nT]</code> and an assumption that <code>f(t)</code> does not have frequencies greater than 1/2T, we can write the formula:

> $f[nT] = f(t) S_T(t) \Leftrightarrow F(\omega)^* S_T(\omega)$ $F(\omega) = (F(\omega)^* S_T(\omega))$ Box_{1/2T}(ω)

therefore,

 $f(t) = f[nT] * sinc(t)$

Now sample it at T=1/2

Problem:

The amplitude is now wrong or undefined.

Note however, that there is one and only one cosine with a frequency less than or equal to 1 that goes through the sample pts.

What if we sample at T=2/3?

Supersampling increases the sampling rate, and then integrates or convolves with a box filter, which is finally followed by the output sampling function.

The problem:

- The signal is not band-limited.
- Uniform sampling can pick-up higher frequency patterns and represent them as low-frequency patterns.

